

Electronic versions are uncontrolled unless directly accessed from the QA Document Control system.

Printed version are uncontrolled except when stamped with ‘VALID COPY’ in red.

External release of this document may require a NDA.

© INSIDE Secure - 2018 - All rights reserved

MatrixSSL Certificates
and Certificate

Revocation Lists

 2 © INSIDE Secure - 2018 - All rights reserved

TABLE OF CONTENTS

1.1 Overview of tools and APIs ... 5

1.2 Related documents ... 6

1.3 Compile-time configuration.. 6

2 MATRIXSSL X.509 API REFERENCE ... 7

2.1 Certificate API ... 7

2.1.1 psX509Cert_t data type .. 7

2.1.2 psX509ParseCertFile.. 8

2.1.3 psX509ParseCert ... 9

2.1.4 psX509FreeCert ... 10

2.1.5 matrixValidateCertsExt ... 11

2.1.6 matrixValidateCerts .. 13

2.1.7 psBase64EncodeAndWrite ... 13

2.1.8 X.509 Getter API .. 14
2.1.8.1 psX509GetCertPublicKeyDer .. 14
2.1.8.2 psX509GetOnelineDN ... 16
2.1.8.3 psX509GetNumOrganizationalUnits .. 16
2.1.8.4 psX509GetOrganizationalUnit ... 16
2.1.8.5 psX509GetNumDomainComponents ... 16
2.1.8.6 psX509GetDomainComponent .. 17
2.1.8.7 psX509GetConcatenatedDomainComponent 17

2.1.9 X.509 Generation API ... 17
2.1.9.1 Overview ... 18
2.1.9.2 Initializing ... 18
2.1.9.3 Memory allocation ... 18
2.1.9.4 psX509SetDNAttribute ... 18
2.1.9.5 psX509SetValidDays ... 19
2.1.9.6 psX509SetValidNotBefore ... 20
2.1.9.7 psX509SetValidNotAfter .. 20
2.1.9.8 psX509SetSerialNum .. 21
2.1.9.9 psX509SetCertHashAlg ... 21
2.1.9.10 psX509AddSubjectAltName ... 22
2.1.9.11 psX509AddIssuerAltName ... 23
2.1.9.12 psX509AddKeyUsageBit.. 23
2.1.9.13 psX509AddExtendedKeyUsage ... 24
2.1.9.14 psX509SetSubjectKeyId .. 24
2.1.9.15 psX509SetBasicConstraintsCA.. 25
2.1.9.16 psX509SetBasicConstraintsPathLen ... 25
2.1.9.17 psX509AddAuthorityInfoAccess ... 26
2.1.9.18 psX509AddPolicy .. 27
2.1.9.19 psX509SetConstraintRequireExplicitPolicy 29
2.1.9.20 psX509SetConstraintInhibitPolicyMappings 29
2.1.9.21 psX509AddPolicyMapping ... 30
2.1.9.22 psX509SetNetscapeComment ... 30
2.1.9.23 psX509SetPublicKey ... 31
2.1.9.24 psWriteCertReqMem ... 31
2.1.9.25 psParseCertReqFile .. 32
2.1.9.26 psParseCertReqBuf ... 32
2.1.9.27 psParseCertReqBufExt .. 33

 3 © INSIDE Secure - 2018 - All rights reserved

2.1.9.28 psCertReqGetSignatureAlgorithm .. 33
2.1.9.29 psCertReqGetPubKeyAlgorithm .. 33
2.1.9.30 psCertReqGetVersion .. 34
2.1.9.31 psX509SetCAIssuedCertExtensions .. 34
2.1.9.32 psX509WriteCAIssuedCert .. 35
2.1.9.33 psX509WriteSelfSignedCert .. 37

2.2 Certificate Revocation List API .. 38

2.2.1 psX509Crl_t data type .. 38

2.2.2 psX509ParseCRL ... 38

2.2.3 psCRL_Update ... 39

2.2.4 psCRL_determineRevokedStatus ... 39

2.2.5 psCRL_Delete .. 40

2.2.6 psCRL_DeleteAll .. 40

2.2.7 psCRL_Remove ... 40

2.2.8 psCRL_RemoveAll ... 41

2.2.9 psX509FreeCRL ... 41

2.2.10 psCRL_GetCRLForCert .. 41

2.2.11 psX509GetCRLdistURL .. 41

2.2.12 psX509AuthenticateCRL .. 42

2.3 Distinguished Name Attributes .. 42

2.4 Certificate Extensions ... 43

2.4.1 Supported Extensions... 43

2.4.2 Accessing information in certificate extensions ... 44

3 CERTIFICATE REVOCATION LISTS .. 45

3.1 Overview ... 45

3.2 X.509 Certificates and CRL Distribution Points ... 45

3.3 Parsing and Authentication of a CRL .. 45

3.4 MatrixSSL and CRL .. 45

3.5 Example application CRL support ... 46

3.6 Example application API ... 47

3.6.1 fetchCRL .. 47

3.6.2 fetchParseAndAuthCRLfromCert .. 47

3.6.3 fetchParseAndAuthCRLfromUrl .. 48

3.7 Supported CRL API ... 49

3.7.1 psX509Crl_t data type .. 49

3.7.2 psX509ParseCRL ... 49

3.7.3 psCRL_Update ... 50

3.7.4 psCRL_determineRevokedStatus ... 50

3.7.5 psCRL_Delete .. 51

3.7.6 psCRL_DeleteAll .. 51

3.7.7 psCRL_Remove ... 51

3.7.8 psCRL_RemoveAll ... 51

3.7.9 psX509FreeCRL ... 52

3.7.10 psCRL_GetCRLForCert .. 52

3.7.11 psX509GetCRLdistURL .. 52

3.7.12 psX509AuthenticateCRL .. 52

 4 © INSIDE Secure - 2018 - All rights reserved

 5 © INSIDE Secure - 2018 - All rights reserved

ABOUT THIS DOCUMENT

MatrixSSL provides an API and a set of utility programs that support common requirements for X.509
certificate handling. These include certificate creation, parsing and encoding, authentication, certificate
chain validation and revocation checking.

The MatrixSSL X.509 API is used internally by the SSL library and is mostly transparent to the SSL user.
However, the API can also be exploited outside of the SSL use case. This document is geared towards the
latter use case.

1.1 Overview of tools and APIs
MatrixSSL provides a public application API for certificate and CRL parsing, certificate validation and
revocation checking. Certificate and certificate signing request generation can be performed by utility
programs supplied with MatrixSSL or by using the X.509 Generation API described in this document. The
following table presents a summary of how some common certificate-related tasks are supported by
MatrixSSL.

Task Support

Generating certificate signing requests (CSRs) Application API: X.509 Generation API

Utility program: apps/crypto/certrequest.c

Generating certificates from CSRs Application API: X.509 Generation API

Utility program: apps/crypto/certgen.c

Generating self-signed certificates Application API: X.509 Generation API

Utility program: apps/crypto/certgen.c

Loading and parsing certificates Application API: psX509ParseCertFile and
psX509ParseCert

Certificate chain validation Application API: matrixValidateCerts.

Utility program: matrixssl/test/certValidate.c

Loading and parsing private keys and certificates
for use in SSL connections

Application API: matrixSslLoadRsaKeys,
matrixSslLoadEcKeys

Parsing certificate revocation lists (CRLs) Application API: psX509ParseCRL

Revocation checking Application API: psCRL_determineRevokedStatus

Downloading CRLs Example program: apps/ssl/client.c

Example API: fetchCRL,
fetchParseAndAuthCRLFromCert

 6 © INSIDE Secure - 2018 - All rights reserved

1.2 Related documents
This document works in close collaboration with other MatrixSSL documents. It is highly recommended to
additionally consult the following documents in order to gain a good understanding of MatrixSSL’s X.509
support:

MatrixSSL API Describes the psX509Cert_t structure that is used to hold parsed
X.509 certificates, as well as related structures.

Provides information on how to supply a user-provided certificate
validation callback for use in SSL connections and how to integrate it
with MatrixSSL-provided certificate validation routines.

MatrixSSL Developer Guide Contains general information on public-key infrastructure, certificate
validation and authentication.

Describes in more detail the different checks performed in the
certificate chain validation process used by the matrixValidateCerts
API function.

Matrix Key and Certificate
Generation Utilities

Provides usage instructions for the certificate signing request and
certificate creation tools.

1.3 Compile-time configuration

MatrixSSL’s X.509 features can be enabled by defining the following macros in cryptoConfig.h:

USE_X509 Enables minimal X.509 support. Enabling this
macro is a pre-condition for other macros
listed in this table.

