

Electronic versions are uncontrolled unless directly accessed from the QA Document Control system.

Printed version are uncontrolled except when stamped with ‘VALID COPY’ in red.

External release of this document may require a NDA.

© INSIDE Secure - 2018 - All rights reserved

MatrixSSL Diffie-Hellman

Cipher Suites

 2 © INSIDE Secure - 2018 - All rights reserved

TABLE OF CONTENTS

1 ENABLING DIFFIE-HELLMAN IN MATRIXSSL .. 3

1.1 Raw Algorithm ... 3

1.2 Cipher Suites ... 3

2 CLIENT SIDE DIFFIE-HELLMAN .. 4

3 SERVER SIDE DIFFIE-HELLMAN... 5

3.1 matrixSslLoadDhParams .. 5

3.2 matrixSslLoadDhParamsMem ... 5

 3 © INSIDE Secure - 2018 - All rights reserved

1 ENABLING DIFFIE-HELLMAN IN MATRIXSSL

Diffie-Hellman is a key exchange algorithm that may be optionally included in the SSL protocol.

1.1 Raw Algorithm
The define USE_DH must be enabled in the matrixsslConfig.h header file to compile in Diffie-Hellman

support.

1.2 Cipher Suites
The user must also enable any of the DH cipher suites that are desired. These defines are also listed in
the matrixsslConfig.h file and are disabled by default. The list of supported cipher suites is:

TLS_DHE_RSA_WITH_AES_128_CBC_SHA

TLS_DHE_RSA_WITH_AES_256_CBC_SHA

TLS_DHE_RSA_WITH_AES_128_CBS_SHA256

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

TLS_DHE_PSK_WITH_AES_256_CBC_SHA

TLS_DHE_PSK_WITH_AES_128_CBC_SHA

TLS_DH_anon_WITH_AES_128_CBC_SHA

TLS_DH_anon_WITH_AES_256_CBC_SHA

SSL_DH_anon_WITH_RC4_128_MD5

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

Cipher suites prefixed with SSL also function with the TLS protocol. The cipher suites prefixed with TLS
should only be used with the TLS protocol.

The DHE identifier refers to the fact that the RSA/DH combo suites are ephemeral. That is, new keys are
generated for each connection. The trade-off for this ‘perfect forward secrecy’ is more CPU time.

The enabling of these defines is identical for both client and server targets of the MatrixSSL library.

 4 © INSIDE Secure - 2018 - All rights reserved

2 CLIENT SIDE DIFFIE-HELLMAN

Once the MatrixSSL library is compiled with DH support and the desired cipher suites, there are no extra
steps needed by developers for client-side applications. However, if the client wishes to force a DH cipher
suite it may specify that explicitly in the matrixSslNewClientSession API using the cipherSpec

parameter.

 5 © INSIDE Secure - 2018 - All rights reserved

3 SERVER SIDE DIFFIE-HELLMAN

For server-side applications there is a very small amount of integration work that must be done to support
DH. The server must load DH parameters at initialization from a PEM formatted file or through a memory
location.

3.1 matrixSslLoadDhParams

int32 matrixSslLoadDhParams(sslKeys_t *keys, char *paramFile);

Parameter Input/Output Description

keys input Structure pointer for storing the DH key material that was previously allocated using
matrixSslNewKeys

paramFile input A PEM encoded DH parameters file

Return Value Description

PS_SUCCESS Success. A valid key pointer will be returned in the keys parameter for use in a subsequent call to
matrixSslNewServerSession

PS_MEM_FAIL Failure. Unable to allocate memory for the structure

PS_PARSE_FAIL Failure. Unable to parse DH parameter file

This function loads in a DH parameter file that is used for key generation when DH cipher suites are
negotiated. The paramFile is a PEM formatted file that should include the standard
-----BEGIN DH PARAMETERS----- header and -----END_DH PARAMETERS----- footer. Supported key

sizes are 192, 512, 1024, 2048, and 4096 bit. DH parameter files may be uniquely generated, but this is
not necessary and it is safe to use the DH parameter files provided in the MatrixSSL distribution.

RSA/DH Combination Cipher Suites

This API should be called along with matrixSslLoadRsaKeys for cipher suites that require RSA

authentication and DH key exchange. The same keys parameter will be used for both function calls.

The DH parameters are added to the existing keys structure that will be passed into
matrixSslNewServerSession. It is still possible to use an anonymous cipher suite in this usage scenario.

Anonymous DH and PSK Cipher Suites

The other use case for this API is to create a server application that supports anonymous DH cipher suites
or Pre-shared key (PSK) cipher suites. Anonymous suites should never be used if authentication is
required and no other mechanism is being used to perform authentication, but some implementations may
require it. In this use case, it is not necessary to call matrixSslLoadRsaKeys with the keys structure.

3.2 matrixSslLoadDhParamsMem

int32 matrixSslLoadDhParamsMem(sslKeys_t *keys, unsigned char *dhBin,

int32 dhBinLen);

Parameter Input/Output Description

keys input Structure pointer for storing the DH key material that was previously allocated using
matrixSslNewKeys

dhBin input A DER encoded DH parameter stream

dhBinLen input The byte length of the dhBin parameter

 6 © INSIDE Secure - 2018 - All rights reserved

Return Value Description

PS_SUCCESS Success. A valid key pointer will be returned in the keys parameter for use in a subsequent call to
matrixSslNewServerSession

PS_MEM_FAIL Failure. Unable to allocate memory for the structure

PS_PARSE_FAIL Failure. Unable to parse DH parameter file

This version supports platforms that do not have file system support. This is the functional equivalent of the
matrixLoadDhParams documented above.

