

Electronic versions are uncontrolled unless directly accessed from the QA Document Control system.

Printed version are uncontrolled except when stamped with ‘VALID COPY’ in red.

External release of this document may require a NDA.

©INSIDE Secure – 2018 – All rights reserved

Matrix Key and
Certificate Generation

Utilities

 2

©INSIDE Secure – 2018 – All rights reserved

TABLE OF CONTENTS

1 CERTIFICATE AND KEY OVERVIEW .. 4

1.1 Certificate Authorities, Certificates and Private Keys .. 4

1.2 Buy or Generate? .. 4

1.3 Matrix Certificate Generation Features ... 4

1.3.1 Distinguished Name Attributes .. 4

1.3.2 Certificate Extensions ... 5

2 GETTING STARTED ... 6

2.1 Compiling the Matrix crypto library .. 6

2.2 Compiling the Utilities .. 6

2.3 Configuration Files .. 6

2.3.1 Distinguished Name Attributes .. 7

2.3.2 SubjectAltName Configuration Entry ... 7

2.3.3 IssuerAltName Configuration Entry ... 8

2.3.4 KeyUsage Configuration Entry .. 8

2.3.5 ExtendedKeyUsage Configuration Entry ... 8

2.3.6 Authority Information Access .. 8

2.3.7 Certificate Policies .. 8

2.3.8 Policy Mappings ... 9

2.3.9 Policy Constraints ... 9

3 RSA KEY GENERATION ... 10

3.1 Usage .. 10

3.2 Examples .. 10

4 EC KEY GENERATION .. 11

4.1 Usage .. 11

4.2 Examples .. 11

5 CERTIFICATE REQUESTS .. 12

5.1 Usage .. 12

5.2 Configuration File .. 12

5.3 Examples .. 13

6 CERTIFICATE GENERATION ... 14

6.1 Self-Signed Certificate Authority Usage .. 14

6.2 Self-Signed Certificate Authority Configuration File .. 14

6.3 Self-Signed Certificate Authority Examples ... 15

6.4 CA-Issued Certificate Usage ... 16

6.5 CA-Issued Certificate Configuration File ... 16

6.6 CA-Issued Certificate Example ... 17

7 PEM FILE TO HEADER FILE CONVERSION .. 18

7.1 Private Key Usage .. 18

 3

©INSIDE Secure – 2018 – All rights reserved

7.2 Certificate File Usage .. 18

 4

©INSIDE Secure – 2018 – All rights reserved

1 CERTIFICATE AND KEY OVERVIEW

This document explains how to use the Matrix command line utilities to easily generate and format private
key and X.509 certificate files suitable for use where public-key cryptography is required. All files
generated with the utilities output standards compliant formats.

1.1 Certificate Authorities, Certificates and Private Keys
This document does not discuss the complicated topics of Public Key Infrastructure (PKI) in relation to
security protocols. However, a basic overview of public keys and certificates is essential to understanding
how authentication is performed in these environments.

The hierarchy of the trust chain begins with the creation of a new private key and a self-signed Certificate
Authority (CA). A self-signed CA can then “issue” certificates. Any certificate that has the ability to issue
other certificates is called a CA. It is not uncommon for a self-signed CA to issue other CAs and create a
certificate chain.

To issue a certificate, the CA must have a certificate request. A certificate request is created by
generating a new private key and then using that private key to create the request. The certificate request
contains information about the requesting entity. The private key will not be shared with the CA when
creating a new issued certificate. However, the CA will use its own private key during the issue process.
This is the only time the private key of the CA is used. The self-signed CA private key should never be
loaded into a MatrixSSL application.

1.2 Buy or Generate?
The most common way to obtain certificates is to buy them from a commercial certificate authority. This will
result in a public key that has been digitally signed by a trusted third party so that client applications
receiving the certificate can be very sure they are communicating with the entity they intended to
communicate with. One benefit of obtaining certificates from a popular commercial certificate authority is
that the issuing CA file will be pre-installed in web browsers or platform key chains to enable universal SSL
clients to communicate with your servers without additional configuration.

If generation is an option, these utilities are used to do that.

1.3 Matrix Certificate Generation Features
The X.509 standard is large and constantly growing. The Matrix certificate generation utility implements
the minimum required subset of extensions and a couple of the most common. If support for specific
extensions is needed, please contact Inside Secure.