USE_CERT_PARSE Enables support for X.509 certificate certificate
parsing.

USE_FULL_CERT_PARSE Enable parsing of the following additional
certificate extensions: nameConstraints,
certificatePolicies, policyConstraints,
policyMappings, authorityInfoAccess.

USE_CERT_GEN Enables generation of X.509 certificates and
certificate signing requests. Required for both
the command-line generation tools and the
X.509 Generation API.

USE_CRL Enables support for certificate revocation lists.

USE_EXTRA_DN_ATTRIBUTES_RFC5280_SHOULD Enables support for those distinguished name
(DN) attributes which, according to RFC 5280,
SHOULD be supported. Note that the DN
attributes that MUST be supported according
to RFC 5280 are always enabled and to not
need a separate define.

USE_EXTRA_DN_ATTRIBUTES Enables support for extra distinguished name
(DN) attributes not mentioned in RFC 5280.

 7 © INSIDE Secure - 2018 - All rights reserved

2 MATRIXSSL X.509 API REFERENCE

2.1 Certificate API

2.1.1 psX509Cert_t data type

In MatrixSSL, the psX509Cert_t structure is used to represent parsed X.509 certificates. This structure is
described here for quick reference. For more information on this structure, please consult section 5 of the
MatrixSSL API manual.

typedef struct psCert {

 psPool_t *pool;

 int32 version;

 unsigned char *serialNumber;

 uint32 serialNumberLen;

 x509DNattributes_t issuer;

 x509DNattributes_t subject;

 int32 notBeforeTimeType;

 int32 notAfterTimeType;

 char *notBefore;

 char *notAfter;

 psPubKey_t publicKey;

 int32 pubKeyAlgorithm;

 int32 certAlgorithm;

 int32 sigAlgorithm;

 unsigned char *signature;

 uint32 signatureLen;

 unsigned char sigHash[MAX_HASH_SIZE];

 unsigned char *uniqueIssuerId;

 uint32 uniqueIssuerIdLen;

 unsigned char *uniqueSubjectId;

 uint32 uniqueSubjectIdLen;

 x509v3extensions_t extensions;

 int32 authStatus;

 uint32 authFailFlags;

 unsigned char *unparsedBin;

 uint32 binLen;

 struct psCert *next;

} psX509Cert_t;

 8 © INSIDE Secure - 2018 - All rights reserved

2.1.2 psX509ParseCertFile

int32 psX509ParseCertFile(psPool_t *pool, char *fileName, psX509Cert_t **outcert, int32 flags);

Parameter Input/Output Description

pool input Optional memory pool to where the output certificate will be allocated

fileName input Filename of the PEM format certificate. Multiple files can be loaded at once by providing a list of
filenames separated by semicolons.

outcert output The output psX509Cert structure. Must be freed by caller if the function is successful.

flags input Additional flags.

CERT_STORE_UNPARSED_BUFFER: Keep the raw, ASN.1 DER encoded certificate in the
unparsedBin member of the psX509Cert structure.

CERT_STORE_DN_BUFFER: Store DN Attributes in the psX509Cert structure.

Return Value Description

> 0 Success. A valid psX509Cert structure is allocated and populated in “outcert” parameter. The value
returned is the number of certificates that were successfully parsed.

PS_MEM_FAIL Failure. Unable to allocate memory for the structure

PS_PARSE_FAIL Failure. Unable to parse certificate stream

PS_ARG_FAIL Failure. Bad input parameters

Parses PEM format certificate file(s) into a psX509Cert_t structure(s). If the fileName parameter

contains a list of filenames separated by a semicolon, the loaded certs will be stored in a linked list with
head in the next member of outcert. If the file contained multiple certificates, outcert will point to the

first certificate, and the next members form a linked list. Note that MatrixSSL APIs typically expect the
linked list to be in child-to-parent order. This means that chain certificates should be concatenated in child-
to-parent order to the PEM file.

After a successful call, the certificate public key will be accessible in the publicKey member of the

psX509Cert_t structure. The algorithm-specific public key (of type psRsaKey_t or psEccKey_t) is

stored in the rsa and ecc members of publicKey.

Caller must free outcert with psX509FreeCert on success.

To parse ASN.1 DER format certificates without the PEM wrapping, psX509ParseCert should be used

instead of this function.

 9 © INSIDE Secure - 2018 - All rights reserved

2.1.3 psX509ParseCert

int32 psX509ParseCert(psPool_t *pool, const unsigned char *pp, uint32 size,

 psX509Cert_t **outcert, int32 flags)

Parameter Input/Output Description

pool input Optional memory pool to where the output certificate will be allocated

pp input Pointer to a memory buffer containing an ASN.1 DER encoded X.509 certificate.

outcert output The output psX509Cert_t structure. Must be always freed by caller, even on failure.

flags input Additional flags.

CERT_STORE_UNPARSED_BUFFER: Keep the raw, ASN.1 DER encoded certificate in the
unparsedBin member of the psX509Cert structure.

CERT_STORE_DN_BUFFER: Store DN Attributes in the psX509Cert structure.

Return Value Description

>0 Success. A valid psX509Cert structure is allocated and populated in “outcert” parameter. The return value
is the size of the parsed certificate.

PS_MEM_FAIL Failure. Unable to allocate memory for the structure

PS_PARSE_FAIL Failure. Unable to parse certificate stream

PS_ARG_FAIL Failure. Bad input parameters

Parses a memory buffer containing one or more ASN.1 DER encoded X.509 certificates into a
psX509Cert_t structure.

The certificate public key will be accessible in the publicKey member of the psX509Cert_t structure as

a psPubKey_t data type for use in public key APIs. The algorithm-specific public key (psRsaKey_t or

psEccKey_t) can be accessed via the rsa and ecc members of the psPubKey_t structure.

Caller must always free outcert with psX509FreeCert, even on failure.

 10 © INSIDE Secure - 2018 - All rights reserved

2.1.4 psX509FreeCert

void psX509FreeCert(psX509Cert_t *cert)

Parameter Input/Output Description

cert input The certificate structure to free

Free a certificate structure allocated by psX509ParseCert or psX509ParseCertFile.

 11 © INSIDE Secure - 2018 - All rights reserved

2.1.5 matrixValidateCertsExt

int32 matrixValidateCertsExt(psPool_t *pool,

psX509Cert_t *subjectCerts, psX509Cert_t *issuerCerts,

char *expectedName, psX509Cert_t **foundIssuer,

void *hwCtx, void *poolUserPtr,

const matrixValidateCertsOptions_t *opts)

Parameter Input/Output Description

pool input Optional memory pool to where the output certificate will be allocated

subjectCerts input Pointer to the subject certificate or certificate chain to authenticate. To validate a certificate
chain, subjectCert must point to the child-most certificate of the chain, subjectCert->next must
point to its parent certificate, and so on. To validate a single, self-signed certificate, the
issuerCerts parameter must be set to NULL.

issuerCerts input A linked list of trusted CA certs. The list will be searched for the issuer of the parent-most
certificate in subjectCerts. If subjectCerts is a self-signed cert, this argument should be set to
NULL.

expectedName input The expected Subject or Subject Alternative Name of the child-most certificate in
subjectCerts.

foundIssuer output Pointer to the certificate in issuerCerts that was found to be the issuer of the parent-most
certificate in subjectCerts.

poolUserPtr input User-specified memory allocation pointer (or NULL)

opts input Pointer to a matrixValidateCertsOptions_t struct. The struct can be used to configure the
certificate validation process. This struct is obligatory. If the caller wishes to use default
options, the memory occupied by the struct should be set to zero.

Return Value Description

PS_SUCCESS Success.

PS_CERT_AUTH_FAIL Failure. Unable to authenticate the subjectCerts chain.

PS_CERT_AUTH_FAIL_PATH_LEN Failure. The X.509 path length constraint was exceeded.

PS_UNSUPPORTED_FAIL Failure. Unsupported certificate format.

PS_ARG_FAIL Failure. Bad input parameters or public-key verification operation failed.

PS_LIMIT_FAIL Failure. Internal public-key operation failure.

 12 © INSIDE Secure - 2018 - All rights reserved

Values for authStatus member of certificate structure Description

PS_CERT_AUTH_PASS The certificate was authenticated fully

PS_CERT_AUTH_FAIL_BC BasicConstraints failure. The issuing certificate did not have
CA permissions to issue certificates

PS_CERT_AUTH_FAIL_DN DistinguishedName failure. The issuing CA did not match the
name that the subject identified as its issuer.

