

Electronic versions are uncontrolled unless directly accessed from the QA Document Control system.
Printed version are uncontrolled except when stamped with ‘VALID COPY’ in red.

External release of this document may require a NDA.

© INSIDE Secure - 2013 - All rights reserved

MatrixSSL
Pre-Shared
Key Cipher

Suites

 2 © INSIDE Secure - 2013 - All rights reserved

TABLE OF CONTENTS

1	 MATRIXSSL PSK CIPHER SUITES ... 3	
1.1 Basic PSK Cipher Suites .. 3	

1.1.1 Minimal Build .. 3	
1.2 DHE_PSK Cipher Suites .. 3	

2	 API .. 5	
2.1 matrixSslLoadPsk .. 5	

 3 © INSIDE Secure - 2013 - All rights reserved

1 MATRIXSSL PSK CIPHER SUITES
MatrixSSL includes support for two modes of Pre-shared Key (PSK) cipher suites. These cipher suites offer an
alternative authentication mechanism from the more standard RSA or ECC based public key encryption used by
most TLS handshakes. In both PSK modes, authentication is performed based on each peer having access to
the pre-shared keys and these keys must always be treated with the same level of secrecy as RSA private keys.

1.1 Basic PSK Cipher Suites
The first mode of support is basic PSK in which the pre-shared symmetric keys are used as the sole method of
authentication between the peers. This mode is not generally recommended and should only be used in tightly
constrained environments in which other ciphers cannot be used.

Cipher Suite Cipher ID

TLS_PSK_WITH_AES_128_CBC_SHA 0x008C (140)
TLS_PSK_WITH_AES_256_CBC_SHA 0x008D (141)
TLS_PSK_WITH_AES_128_CBC_SHA256 0x00AE (174)

Table 1 - Supported Basic PSK Cipher Suites

1.1.1 Minimal Build
The smallest possible version of the MatrixSSL library can be built if your platform wishes to use only these basic
PSK suites. If only these above suites are enabled in matrixsslConfig.h there is a set of defines that may be
disabled in the other modules. The table below lists the #defines that should be enabled and disabled to create
this small PSK-only library.

Code Define Location Comments

MATRIX_USE_FILE_SYSTEM Build environment Disable this define
USE_X509 cryptoConfig.h Disable this define as there are no

X.509 certificates involved
USE_RSA cryptoConfig.h Disable this define as there is no

RSA public key crypto
USE_PRIVATE_KEY_PARSING cryptoConfig.h Disable this define
USE_DH cryptoConfig.h Disable this define
USE_3DES, USE_ARC4 cryptoConfig.h Disable the unused symmetric

ciphers
USE_PKCS5 cryptoConfig.h Disable this define as no RSA

private keys are used
DISABLE_PSTM cryptoConfig.h Enable this define to exclude the

big math code compoenents
Table 2 - Define Configuration for Minimal Build

1.2 DHE_PSK Cipher Suites
The second mode of support is DHE_PSK, which uses the pre-shared symmetric keys to authenticate a Diffie-
Hellman handshake. The added advantages of the DHE_PSK suites over the basic PSK suites are additional
protection against dictionary attacks by passive eavesdroppers and also provide Perfect Forward Secrecy.

 4 © INSIDE Secure - 2013 - All rights reserved

Cipher Suite Cipher ID

TLS_DHE_PSK_WITH_AES_128_CBC_SHA 0x0090 (144)
TLS_DHE_PSK_WITH_AES_256_CBC_SHA 0x0091 (145)

Table 3 - Supported DHE_PSK Cipher Suites

 5 © INSIDE Secure - 2013 - All rights reserved

2 API
The only integration step necessary to use a PSK cipher suite is to nominate the key material during session
initialization using the following API.

2.1 matrixSslLoadPsk

int32 matrixSslLoadPsk(sslKeys_t *keys, unsigned char *key,

uint32 keyLen, unsigned char *id, uint32 idLen);

Parameter Input/Output Description

keys input Key structure created from a previous call to matrixSslNewKeys
key input Pointer to a byte array the contains the secret Pre-Shared Key to be used for this

session
keyLen input Length in bytes of key. Must be >=1 and <=SSL_PSK_MAX_KEY_SIZE (128 byte

default)
id input Pre-Shared Key identity
idLen input Length in bytes of id. Muyst be >=1 and <=SSL_PSK_MAX_ID_SIZE (256 byte

default)

Return Value Description

PS_SUCCESS Successful key load
PS_MEM_FAIL Failure. Platform unable to allocate memory
PS_ARG_FAIL Failure. NULL pointer for key or id parameters. Length tests of keyLen or idLen outside limits

Severs and Clients
This API is called to register a Pre Shared Key (PSK) and PSK Identity with a key structure that will be used
when new SSL sessions are created. The PSK and Identity are both arbitrary byte values. The length of the
PSK should be sufficiently long and random to provide adequate security. Typically a length of 16 bytes of true
random data is viewed as “strong” for this purpose. It is not recommended to use a typical login type password
for the PSK. If a password is used, it should only be used to produce a derived key via a Password Based Key
Derivation Function such as pkcs5pbkdf2() in crypto/cryptoApi.h. The Identity is a string, which uniquely
identifies the key. For example, a client which connects to several different host names may have one PSK per
host, each with the Identity of the given host name. It is the Identity that is exchanged between the peers during
the SSL handshake.
The keys parameter must have been previously allocated by a call to matrixSslNewKeys. Once loaded with the
key material, the parameter is passed to matrixSslNewClientSession or matrixSslNewServerSession.

Servers
Servers may call this routine multiple times to register several Identities and Keys that are acceptable for
authentication. The API should be called before accepting client connections, so that the server is able to
authenticate the client during the SSL handshake.

Clients
Clients should only call this function once to register the key that identifies itself.

Memory Profile
The PSK material will be freed when matrixSslDeleteKeys is called on the keys