1.3.1 Distinguished Name Attributes

The following table lists the Distinguished Name Attributes supported by MatrixSSL, together with the
compilation options needed to enable them.

Compilation option Distinguished Name Attributes

always enabled Attributes listed as “MUST support” in RFC 5280:

country, organization,

organizationalUnit, dnQualifier,

serialNumber, state, commonName,
domainComponent

 5

©INSIDE Secure – 2018 – All rights reserved

#define

USE_EXTRA_DN_ATTRIBUTES_RFC5280_SHOULD

Attributes listed as “SHOULD support” in RFC
5280:

locality, title, surname, givenName,

initials, pseudonym,

generationQualifier

#define USE_EXTRA_DN_ATTRIBUTES Attributes not mentioned in RFC 5280:

streetAddress, postalAddress,

telephoneNumber, uid, name, email

1.3.2 Certificate Extensions

The following table lists the certificate extensions supported by the MatrixSSL tools.

Supported Extension Description

basicConstraints Identifies a cert as a CA and how long a certificate chain it will allow

subjectAltName Alternative names that associate specific DNS, IP Address, and other
identification with the certificate

issuerAltName Analogous to subjectAltName, but contains issuer information

subjectKeyId Fingerprint of the subject’s public key (automatically included)

authorityKeyId Fingerprint of the issuer’s public key (automatically included)

keyUsage Supports keyAgreement and keyCertSign usage

extendedKeyUsage Supports TLS Server Authentication and TLS Client Authentication

authorityInfoAccess This extension is used to specify ways for accessing information about a CA.
The most common use is to provide the URI of the CA’s OCSP responder in
this extension

certificatePolicies Policies indicating the terms under which the certificate should be used

policyConstraints The requireExplicitPolicy and inhibitPolicyMappings constraints are supported

policyMappings This extension is used in CA certificates to specify pairs of policies that the
CA considers to be equivalent

 6

©INSIDE Secure – 2018 – All rights reserved

2 GETTING STARTED

2.1 Compiling the Matrix crypto library
Ensure the USE_CERT_GEN is defined in ./crypto/cryptoConfig.h in order to build a libcrypt_s library with

the needed functionality.

2.2 Compiling the Utilities
These command line utilities have been written for use on POSIX platforms and will compile using
./apps/crypto/Makefile

From the root of the product directory structure, change directory to the ./apps/crypto directory and build.

 $ cd apps/crypto

Compile using the provided Makefile

 $ make

2.3 Configuration Files
The utilities have been written to prompt the user for any required configuration information that was not
provided through the command line. However, it is strongly recommended the user provide configuration
files to the utilities for two reasons.

1. All extensions are supported through configuration file entries

2. To preserve the information that went into creating the certificate requests and certificate files for
later reference.

The configuration file format uses a simple attribute=value format that must adhere to the following rules.

• One entry per line

• There must be no spaces between the attribute the equals sign and the value

• The value must be double quoted (the value may contain spaces)

• The line must terminate with a semicolon

For example:

ca="1";

serialNum=”756”;

pathLen="3";

validDays="365";

algorithm="sha1";

country="US";

organization="Acme Inc";

commonName="www.sampleacmesite.com";

 7

©INSIDE Secure – 2018 – All rights reserved

organizationalUnit="Test Department";

stateOrProvince="WA";

locality="Seattle";

2.3.1 Distinguished Name Attributes

The Distinguished Name (DN) field is used to describe the identity of the certificate subject. The DN field
consist of attributes. The following example configuration file adds a value for every DN attribute supported
by MatrixSSL. Note that serialNum refers to the serial number of the certificate, while serialNumber

corresponds to the serialNumber field of the Distinguished Name.

serialNum=”756”;

pathLen="3";

validDays="365";

algorithm="sha1";

commonName="Common Name";

country="US";

stateOrProvince="Test State or Province";

locality="Test Locality";

organization="Organization Name";

organizationalUnit="Organizational Unit Name";

serialNumber="012bf123aa";

name="Givenname Surname";

givenName="Givenname";

surname="Surname";

initials="GS";

pseudonym="Pseudonym";

streetAddress="My StreetAddress 99";

telephoneNumber="1234-5678-9012";

title="Dr.";

postalAddress="12345";

generationQualifier="III";

dnQualifier="123456789";

domainComponent="insidesecure.com";

uid="1234";

email="gsurname@insidesecure.com";

2.3.2 SubjectAltName Configuration Entry

The X.509 Subject Alternative Name extension is a widely used identifier that is supported in certificate
request and certificate creation. The extension has several different supported types so the configuration
entry is a bit different from the normal.