PS_CERT_AUTH_FAIL_REVOKED A CRL has reported the certificate has been revoked

PS_CERT_AUTH_FAIL_SIG The public key signature verification operation failed.

PS_CERT_AUTH_FAIL_AUTHKEY The authorityKeyId extension of the subject cert does not match
the subjectKeyId of the issuing certificate.

PS_CERT_AUTH_FAIL_PATH_LEN The certificate chain is longer than allowed as specified by the
pathLen field in the basicConstraints extension.

PS_CERT_AUTH_FAIL_EXTENSION All the above tests passed but there was a violation of the x.509
extension rules. The authFailReason member can be

examined to find the specific extension that failed. If
authFailFlags has
PS_CERT_AUTH_FAIL_VERIFY_DEPTH_FLAG set, then the
max_verify_depth limit specified in the opts struct was
exceeded instead.

 13 © INSIDE Secure - 2018 - All rights reserved

Validates a certificate or a certificate chain against a list of trusted issuer CAs. The validation process
follows the Certificate Path Validation procedure of section 6 in RFC 5280. For a list of items checked for
each certificate, see the MatrixSSL Developer Guide.

This function first validates the provided subject certificate chain (subjectCerts) up to the parent-most

certificate. Next, the list of trusted issuer certs (issuerCerts) is searched for the issuer of that parent-

most subject certificate. If found, the parent-most subject certificate is validated against the found issuer. In
addition, the subject commonName or one of the Subject Alternative Name fields of the end-entity

(child-most) certificate in subjectCerts will be compared matched against the expectedName

parameter. A pointer to the found issuer will be returned in the foundIssuer parameter.

Some aspects of the certificate validation process, such as the maximum certificate chain validation depth
and the field against which expectedName should be matched, can be configured via the

matrixValidateCertsOptions_t struct passed in the opts parameter. For a description of the

available options, please consult the matrixValidateCertsOptions_t struct definition in

matrixssllib.h. Also, the session options section of the MatrixSSL APIs reference guide contains

some information.

If the subject certificate chain was successfully validated against the supplied issuer list, PS_SUCCESS will

be returned and every certificate in the subjectCerts chain will have its authStatus field set to

PS_CERT_AUTH_PASS.

If any part of the validation process fails, an error code will be returned. More information about the failure
will be stored in the authStatus field of the psX509Cert_t whose validation produced the first failure.

The possible values for authStatus are listed in the above table.

Note that MatrixSSL checks the certificate validity date during parsing. By default, matrixValidateCertsExt
will not re-perform date validation. This can be a problem for long-living processes that may outlast the
certificate validity period. In this case, it may be a good idea to pass
VCERTS_FLAG_REVALIDATE_DATES in the flag member of the opts argument. This causes
matrixValidateCertsExt to re-perform date validation independently.

2.1.6 matrixValidateCerts

int32 matrixValidateCerts(psPool_t *pool, psX509Cert_t *subjectCerts,

 psX509Cert_t *issuerCerts, char *expectedName,

 psX509Cert_t **foundIssuer, void *hwCtx,

 void *poolUserPtr)

A deprecated version of matrixValidateCertsExt. This version takes in no optional parameters and

attempts to use the default options. New applications should call matrixValidateCertsExt instead.

2.1.7 psBase64EncodeAndWrite

int32_t psBase64EncodeAndWrite(psPool_t *pool, const char *fileName,

 unsigned char *bin, uint32_t binLen, int32 fileType,

 char *hexCipherIV, uint16_t hexCipherIVLen);

 14 © INSIDE Secure - 2018 - All rights reserved

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

fileName input The name of the PEM file where to write the result

bin input The data to write to a PEM file

binLen input Length of the data.

fileType input Type of the file to write. This will affect the PEM encoding. Possible options are
REQ_FILE_TYPE (for CSRs), CERT_FILE_TYPE (for certificates), RSA_KEY_FILE_TYPE
(RSA keys), ECKEY_FILE_TYPE (ECC keys).

hexCipherIV input When writing private key files with 3DES, the IV to use should be passed in in this
parameter. This parameter is optional and should be set to NULL except in the above use
case.

hexCipherIVLen input Length of the hexCipherIV.

Return Value Description

PS_SUCCESS Success.

PS_FAILURE Failure. Error writing the PEM file.

Write an in-memory CSR, certificate or private key to a PEM file.

2.1.8 X.509 Getter API

The X.509 Getter API is intended for accessing parsed data from X.509 certificates and CSRs that it
difficult to access directly via the struct member variables.

2.1.8.1 psX509GetCertPublicKeyDer

PSPUBLIC int32 psX509GetCertPublicKeyDer(psX509Cert_t *cert,

 unsigned char *der_out,

 uint16_t *der_out_len);

Parameter Input/Output Description

cert input A psX509Cert_t returned by a successful call to psX509ParseCert or psX509ParseCertFile with
the CERT_STORE_UNPARSED_BUFFER flag set.

der_out output Pointer to a memory buffer where the extracted public key will be stored.

der_out_len input/output Input: size of the der_out buffer.

Output: size of the extracted public key.

Return Value Description

PS_SUCCESS Success. The public key was extracted successfully.

PS_ARG_FAIL Failure. Invalid arguments provided: some of the pointer arguments are NULL or cert does not
contain usable data from which to extract the public key. The latter could be because the
CERT_STORE_UNPARSED_BUFFER flag was not set when calling the certificate parse function.

PS_OUTPUT_LENGTH Output length negotiation. Size of the output buffer is too small. Please try again with a buffer of size
at least the value returned in der_out_len.

Extracts the public key (the SubjectPublicKeyInfo ASN.1 structure) from a parsed X.509 certificate. The
public key is returned in DER-encoded format. The certificate must have been parsed with either
psX509ParseCert or psX509ParseCertFile and the CERT_STORE_UNPARSED_BUFFER flag must have

been set in that call.

Example:

 15 © INSIDE Secure - 2018 - All rights reserved

#include “matrixssl/matrixsslApi.h”

psX509Cert_t *cert;

unsigned char pubkey_der[4096];

uint16_t pubkey_der_len = sizeof(pubkey_der);

int32 rc;

psCryptoOpen(PS_CRYPTO_CONFIG);

rc = psX509ParseCertFile(NULL, “mycert.pem”, &cert,

 CERT_STORE_UNPARSED_BUFFER);

if (rc == PS_SUCCESS) {

 rc = psX509GetCertPublicKeyDer(cert, pubkey_der, &pubkey_der_len);

 if (rc == PS_SUCCESS) {

 printf(“Successfully extracted a public key of length %hu\n”,

 pubkey_len_der);

 }

}

psX509FreeCert(cert);

 16 © INSIDE Secure - 2018 - All rights reserved

2.1.8.2 psX509GetOnelineDN

int32_t psX509GetOnelineDN(const x509DNattributes_t *DN,

 char **out_str,

 size_t *out_str_len);

Parameter Input/Output Description

DN input The DN struct from which to build the oneline string.

out_str output Pointer to the memory address where the resulting string will be allocated and copied to. Caller is
responsible for freeing.

out_str_len output Length of the resulting string

Create a concatenated string containing all the supported fields of a DN component.

This function creates a oneline string from a DN, using a format similar to OpenSSL's
X509_NAME_oneline(). Only the fields supported by the current configuration (cryptoConfig.h) are printed.
Example output: "C=US, ST=State, DC=com, DC=insidesecure, DC=test/street=street/title=Dr,
GN=GivenName, SN=Surname/name=GivenName Surname."

2.1.8.3 psX509GetNumOrganizationalUnits

int32_t psX509GetNumOrganizationalUnits(const x509DNattributes_t *DN);

This function returns the number of organizational units in a parsed Distinguished Name struct.

2.1.8.4 psX509GetOrganizationalUnit

x509OrgUnit_t *psX509GetOrganizationalUnit(

 const x509DNattributes_t *DN,

 int32_t index);

Parameter Input/Output Description

DN input Pointer to the filled-in x509DNattributes_t struct. Note that freeing the DN will invalidate the
returned x509OrgUnit_t.

index input The index of the organizationalUnit in the order they appear in the DER encoding.

MatrixSSL supports multiple organizationalUnit fields in a Distinguished Name. These are stored in a
linked list during parsing. It is possible to access the organizationalUnits in the order they were found in the
DER encoded Distinguished Name by using this function.

Caller must NOT free the returned x509OrgUnit_t.

2.1.8.5 psX509GetNumDomainComponents

int32_t psX509GetNumDomainComponents(const x509DNattributes_t *DN);

 17 © INSIDE Secure - 2018 - All rights reserved

Returns the number of domain components in a parsed Distinguished Name struct.

2.1.8.6 psX509GetDomainComponent

x509DomainComponent_t *psX509GetDomainComponent(

 const x509DNattributes_t *DN,

 int32_t index);

Parameter Input/Output Description

DN input Pointer to the filled-in x509DNattributes_t struct. Note that freeing the DN will invalidate the
returned x509DomainComponent_t.

index input The index of the domainComponent_t in the order they appear in the DER encoding.

MatrixSSL supports multiple domainComponent fields in a Distinguished Name. These are stored in a
linked list during parsing. It is possible to access the domainComponents in the order they were found in
the DER encoded Distinguished Name by using this function.

Caller must NOT free the returned x509DomainComponent_t.

2.1.8.7 psX509GetConcatenatedDomainComponent

int32_t psX509GetConcatenatedDomainComponent(

 const x509DNattributes_t *DN,

 char **out_str,

 size_t *out_str_len);

Parameter Input/Output Description

DN input DN The DN struct from which to fetch the domainComponents.

out_str input The concanated domainComponents as a string. This function will malloc a string of suitable
length. The caller is responsible for freeing it.

out_str_len output Length of the returned string.

Get the concatenation of all domainComponents in a DN as a C string. This function returns the
concanated domainComponents as a string terminated with DN_NUM_TERMINATING_NULLS NULL
characters. The output string will contain the components in the reverse order compared to the order in
which they were encoded in the certificate. Usually, this will result in the usual print order, i.e. top-level
component (.com, .org, ...) last.

2.1.9 X.509 Generation API

For generating certificate signing requests (CSRs) and certificates with MatrixSSL, the user has the option
of either using the provided command-line tools in apps/crypto, or an API. For information on how to use
the command-line tools, please consult the Matrix Key and Certificate Generation Utilities manual. The API
for CSR and certificate generation is described in this section.

 18 © INSIDE Secure - 2018 - All rights reserved

To enable compilation of the X.509 Generation API, the macro USE_CERT_GEN must be defined in
cryptoConfig.h.

2.1.9.1 Overview

X.509 Generation API is based on the psCertConfig_t data structure. This structure contains all the

needed information for generating a CSR or a certificate, such as the subject distinguished name (DN) and
the certificate extensions. The API user fills in this structure using a setter API. For simple fields, the value
is given directly to the setter function as an argument. For complex extensions, a separate structure such
as subjectAltNameEntry_t is filled-in by the caller and passed to the setter function.

After the psCertConfig_t has been constructed using the setter API, it can be passed onwards to the actual
CSR and certificate generation functions which use the information contained in it to create the CSR or
certificate.

2.1.9.2 Initializing

Before starting to construct a psCertConfig_t structure instance with the setter API, the corresponding
memory must be set to 0:

psCertConfig_t conf;

memset(&conf, 0, sizeof(psCertConfig_t));

2.1.9.3 Memory allocation

When necessary, the setter function allocate space for new data in the psCertConfig_t. Therefore, the API
user does not have to do any memory allocation. However, the user must call psX509FreeCertConfig to
free the memory when the psCertConfig_t is not used anymore.

2.1.9.4 psX509SetDNAttribute

int32 psX509SetDNAttribute(psPool_t *pool,

 psCertConfig_t *config,

 const char *name, size_t name_len,

 const char *value, size_t value_len,

 int encoding);

 19 © INSIDE Secure - 2018 - All rights reserved

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t into which the new field value will be added.

name input Name of the DN attribute, e.g. “country”, “domainComponent”, “organization”, “organizationalUnit”.
For a full list of available attribute names, consult x509.h.

name_len input The length of the name string.

value input The value to be set in the DN attribute. For example, if the name of attribute was specified as
“country”, a valid value would be “US”.

value_len input The length of the value string.

encoding input ASN.1 encoding to use for the DN value. Only ASN_UTF8STRING is supported. This encoding is
recommended in RFC 5280.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_UNSUPPORTED_FAIL Failure. Unsupported encoding. Only ASN_UTF8STRING is supported.

This function can be used to set subject DN attributes in a psCertConfig_t. The function must be given

a name-value pair, where name is the name of the DN attribute and value is the value to be assigned to
that attribute in the psCertConfig_t. Note that the the characters =, ; and “ (equals sign, semicolon and

a quote) are not allowed in the value argument.

Example:

 rc = psX509SetDNAttribute(NULL, conf, "country", strlen("country"),

 "US", strlen("US"), ASN_UTF8STRING);

 if (rc < 0) {

 printf("psX509SetDNAttribute failed\n");

 return PS_FAILURE;

 }

2.1.9.5 psX509SetValidDays

int32 psX509SetValidDays(psPool_t *pool,

 psCertConfig_t *config,

 int32 validDays);

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

validDays input Number of days to use in the validity period. For example, 30 or 365.

Return Value Description

PS_SUCCESS Success.

Set the certificate or CSR validity period as a number from days from the current (creation) date.

It is not allowed to call this function after calling psX509SetValidNotBefore and psX509SetValidNotAfter
APIs for the same config struct.

 20 © INSIDE Secure - 2018 - All rights reserved

2.1.9.6 psX509SetValidNotBefore

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

date input The notBefore date as an ASCII string representing the value of an ASN.1 UTCTime or
GeneralizedTime type. See below for details on the format.

date_len input Length of date, excluding any terminating null byte.

encoding input The ASN.1 type to use in the encoding. Must be either ASN_UTCTIME or
ASN_GENERALIZEDTIME.

Set the starting date of the certificate validity period, before which the certificate is not valid.

The date must be supplied as an ASCII string representing the value of an ASN.1 type UTCTime or
GeneralizedTime. The ASN.1 type to use must be specified in the encoding parameter, which must be

either ASN_UTCTIME or ASN_GENERALIZEDTIME.

The date value must conform to RFC 5280. UTCTime should be used for dates through 2049 and
GeneralizedTime should be used for dates in 2050 or later. The accepted format is YYMMDDHHMMSSZ for

UTCTime and YYYYMMDDHHMMSSZ for GeneralizedTime. The time zone must be GMT (also called Zulu

time). The date must include exactly two seconds and fractional seconds are not allowed.

It is not allowed to call this function after calling psX509SetValidDays for the same config struct.

2.1.9.7 psX509SetValidNotAfter

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

date input The notAfter date as an ASCII string representing the value of an ASN.1 UTCTime or
GeneralizedTime type. See below for details on the format.

date_len input Length of date, excluding any terminating null byte.

encoding input The ASN.1 type to use in the encoding. Must be either ASN_UTCTIME or
ASN_GENERALIZEDTIME.

Set the end date of the certificate validity period, after which the certificate is no longer valid.

The date must be supplied as an ASCII string representing the value of an ASN.1 type UTCTime or
GeneralizedTime. The ASN.1 type to use must be specified in the encoding parameter, which must be

either ASN_UTCTIME or ASN_GENERALIZEDTIME.

The date value must conform to RFC 5280. UTCTime should be used for dates through 2049 and
GeneralizedTime should be used for dates in 2050 or later. The accepted format is YYMMDDHHMMSSZ for

UTCTime and YYYYMMDDHHMMSSZ for GeneralizedTime. The time zone must be GMT (also called Zulu

time). The date must include exactly two seconds and fractional seconds are not allowed.

 21 © INSIDE Secure - 2018 - All rights reserved

To set an indefinite expiration date, the special date string 99991231235959Z can be used, with the

encoding parameter set to ASN_GENERALIZEDTIME.

It is not allowed to call this function after calling psX509SetValidDays for the same config struct.

2.1.9.8 psX509SetSerialNum

int32 psX509SetSerialNum(psPool_t *pool,

 psCertConfig_t *config,

 unsigned char *serialNum,

 size_t serialNumLen);

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

serialNum input Byte array containing the serial number in binary.

serialNumLen input Length of the serialNum array in bytes.

Return Value Description

PS_SUCCESS Success.

PS_ARG_FAIL Failure. The serialNum array is empty.

Set the serial number in the psCertConfig_t.

2.1.9.9 psX509SetCertHashAlg

int32 psX509SetCertHashAlg(psPool_t *pool,

 psCertConfig_t *config,

 int32 certAlg);

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

certAlg input The certificate hash algorithm to use together with the public key as the signature algorithm.