To add a subjectAltName entry to a certificate request or to a certificate generation operation begin the
configuration line with subjectAltName- followed by one of the supported types and then the equals

sign. These are the supported types and sample entries:

 8

©INSIDE Secure – 2018 – All rights reserved

subjectAltName-dNSName="127.0.1.1";

subjectAltName-rfc822Name="jim@jimbo.gov";

subjectAltName-directoryName="/root";

subjectAltName-iPAddress="127.1.1.1";

subjectAltName-uniformResourceIdentifier="1.2.3.4";

subjectAltName-otherName="2ab00f:some other identifier";

The value for the otherName type requires an <OID>:<string> format. The OID must be in a hex

format for the desired OID (the dot notation is not supported here).

2.3.3 IssuerAltName Configuration Entry

The issuerAltName extension is analogous to subjectAltName. Also the configuration entry for
issuerAltName is identical, except that the “issuerAltName” prefix should be used instead of
“subjectAltName”.

2.3.4 KeyUsage Configuration Entry

The keyUsage entry supports only “keyAgreement” and “keyCertSign” usages. If both are desired, simply
append them in a single entry:

keyUsage="keyAgreement keyCertSign";

2.3.5 ExtendedKeyUsage Configuration Entry

The extendedKeyUsage entry supports only “serverAuth” and “clientAuth” usages. If both are desired,
simply append both in a single entry:

extendedKeyUsage="serverAuth clientAuth";

2.3.6 Authority Information Access

The authorityInfoAccess extension can be used to specify the location of the OCSP responder or a
location from which the issuer certificates can be downloaded. The configuration entries for this extension
must begin with “authorityInfoAccess-“, followed by either “ocsp” or “caIssuers”. Multiple ocsp and
caIssuers fields are supported. The example below has one caIssuers entry, but two OCSP entries:

authorityInfoAccess-ocsp="http://ocsp.insidesecure.com";

authorityInfoAccess-caIssuers="http://ca.insidesecure.com/cacerts.der";

authorityInfoAccess-ocsp2="http://ocsp2.insidesecure.com";

2.3.7 Certificate Policies

The Certificate Policies extension has a somewhat complex hierarchical structure. The extension consists
of multiple PolicyInformation values, which include a policy OID and optionally multiple PolicyQualifierInfos.

 9

©INSIDE Secure – 2018 – All rights reserved

A PolicyQualifierInfo contains either a Certificate Practice Statement (CPS) location or UserNotice. The
most common way to encode a CPS location is to specify an URI; MatrixSSL only supports this method. A
UserNotice is a piece of user-readable text describing the policy. The following example adds two policies,
each with 3 qualifiers (2 CPS entries and 1 UserNotice). Note that the certificatePolicy OID must be
specified as a hex string representing the DER-encoded OID. For more information on DER encoding of
OIDs, consult the ASN.1 literature, such as the standard tutorial A Layman’s Guide to a Subset of ASN.1,
BER and DER, for example.

certPolicy1-id="67810C010201";

certPolicy1-cps="http://www.insidesecure.com/policy1/cps1";

certPolicy1-cps="http://www.insidesecure.com/policy1/cps2";

certPolicy1-unotice1-organization="INSIDE Secure Oyj";

certPolicy1-unotice1-noticeNumbers="1,2,3";

certPolicy2-id="67810C010202";

certPolicy2-cps="http://www.insidesecure.com/policy2/cps1";

certPolicy2-cps="http://www.insidesecure.com/policy2/cps2";

certPolicy2-unotice1-organization="INSIDE Secure Finland Oyj";

certPolicy2-unotice1-noticeNumbers="4,5,6";

2.3.8 Policy Mappings

A policy mapping consists of a pair of policy OIDs. As in the Certificate Policies extension, the policy OIDs
must be DER encoded and given as hex strings. For example:

policyMappings="67810C010201:67810C010202";

policyMappings="67810C010203:67810C010204";

2.3.9 Policy Constraints

MatrixSSL supports the following two policy constraints, which are defined in RFC 5280:
requireExplicitPolicy and inhibitPolicyMappings. The following example configuration entries specify that
an explicit policy is required for the 5 next certificates down the certificate chain, and disallows policy
mappings after the next 2 certificates down the chain.

policyConstraints-requireExplicitPolicy="5";

policyConstraints-inhibitPolicyMapping="2";

 10

©INSIDE Secure – 2018 – All rights reserved

3 RSA KEY GENERATION

The matrixRSAkeygen utility is used to generate PKCS#1 private key files. Private keys are the

foundation for public-key cryptography and must never be shared. It is recommended the

 –pass option be used in the command line to encrypt the private key.