Return Value Description

PS_SUCCESS Success.

PS_UNSUPPORTED_FAIL Failure. Unsupported hash algorithm.

Sets the hash algorithm that should be used in certificate signature generation. The supported hash
algorithm identifiers are: ALG_MD5, ALG_SHA1, ALG_SHA256, ALG_SHA384, ALG_SHA512.

Note that this function only sets the hash algorithm part of the signature algorithm. The actual signature
algorithm depends on the public key used to sign it. For example, if the CA generating the certificate uses

 22 © INSIDE Secure - 2018 - All rights reserved

an RSA key pair, and the hash algorithm has been set as ALG_SHA256, the certificate signature algorithm
will be RSA-SHA256.

2.1.9.10 psX509AddSubjectAltName

int32 psX509SetSubjectAddName(psPool_t *pool,

 psCertConfig_t *config,

 subjectAltNameEntry_t *entry);

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

entry input A filled-in subjectAltNameEntry_t struct. The subjectAltName extension in psCertConfig_t will
be populated with data from this struct.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_FAILURE Failure. The data in the subjectAltNameEntry_t struct is invalid.

Add information to the subjectAltName extension in the psCertConfig_t. The information is provided to

this function in a filled-in subjectAltNameEntry_t struct, defined in x509.h. The function can be called

multiple times to add more information to the extension. However, the subjectAltNameEntry_t struct

should be zeroed between the two calls.

Filling the subjectAltNameEntry_t struct is rather straightforward. Some notes are necessary, however.

The iPAddress field must consist of a v4 IP address as a dot-separated string, such “127.2.3.4”.

The otherName field can be used for adding extra, user-specified name fields, as specified by RFC 5280.

An otherName contains an OID and a user-specific identifier string. There are two ways to encode the OID
in otherName: either as a dot-notation string or as a hex string containing the DER encoding of the OID.
When encoding the OID using dot-notation (recommended), the user must fill in the field
otherNameDotNotation using the format “[dot-notation-OID]:[ASCII-string]”, such as

“1.2.840.113549:some other identifier”. The length of the otherNameDotNotation string must be

assigned to otherNameDotNotationLen. When encoding the OID as a hex string, the user must fill-in

the otherName field using the format “[hex-encoded-OID]:[ASCII-string]”, such as "2ab00f:some other

identifier"; The length of the string in otherName must be assigned to otherNameLen.

For information on the meaning of subjectAltName extension fields, please consult RFC 5280.

Example:

 subjectAltNameEntry_t sanEntry;

 int32 rc;

 memset(&sanEntry, 0, sizeof(subjectAltNameEntry_t));

 sanEntry.rfc822Name = "email@address.com";

 sanEntry.rfc822NameLen = strlen(sanEntry.rfc822Name);

 sanEntry.dNSName = "insidesecure.com";

 sanEntry.dNSNameLen = strlen(sanEntry.dNSName);

 23 © INSIDE Secure - 2018 - All rights reserved

 sanEntry.uniformResourceIdentifier = "http://www.insidesecure.com";

sanEntry.uniformResourceIdentifierLen = strlen(sanEntry.uniformResourceIdentifier);

 sanEntry.iPAddress = "46.105.106.144";

 sanEntry.iPAddressLen = strlen(sanEntry.iPAddress);

 sanEntry.otherName = "2ab00f:some other identifier";

 sanEntry.otherNameLen = strlen(sanEntry.otherName);

 rc = psX509SetSubjectAltName(NULL,

 conf,

 &sanEntry);

 if (rc < 0) {

 printf("psX509SetSubjectAltName failed\n");

 return PS_FAILURE;

 }

2.1.9.11 psX509AddIssuerAltName

int32 psX509SetIssuerAltName(psPool_t *pool,

 psCertConfig_t *config,

 subjectAltNameEntry_t *entry);

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

entry input A filled-in subjectAltNameEntry_t struct. The issuerAltName extension in psCertConfig_t will be
populated with data from this struct.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_FAILURE Failure. The data in the subjectAltNameEntry_t struct is invalid.

Add information to the issuerAltName extension in the psCertConfig_t. The issuerAltName extension is

almost identical to the subjectAltName extension. The operation of this function is identical to
psX509AddSubjectAltName.

2.1.9.12 psX509AddKeyUsageBit

int32 psX509AddKeyUsageBit(psPool_t *pool,

 psCertConfig_t *config,

 const char *usageBitName);

 24 © INSIDE Secure - 2018 - All rights reserved

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

usageBitName input Name of the keyUsage bit to set.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_ARG_FAIL Failure. The usageBitName is illegal.

Set a keyUsage bit in the psCertConfig_t. The supported keyUsage bits are: keyCertSign,

keyAgreement, crlSign, digitalSignature, keyEncipherment, dataEncipherment,

nonrepudiation, encipherOnly, decipherOnly. For details on the keyUsage extension and the

meaning of the bits, see RFC 5280. The user is responsible for ensuring that the keyUsage bit combination
is sensible. For example, RFC 5280 states that encipherOnly and decipherOnly should only be used

together with keyAgreement.

This function can be called multiple times to add different bits. The bits can be cleared with
psX509ClearKeyBitUsageBits.

2.1.9.13 psX509AddExtendedKeyUsage

int32 psX509AddExtendedKeyUsage(psPool_t *pool,

 psCertConfig_t *config,

 const char *usage);

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

usage input Name of the extendedKeyUsage bit to set.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_ARG_FAIL Failure. The function arguments are invalid or the extendedKeyUsage bit is illegal.

Set keyUsage bits in the extendedKeyUsage extension. The supported bits are serverAuth, clientAuth and
codeSigning.

2.1.9.14 psX509SetSubjectKeyId

int32 psX509SetSubjectKeyId(psPool_t *pool,

 psCertConfig_t *config,

 unsigned char *id,

 size_t len);

 25 © INSIDE Secure - 2018 - All rights reserved

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

usage input The value of the subjectKeyID, provided in binary as a byte array.

len input Length of the usage array.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_ARG_FAIL Failure. The function arguments are invalid or the provided subjectKeyID is too long.

Set the subjectKeyIdentifier extension in the psCertConfig_t.

2.1.9.15 psX509SetBasicConstraintsCA

int32 psX509SetBasicConstraintsCA(psPool_t *pool,

 psCertConfig_t *config,

 int caBit);

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

caBit input The value of the CA bit. 1==true and 0==false.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_ARG_FAIL Failure. The function arguments are invalid.

Set the CA bit in the basicConstraints extension in the psCertConfig_t.

2.1.9.16 psX509SetBasicConstraintsPathLen

int32 psX509SetBasicConstraintsPathLen(psPool_t *pool,

 psCertConfig_t *config,

 int pathLenConstraint);

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

pathLenConstraint input The value of the path length constraint.

 26 © INSIDE Secure - 2018 - All rights reserved

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_ARG_FAIL Failure. The function arguments are invalid.

Set the value of the path length constraint in the basicConstraints extension in the psCertConfig_t.

2.1.9.17 psX509AddAuthorityInfoAccess

int32 psX509AddAuthorityInfoAccess(psPool_t *pool,

 psCertConfig_t *config,

 authorityInfoAccessEntry_t *entry);

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

entry input A filled-in authorityInfoAccessEntry_t struct. The authorityInfoAccess extension in
psCertConfig_t will be populated with data from this struct.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_FAILURE Failure. The data in the authorityInfoAccessEntry_t struct is invalid.

Add an entry to the authorityInfoAccess extension in the psCertConfig_t. As in psX509SetSubjectAltName,
the extension data is provided to this function via a fill-in struct (authorityInfoAccessEntry_t). The function
can be called multiple times to add more entries into the extension. Both ocsp and caIssuers can be set in
a single call, although these are separate AccessDescription entries in the authorityInfoAccess ASN.1
definition. Note that accessMethod values will be encoded as uniformResourceIdentifiers.

The following example adds two entries (four AccessDescriptions) via two calls to this function:

 memset(&authInfo, 0, sizeof(authorityInfoAccessEntry_t));

 authInfo.ocsp = "ocsp.insidesecure.com";

 authInfo.ocspLen = strlen("ocsp.insidesecure.com");

 authInfo.caIssuers = "ca.insidesecure.com";

 authInfo.caIssuersLen = strlen("ca.insidesecure.com");

 rc = psX509AddAuthorityInfoAccess(NULL,

 &conf,

 &authInfo);

 if (rc < 0) {

 printf("psX509AddAuthorityInfoAccess failed\n");

 return PS_FAILURE;

 }

 memset(&authInfo, 0, sizeof(authorityInfoAccessEntry_t));

 27 © INSIDE Secure - 2018 - All rights reserved

 authInfo.ocsp = "ocsp2.insidesecure.com";

 authInfo.ocspLen = strlen("ocsp2.insidesecure.com");

 authInfo.caIssuers = "ca2.insidesecure.com";

 authInfo.caIssuersLen = strlen("ca2.insidesecure.com");

 rc = psX509AddAuthorityInfoAccess(NULL,

 &conf,

 &authInfo);

 if (rc < 0) {

 printf("psX509AddAuthorityInfoAccess failed\n");

 return PS_FAILURE;

 }

2.1.9.18 psX509AddPolicy

int32 psX509AddPolicy(psPool_t *pool,

 psCertConfig_t *config,

 certificatePoliciesEntry_t *entry);

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

entry input A filled-in certificatePoliciesEntry_t struct. The certificatePolicies extension in psCertConfig_t
will be populated with data from this struct.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_FAILURE Failure. The data in the certificatePoliciesEntry_t struct is invalid.

Add a policy to the certificatePolicies extension in the psCertConfig_t struct. As in
psX509SetSubjectAltName, the extension data is provided to this function via a fill-in struct
(certificatePoliciesEntry_t). The function can be called multiple times to add more entries into the
extension.

The certificatePolicies extension is a hierarchical structure. Every policy (PolicyInformation ASN.1 type)
can contain multiple PolicyQualifierInfos, which, in turn, can contain multiple UserNotices. To specify which
policy to modify, the policyIndex member in the certificatePoliciesEntry_t structure can be used. Similarly,
to specify which UserNotice within the policy to modify, the unoticeIndex field can be used. The indexing
must start from 1. In other words, the first policy must have index 1 and the first UserNotice within a policy
must also have index 1.

Note that the policy OID must be given as a hex string containing the DER-encoding of the OID.

In the following example, a policy with a CPS and a UserNotice is added in the first function call. In the
second call, another UserNotice is added to the same policy. In the third call, a second policy with a CPS
is added.

 /* Add a policy with OID. */

 memset(&pols, 0, sizeof(certificatePoliciesEntry_t));

 pols.policyIndex = 1; /* Note: indexing MUST start from 1. */

 28 © INSIDE Secure - 2018 - All rights reserved

 pols.policyOid = "67810C010201";

 pols.policyOidLen = strlen(pols.policyOid);

 /* Add CPS to policy #1 */

 pols.cps = "http://www.insidesecure.com/cps1";

 pols.cpsLen = strlen(pols.cps);

 /* Add UserNotice to policy #1 */

 pols.unoticeIndex = 1; /* Note: indexing MUST start from 1. */

 pols.unoticeOrganization = "INSIDE Secure Oyj 1";

 pols.unoticeOrganizationLen = strlen(pols.unoticeOrganization);

 pols.unoticeExplicitText = "Explicit Text 1";

 pols.unoticeExplicitTextLen = strlen(pols.unoticeExplicitText);

 pols.unoticeNumbers[0] = 1;

 pols.unoticeNumbers[1] = 2;

 pols.unoticeNumbersLen = 2;

 rc = psX509AddPolicy(NULL,

 &conf,

 &pols);

 if (rc < 0) {

 printf("psX509AddPolicy failed\n");

 return PS_FAILURE;

 }

 /* Add another UserNotice to policy #1. */

 memset(&pols, 0, sizeof(certificatePoliciesEntry_t));

 pols.policyIndex = 1;

 pols.unoticeIndex = 2;

 pols.unoticeOrganization = "INSIDE Secure Oyj 2";

 pols.unoticeOrganizationLen = strlen(pols.unoticeOrganization);

 pols.unoticeExplicitText = "Explicit Text 2";

 pols.unoticeExplicitTextLen = strlen(pols.unoticeExplicitText);

 pols.unoticeNumbers[0] = 3;

 pols.unoticeNumbers[1] = 4;

 pols.unoticeNumbersLen = 2;

 rc = psX509AddPolicy(NULL,

 &conf,

 &pols);

 if (rc < 0) {

 printf("psX509AddPolicy failed\n");

 return PS_FAILURE;

 }

 29 © INSIDE Secure - 2018 - All rights reserved

 /* Now add policy #2 with a different OID. */

 memset(&pols, 0, sizeof(certificatePoliciesEntry_t));

 pols.policyIndex = 2;

 pols.policyOid = "67810C010202";

 pols.policyOidLen = strlen(pols.policyOid);

 /* Add CPS to policy #2 */

 pols.cps = "http://www.insidesecure.com/cps2";

 pols.cpsLen = strlen(pols.cps);

 rc = psX509AddPolicy(NULL,

 &conf,

 &pols);

 if (rc < 0) {

 printf("psX509AddPolicy failed\n");

 return PS_FAILURE;

 }

2.1.9.19 psX509SetConstraintRequireExplicitPolicy

psX509SetConstraintRequireExplicitPolicy(psPool_t *pool,

 psCertConfig_t *config,

 int32_t value);

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

value input The value of the requireExplicitPolicy constraint.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_ARG_FAIL Failure. The function arguments are invalid.

Add a requireExplicitPolicy constraint with a given value to the policyConstraints extension in the
psCertConfig_t. For a description of the policyConstraints extension, see RFC 5280.

2.1.9.20 psX509SetConstraintInhibitPolicyMappings

int32 psX509SetConstraintInhibitPolicyMappings(psPool_t *pool,

 psCertConfig_t *config,

 int32_t value);

 30 © INSIDE Secure - 2018 - All rights reserved

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

value input The value of the inhibitPolicyMappings constraint.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_ARG_FAIL Failure. The function arguments are invalid.

Add a inhibitPolicyMappings constraint with a given value to the policyConstraints extension in the
psCertConfig_t. For a description of the policyConstraints extension, see RFC 5280.

2.1.9.21 psX509AddPolicyMapping

int32 psX509AddPolicyMapping(psPool_t *pool,

 psCertConfig_t *config,

 char *issuerDomainPolicy,

 size_t issuerDomainPolicyLen,

 char *subjectDomainPolicy,

 size_t subjectDomainPolicyLen);

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

issuerDomainPolicy input The value of the issuerDomainPolicy in the mapping. This must be a hex string
containing the DER-encoding of the policy OID.

issuerDomainPolicyLen input The length of the issuerDomainPolicy string

subjectDomainPolicy input The value of the subjectDomainPolicy in the mapping. This must be a hex string
containing the DER-encoding of the policy OID.

subjectDomainPolicyLen input The length of the subjectDomainPolicy string

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_ARG_FAIL Failure. The function arguments are invalid.

PS_PARSE_FAIL Failure. The OID hex strings could not be parsed.

Add a policy mapping into the policyMappings extensions in the psCertConfig_t.

2.1.9.22 psX509SetNetscapeComment

int32 psX509SetNetscapeComment(psPool_t *pool,

 psCertConfig_t *certConfig,

 const char *comment,

 size_t commentLen);

 31 © INSIDE Secure - 2018 - All rights reserved

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output The psCertConfig_t in which the value will be set.

comment input The value of the netscape-comment string

commentLen input Length of the netscape-comment string

Add a netscape-comment extension to the psCertConfig_t.

2.1.9.23 psX509SetPublicKey

int32 psX509SetPublicKey(psPool_t *pool,

 psCertConfig_t *certConfig,

 psPubKey_t *pk);

Set the public key in the psCertConfig_t.

2.1.9.24 psWriteCertReqMem

int32 psWriteCertReqMem(psPool_t *pool, psPubKey_t *key,

 psCertConfig_t *reqConfig,

 unsigned char **requestMem, int32 *requestMemLen)

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

key input The keypair to use with the CSR. The private key in the psPubKey_t will be used to sign the
CSR, while the public key in the psPubKey_t will be inserted into the CSR. RSA and ECC
keypairs are supported.

reqConfig input The psCertConfig_t to use for creating the CSR. This must have been filled using calls to the
psCertConfig_t setter API described above.

requestMem output A pointer to where the created CSR will be stored.

requestMemLen output The length of the created CSR in bytes.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_FAILURE Failure. Encoding of the request failed.

Create a certificate signing request (CSR) from a keypair and a psCertConfig_t. The psCertConfig_t
structure must have been filled in previously using the setter API described above. Except for the public
key, which is provided via the key parameter, the data to be included in the CSR is copied from the
provided psCertConfig_t.