No configuration files are used for this utility.

3.1 Usage

matrixRSAkeygen –out filename [-outform type] [–keysize size] [–pass password]

 out Required. Identifies the file name of the new private key file. If omitted, the user will be prompted for a file
 name.

 outform Optional. Either PEM (default) or DER. It is not possible to password protect DER formatted files in PKCS#1

 so this format is not recommended.

 keysize Optional. Allows the user to set the RSA modulus key byte size (key strength). The possible values for this
 option are: 1024, 2048, or 4096. If no key size is given, a key strength of 1024 will be used. The tradeoff

 for the more secure larger keys is a performance slowdown when cryptographic operations are used.

 pass Optional. Allows the user to generate an encrypted file using the PKCS#5 standard. Pass the plaintext
 password to this option. Password protecting private key files is strongly recommended.

3.2 Examples

Generate a 1024 bit unprotected private key file:

matrixRSAkeygen –out privkey.pem

Generate a 1024 bit password protected private key file:

matrixRSAkeygen –out privkey.pem –pass password

Generate a 2048 bit password protected private key file:

matrixRSAkeygen –out privkey.pem –keysize 2048 –pass password

 11

©INSIDE Secure – 2018 – All rights reserved

4 EC KEY GENERATION

The matrixECkeygen utility is used to generate Elliptic Curve private key files. Private keys are the

foundation for public-key cryptography and must never be shared. It is recommended the

 –pass option be used in the command line to encrypt the private key.

The following prime r1 NIST curves are supported and may be used as the “curve” parameter:

secp192r1

secp224r1

secp256r1

secp384r1

secp521r1

No configuration files are used for this utility.

4.1 Usage

matrixECkeygen –out filename –curve <curve> [-outform type] [–pass password]

 out Required. Identifies the file name of the new private key file. If omitted, the user will be prompted for a file
 name.

 curve Required. The curve on which the private key will be created. Valid values are listed above

 outform Optional. Either PEM (default) or DER. It is not possible to password protect DER formatted files in PKCS#1

 so this format is not recommended.

 pass Optional. Allows the user to generate an encrypted file using the PKCS#5 standard. Pass the plaintext
 password to this option. Password protecting private key files is strongly recommended.

4.2 Examples

matrixECkeygen –out privkey.pem –curve secp384r1

Generate a password protected private key file:

matrixRSAkeygen –out privkey.pem –curve secp256r1 –pass password

 12

©INSIDE Secure – 2018 – All rights reserved

5 CERTIFICATE REQUESTS

The matrixCertReq utility is used to generate PKCS#10 certificate request files.

The typical way in which a certificate is created is for an entity to present a certificate request file to a
Certificate Authority (CA). The certificate request is a standard format that contains only the public portion
of the key (remember never to share a private key) along with some identification information about the
requesting entity. The CA then verifies this information and issues a signed certificate to the requesting
entity.

5.1 Usage

matrixCertReq –out filename –key privKey [-pass password] [-reqconf confFile]

 out Required. Identifies the file name of the new request file. If omitted, the user will be prompted for a file name.

 key Required. The existing private key file for the requesting entity. Only the public portion of the key will be
 included in the output as this request file will be submitted to a CA.

 pass Optional. If the privKey is password protected this option must be used to supply the password to the utility

 reqconf Optional. Identifies an existing configuration file that contains the Distinguished Name information and
certificate extension information that will be used in the certificate request. If omitted, the user will be
prompted for the basic information on the command line. Information on the configuration file format and
contents can be found in the Configuration File section below.