This function will generate the CSR in PKCS #10 format using DER encoding. It is possible to write the
resulting CSR into a PEM file using psBase64EncodeAndWrite with REQ_FILE_TYPE as the fileType
parameter.

This function will allocate memory for the generated CSR. That memory must be freed by the caller when
the CSR is no longer used.

 32 © INSIDE Secure - 2018 - All rights reserved

2.1.9.25 psParseCertReqFile

int32 psParseCertReqFile(psPool_t *pool, const char *fileName,

 unsigned char **reqOut, int32 *reqOutLen);

Parameter Input/Output Description

pool input Optional memory pool.

filename input Filename of the CSR to parse.

reqOut output Pointer to the output buffer where the parsed CSR will be stored.

reqOutLen output Length of the parsed CSR.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_FAILURE Failure. Parsing of the CSR failed.

Parse a CSR file and stores the parsed CSR in DER encoded form in the provided buffer. The output of
this function can be fed to psParseCertReqBuf, which will extract the CSR parts from the DER buffer. This
function will allocate enough space for the buffer. The caller is responsible for freeing the memory.

2.1.9.26 psParseCertReqBuf

int32 psParseCertReqBuf(psPool_t *pool, unsigned char *reqBuf,

 int32 reqBufLen, x509DNattributes_t **DN, psPubKey_t **key,

 x509v3extensions_t **reqExt);

Parameter Input/Output Description

pool input Optional memory pool.

reqBuf input Pointer to the buffer containing the DER encoded CSR.

reqBufLen input Length of the CSR buffer

DN output The subject distinguished name (DN) attributes extracted from the CSR.

key output The public key extracted from the CSR.

reqExt output The extensions extracted from the CSR.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_FAILURE Failure. Parsing of the CSR failed.

Parses a DER encoded CSR and extracts the subject DN, the public key and the extensions. These can
be further passed onwards to psX509SetCAIssuedCertExtensions.

If the CSR contains the subjectKeyIdentifier extension, this function will ignore it and recreate the
subjectKeyIdentifier from the CSR’s public key, according to the procedure in section 4.2.1.2 in RFC 5280.

This function will allocate space for the public key, the DN and the extensions. The caller is responsible for
freeing the allocated memory. The outputs of this function (DN, key and reqExt) must be freed as follows:

DN must be freed with psX509FreeDNStruct followed by psFree

 33 © INSIDE Secure - 2018 - All rights reserved

key must be freed with psDeletePubKey

reqExt must be freed with psX509FreeExtensions followed by psFree

For an example on how to use this function, see the documentation for psX509WriteCAIssuedCert.

2.1.9.27 psParseCertReqBufExt

extern int32 psParseCertReqBufExt(psPool_t *pool, unsigned char *reqBuf,

 int32 reqBufLen, x509DNattributes_t **DN, psPubKey_t **key,

 x509v3extensions_t **reqConfig, psCertReq_t **parsedReq);

Parameter Input/Output Description

pool input Optional memory pool.

reqBuf input Pointer to the buffer containing the DER encoded CSR.

reqBufLen input Length of the CSR buffer

DN output The subject distinguished name (DN) attributes extracted from the CSR.

key output The public key extracted from the CSR.

reqExt output The extensions extracted from the CSR.

parsedReq output A struct containing additional information parsed from the CSR.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_FAILURE Failure. Parsing of the CSR failed.

This function is similar to psParseCertReqBuf, except that it stores some additional information about

the certificate signing request into a psCertReq_t struct. See the definition of that struct in x509.h for a

list of stored items. The items can be accessed from the psCertReq_t struct via the psCertReqGet* set

of functions.

2.1.9.28 psCertReqGetSignatureAlgorithm

int32_t psCertReqGetSignatureAlgorithm(psCertReq_t *req);

This function returns the signature algorithm that was used to sign the parsed CSR. More specifically, this
function returns the value of the signatureAlgorithm field (in MatrixSSL’s OID format) of the

CertificationRequest ASN.1 structure contained in the parsed CSR. The psCertReq_t struct

should have been previously filled in by psParseCertReqBufExt.

The return value is an integer representing the algorithm OID in MatrixSSL format, for example
OID_SHA256_RSA_SIG or OID_SHA256_ECDSA_SIG. For a full list of MatrixSSL format OID definitions,

consult cryptolib.h.

2.1.9.29 psCertReqGetPubKeyAlgorithm

int32_t psCertReqGetPubKeyAlgorithm(psCertReq_t *req);

 34 © INSIDE Secure - 2018 - All rights reserved

This function returns the public key algorithm field of the parsed CSR. More specifically, this function
returns the AlgorithmIdentifier field (in MatrixSSL’s OID format) of the SubjectPublicKey ASN.1

structure contained in the CertificateRequestInfo structure of the parsed CSR. The psCertReq_t

struct should have been previously filled in by psParseCertReqBufExt.

The return value is either OID_RSA_KEY_ALG or OID_ECDSA_KEY_ALG, as those are the supported

public key algorithms supported by MatrixSSL in CSR parsing.

2.1.9.30 psCertReqGetVersion

int32_t psCertReqGetVersion(psCertReq_t *req)

This function returns the version number of the parsed CSR. More specifically, this function returns the
version field of the CertificateRequestInfo ASN.1 structure of the parsed CSR. The

psCertReq_t struct should have been filled in by psParseCertReqBufExt.

2.1.9.31 psX509SetCAIssuedCertExtensions

int32 psX509SetCAIssuedCertExtensions(psPool_t *pool,

 psCertConfig_t *certConfig,

 x509v3extensions_t *reqExt,

 psX509Cert_t *caX509);

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

config input/output Input: the CA’s configuration structure containing e.g. the CA’s distinguished name and
extensions such as subjectKeyId and authorityInfoAccess.

Output: a modified psCertConfig_t that can be passed to psX509WriteCAIssuedCert.

reqExt input The x509v3extensions structure from the certificate signing request (CSR) from which the CA-
issued certificate is to be created.

caX509 input The CA’s certificate.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_ARG_FAIL Failure. The function arguments are invalid.

This function is used to setup the extensions in a psCertConfig_t for the purpose of creating a CA-signed
certificate. The extensions are extracted from different from three places: the certificate signing request
(CSR), the CA’s configuration (psCertConfig_t) and (for the subjectKeyId extension only) from the CA’s
certificate. The final set of extensions is stored in the psCertConfig_t pointed to by the certConfig
parameter.

For the basicConstraints, subjectAltName, keyUsage and extendedKeyUsage extensions, if both the CSR
and the CA’s config structure contain one of these extensions, the one in the CSR will override the one in
the CA’s config.

This function will set the authorityKeyId extension in certConfig to the same value as the subjectKeyId in
the CA’s config struct.

Note that this function must be called for a psCertConfig_t before it is passed to the
psX509WriteCAIssuedCert function.

 35 © INSIDE Secure - 2018 - All rights reserved

2.1.9.32 psX509WriteCAIssuedCert

int32_t psX509WriteCAIssuedCert(psPool_t *pool, psCertConfig_t *certConfig,

 psPubKey_t *reqPubKey, char *subjectDN, int32_t subjectDNLen,

 psX509Cert_t *caCert, psPubKey_t *caPrivKey,

 char *certFileOut);

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

certConfig input The configuration file containing the extensions to use for the generated certificate.

reqPubKey input The public key from the CSR.

subjectDN input The subject distinguished name of the end-entity requesting the certificate.

subjectDNLen input Length of the subjectDN.

caCert input The CA’s certificate.

caPrivKey input The CA’s private key.

certFileOut input The filename of the output file where the generated certificate will be written.

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_FAILURE Failure. Consult the error message output for details on what went wrong.

Create a CA-signed certificate from the provided CSR. Additional data must be provided via a
psCertConfig_t structure and from a parsed CA certificate. Note that the CA certificate must have been
parsed with either psX509ParseCert or psX509ParseCertFile with the CERT_STORE_DN_BUFFER flag
parameter set.