5.2 Configuration File

The reqconf option will identify a configuration file that contains the Distinguished Name of the requesting

entity as well as the hash strength for the signature algorithm and optional subjectAltName and other
extensions. All the configuration entries mentioned in section 2.3 are supported. A basic configuration file
would look like this:

 commonName=”<string>”;

 country=”<string>”;

 organization=”<string>”;

 organizationalUnit=”<string>”;

 stateOrProvince=”<string>”;

 locality=”<string>”;

 algorithm=”<hashAlg>”;

 subjectAltName-dNSName=”<string>”;

 subjectAltName-otherName=”<hex oid>:<string>”

 keyUsage=”keyCertSign”;

 extendedKeyUsage=”serverAuth clientAuth”;

commonName This should be set to the domain or IP address of the entity that will be using the certificate. The CA must
verify the requesting entity has ownership of this domain when issuing a certificate.

organization Organization name

country Normally the two letter country code abbreviation (ie US)

organizationalUnit Further classification of the department within the organization

 13

©INSIDE Secure – 2018 – All rights reserved

5.3 Examples

Create a req.pem certificate request file with Distinguished Name information provided through the
reqConfig.txt file:

matrixCertReq –out req.pem –key privkey.pem –pass asdf

 -reqconf reqConfig.txt

Create a req.pem certificate request file with Distinguished Name information provided through user inputs
prompted on the console standard input:

matrixCertReq –out req.pem –key privkey.pem –pass asdf

stateOrProvince State or Province

locality Typically the city name

algorithm Value of sha1, sha256, or sha384. SHA-1 is the default if not provided

subjectAltName See section 2.2.1

keyUsage See section 2.2.2

extendedKeyUsage See section 2.2.3

 14

©INSIDE Secure – 2018 – All rights reserved

6 CERTIFICATE GENERATION

The matrixCertGen utility is used to generate X.509 version 3 certificates. These certificates represent the
public key portion of the key pair and also contain information about which CA the certificate was issued
by, who the certificate was issued to, and other details about how the certificate is to be used.

The two types of certificates generated are Self-Signed certificates and CA-Issued certificates.

6.1 Self-Signed Certificate Authority Usage

A self-signed certificate is generated when a root CA certificate is needed. This type of certificate is at the
top of a certificate hierarchy and has the authority to issue certificates.

matrixCertGen -out filename -certconf configFile -key privkeyfile [-pass pass]

out Required. Identifies the file name of the newly generated certificate. If omitted, the user will
be prompted for the file name on the command line.

key Required. Specifies the private key file to be used for self-signing the generated cert.

pass Required if the private key file has been password protected. Specify the password with this
option.

certconf Required. Specifies the file name of the self-signed certificate configuration file. If omitted,
the user will be prompted for the necessary information on the command line. Information
on the configuration file format and contents can be found in the section below.

6.2 Self-Signed Certificate Authority Configuration File

The certconf option will identify a configuration file that contains the Distinguished Name attributes as

well as the certificate creation parameters and optional subjectAltName. The contents of the configuration
file for this self-signed case must include all the following attributes:

ca=”1”;

serialNum=”<integer>”;

 pathLen=”<integer>”;

 validDays=”<integer>”;

 algorithm=”<hashAlg>”;

 country=”<string>”;

 organization=”<string>”;

 commonName=”<string>”;

 organizationalUnit=”<string>”;

 stateOrProvince=”<string>”;

 locality=”<string>”;

 keyUsage=”keyCertSign”;

subjectAltName-dNSName=”<string>”;

 subjectAltName-otherName=”<hex oid>:<string>”

 15

©INSIDE Secure – 2018 – All rights reserved

ca A ‘0’ or ‘1’ value to indicate whether the certificate being created will be allowed to
issue certificates itself. As this is a self-signed CA file, the value must be ‘1’

serialNum The serial number to be given to this certificate. A database of serial numbers
should be kept by the CA to aid in future

pathLen An integer value that is only meaningful if the ‘ca’ attribute is set to ‘1’. The
pathLen attribute specifies how long a certificate chain may be that originates with
this certificate.

validDays An integer value that specifies the number of days the certificate being generated
will be valid for.

algorithm Value of sha1, sha256, or sha384. SHA-1 is the default if not provided

commonName This should be set to the domain or IP address of the entity that will be distributing
the certificate, or an email address if the certificate is used for email. The CA must
verify the requesting entity has ownership of this domain when issuing a certificate.

organization Organization name

country Normally the two letter country code abbreviation (ie US)

organizationalUnit Further classification of the department within the organization

stateOrProvince State or Province

locality Typically the city name

keyUsage MUST be “keyCertSign”

subjectAltName See section 2.2.1

6.3 Self-Signed Certificate Authority Examples

Generate a ssCA.pem self-signed certificate file with Distinguished Name and certificate parameters
provided by the ssCA.conf configuration file:

matrixCertGen -out ssCA.pem -certconf ssCA.conf -key privkey.pem

-pass asdf

Generate a ssCA.pem self-signed certificate file with Distinguished Name and certificate parameters
provided through user inputs prompted on the console standard input:

matrixCertGen -out ssCA.pem -key privkey.pem -pass asdf

 16

©INSIDE Secure – 2018 – All rights reserved

6.4 CA-Issued Certificate Usage

A CA-Issued certificate is the usual manner in which a certificate is generated. In this case, a certificate
request file is passed on the command line and the private key information is from the CA itself.

matrixCertGen –out filename –req requestFile -certconf caConfFile

–CAcert CAcert –CAkey CAkey [–CApass password]

out Required. Identifies the file name of the newly generated certificate. If omitted, the user will be prompted
for the file name on the command line.

req Required. Identifies the certificate request file that was presented by the requesting entity

CAcert Required. Specifies a Certificate Authority file that will be used to issue this new certificate. If omitted, the
user will be prompted for the location of CA file on the command line.

CAkey Required. Specifies the CA private key file to be used for signing the generated cert.

CApass Required if the CA private key file has been password protected. Specify the password with this option.

certconf Required. Specifies the file name of the CA-Issued certificate configuration file. If omitted, the user will be
prompted for the necessary information on the command line. Information on the configuration file format
and contents can be found in the Configuration Files section below.

6.5 CA-Issued Certificate Configuration File
The contents of the configuration file for the CA issued case will only include the attributes related to the
certificate parameters. The Distinguished Name information is being provided through the Certificate
Request file. So, the configuration file will only contain only the following required attributes:

serialNum=”<integer>”;

pathLen=”<integer>”;

 validDays=”<integer>”;

 algorithm=”<hashAlg>”;

ca=”1”;

keyUsage=”keyCertSign”;

subjectAltName-dNSName=”<string>”;

 subjectAltName-otherName=”<hex oid>:<string>”;

 17

©INSIDE Secure – 2018 – All rights reserved

ca A ‘0’ or ‘1’ value to indicate whether the certificate being created will be allowed to issue certificates
itself. As this is a self-signed CA file, the value must be ‘1’

keyUsage If ca is ‘1’ then this MUST be set to ‘keyCertSign’

serialNum The serial number to be given to this certificate. A database of serial numbers should be kept by the
CA to aid in future

pathLen An integer value that is only meaningful if the ‘ca’ attribute is set to ‘1’. The pathLen attribute specifies
how long a certificate chain may be that originates with this certificate.

validDays An integer value that specifies the number of days the certificate being generated will be valid for.

algorithm Value of sha1, sha256, or sha384. SHA-1 is the default if not provided

subjectAltName See section 2.2.1. NOTE: If the certificate request has a valid subjectAltName extension the CA-
issuer configuration file may not use a subjectAltName as well.

Certifcate requests may contain the additional extensions that it wishes to have in the final issued
certificate. If so, the CA must choose to allow all the extensions that appear. If the CA configuration file
contains extensions that are already present in the certificate request, the certificate request will take
precedence.

6.6 CA-Issued Certificate Example
matrixCertGen –out cert.pem –req req.pem -certconf caConf.txt –CAcert ssCA.pem

 –CAkey CAprivkey.pem –CApass asdf

 18

©INSIDE Secure – 2018 – All rights reserved

7 PEM FILE TO HEADER FILE CONVERSION

The matrixPem2Mem utility is used to convert private key and certificate files into a C language header file
for source level inclusion of private key or certificate information. These in-memory versions of the key
material can be used in platforms that do not include file system support.

7.1 Private Key Usage

matrixPem2Mem –key privkey.pem [–pass password]

key Required. Identifies the file name of the private key file.

pass Optional. The password if the private key file is password protected.

7.2 Certificate File Usage

matrixPem2Mem –cert cert.pem

cert Required. Identifies the file name of the certificate to convert