Example:

 int32 rc;

 unsigned char *csr;

 int32 csr_len;

 x509DNattributes_t *subjectDN = NULL;

 psPubKey_t *reqPubKey;

 x509v3extensions_t *reqExt;

 psX509Cert_t *ca_cert;

 psCertConfig_t conf;

 rc = psParseCertReqFile(NULL,

 csr_filename,

 &csr,

 &csr_len);

 if (rc < 0) {

 printf("psX509ParseCertReqFile failed\n");

 return PS_FAILURE;

 }

 36 © INSIDE Secure - 2018 - All rights reserved

 rc = psParseCertReqBuf(NULL,

 csr,

 csr_len,

 &subjectDN,

 &reqPubKey,

 &reqExt);

 if (rc < 0) {

 printf("psX509ParseCertReqBuf failed\n");

 return PS_FAILURE;

 }

 rc = psX509ParseCertFile(NULL,

 (char*)ca_cert_filename,

 &ca_cert,

 CERT_STORE_DN_BUFFER);

 if (rc < 0) {

 printf("psX509ParseCertFile failed\n");

 return PS_FAILURE;

 }

/* Here, set up conf using the setter API. In this example, we only set validDays and the certificate hash
algorithm. */

 rc = psX509SetValidDays(NULL,

 &conf,

 365);

 if (rc < 0) {

 printf("psX509SetValidDays failed\n");

 return PS_FAILURE;

 }

 rc = psX509SetCertHashAlg(NULL,

 &conf,

 ALG_SHA256);

 if (rc < 0) {

 printf("psX509SetCertHashAlg failed\n");

 return PS_FAILURE;

 }

 rc = psX509SetCAIssuedCertExtensions(NULL,

 &conf,

 reqExt,

 ca_cert);

 if (rc < 0) {

 printf("psX509SetCAIssuedCertExtensions failed\n");

 37 © INSIDE Secure - 2018 - All rights reserved

 return PS_FAILURE;

 }

 rc = psX509WriteCAIssuedCert(NULL,

 &conf,

 reqPubKey,

 subjectDN->dnenc,

 subjectDN->dnencLen,

 ca_cert,

 caKeyPair,

 (char*)out_filename);

 if (rc < 0) {

 printf("psX509WriteCAIssuedCert failed\n");

 return PS_FAILURE;

 }

 printf("Wrote: %s\n", out_filename);

 psX509FreeCert(ca_cert);

 psX509FreeCertConfig(&conf);

 x509FreeExtensions(reqExt);

 psFree(reqExt, NULL);

 psX509FreeDNStruct(subjectDN, NULL);

 psFree(subjectDN, NULL);

 psDeletePubKey(&reqPubKey);

 psFree(csr, NULL);

2.1.9.33 psX509WriteSelfSignedCert

int32_t psX509WriteSelfSignedCert(psPool_t *pool,

 psCertConfig_t *certConfig,

 psPubKey_t *selfSigningPrivKey,

 char *certFileOut)

Parameter Input/Output Description

pool input Optional memory pool to where the psCertConfig_t members will be allocated

certConfig input The configuration file containing the certificate fields, extensions and DN attributes to use
for the generated certificate.

selfSigningPrivKey input The private key to use for signing the certificate.

certFileOut input Filename for the output certificate.

 38 © INSIDE Secure - 2018 - All rights reserved

Return Value Description

PS_SUCCESS Success.

PS_MEM_FAIL Failure. Out of memory.

PS_FAILURE Failure. Consult the error message output for details on what went wrong.

This function will write a self-signed certificate into a PEM-format file. There is also an in-memory version
called psX509WriteSelfSignedCertMem, which gives out the DER encoding of the created certificate
instead of storing it in a PEM file.

2.2 Certificate Revocation List API
These supported functions are implemented as part of the supported crypto package of Matrix distributions
and will enable applications to manage certificate revocation lists (CRLs).

2.2.1 psX509Crl_t data type

typedef struct x509revoked {

 unsigned char *serial;

 uint16_t serialLen;

 struct x509revoked *next;

} x509revoked_t;

typedef struct psCRL {

 psPool_t *pool;

 int32_t authenticated; /* Has this CRL been authenticated */

 unsigned char sigHash[MAX_HASH_SIZE];

 int32_t sigHashLen;

 int32 nextUpdateType;

 char *nextUpdate; /* Only concerned about expiration */

 int32_t sigAlg;

 unsigned char *sig;

 uint16_t sigLen;

 uint16_t expired;

 x509DNattributes_t issuer;

 x509v3extensions_t extensions;

 x509revoked_t *revoked;

 struct psCRL *next;

} psX509Crl_t;

2.2.2 psX509ParseCRL

int32_t psX509ParseCRL(psPool_t *pool, psX509Crl_t **crl,

 unsigned char *crlBin, int32 crlBinLen);

 39 © INSIDE Secure - 2018 - All rights reserved

Parameter Input/Output Description

pool input Optional memory pool to where the optput CRL will be allocated

crl output The output CRL structure. Must be freed by caller

crlBin input The DER formatted CRL stream

crlBinLen input Byte length of crlBin

Return Value Description

PS_SUCCESS Success. A valid CRL structure is allocated and populated in “crl” parameter

PS_MEM_FAIL Failure. Unable to allocate memory for the structure

PS_PARSE_FAIL Failure. Unable to parse CRL stream

PS_ARG_FAIL Failure. Bad input parameters

Parses a CRL DER stream into a Matrix psX509Crl_t structure.

2.2.3 psCRL_Update

int psCRL_Update(psX509Crl_t *CRL, int deleteExisting);

Parameter Input/Output Description

CRL input A parsed CRL to be added to the global CRL cache

deleteExisting input 1 to replace an existing CRL if found. 0 to append

Return Value Description

0 Failure. The CRL parameter was NULL or already existed in cache

1 Success. CRL was added to cache

Add the CRL reference to the global CRL cache.

IMPORTANT: A direct reference to the supplied pointer is stored in the cache. A copy of the CRL is not
added to the global cache. Therefore, if the CRL is deleted in the future via psCRL_Delete or

psX509FreeCRL it will be removed from the cache and the memory freed.

2.2.4 psCRL_determineRevokedStatus

int32_t psCRL_determineRevokedStatus(psX509Cert_t *cert);

Parameter Input/Output Description

cert input The cert to test for the revoked status

 40 © INSIDE Secure - 2018 - All rights reserved

Return Value Description

0 Failure. NULL cert parameter

CRL_CHECK_CRL_EXPIRED Success. CRL is found but has expired. No revoked tests were
run on certificate

CRL_CHECK_PASSED_AND_AUTHENTICATED Success. Authenticated CRL was found for this certificate and the
certificate has not been revoked

CRL_CHECK_PASSED_BUT_NOT_AUTHENTICATED Success. CRL was found for this certificate and the certificate has
not been revoked BUT the CRL has not been authenticated

CRL_CHECK_REVOKED_AND_AUTHENTICATED Success. Authenticated CRL was found for this certificate and the
certificate has been revoked

CRL_CHECK_REVOKED_BUT_NOT_AUTHENTICATED Success. CRL was found for this certificate and the certificate has
been revoked BUT the CRL has not been authenticated

CRL_CHECK_EXPECTED Success. No CRL was found in the global CRL cache but the
certificate had a CRL distribution point. The CRL should be fetched

CRL_CHECK_NOT_EXPECTED Success. No CRL was found in the global CRL cache but this
certificate did not have a CRL distribution point so a CRL probably
does not exist for this certificate.

Run the given certificate through the revocation tests. The value of revokedStatus of the psX509Cert_t

structure will be set to whatever the return value of this function call is.

2.2.5 psCRL_Delete

int psCRL_Delete(psX509Crl_t *CRL);

Parameter Input/Output Description

CRL input The CRL to be deleted from the global CRL cache

Return Value Description

0 Failure. The CRL parameter was NULL or didn’t exist

1 Success. CRL was deleted from the cache

Delete a CRL from the global CRL cache and free the memory of the CRL. This function has the same
behaviour as psX509FreeCRL but was given a psCRL_ prefix to create a consistent set of functions that

manage the global CRL cache.

2.2.6 psCRL_DeleteAll

void psCRL_DeleteAll();

Deletes all CRLs from the global CRL cache and frees the memory for each CRL.

2.2.7 psCRL_Remove

int psCRL_Remove(psX509Crl_t *CRL);

Parameter Input/Output Description

CRL input The CRL to be removed from the global CRL cache

 41 © INSIDE Secure - 2018 - All rights reserved

Return Value Description

0 Failure. The CRL parameter was NULL or didn’t exist

1 Success. CRL was removed from the cache

Remove a CRL from the global CRL cache but do not free the memory of the CRL. The CRL may be
deleted with psX509FreeCRL at a later time.

2.2.8 psCRL_RemoveAll

void psCRL_RemoveAll();

Removes all CRLs from the global CRL cache but does not free the memory. Each managed CRLs may
be deleted with psX509FreeCRL at a later time.

2.2.9 psX509FreeCRL

void psX509FreeCRL(psX509Crl_t *crl);

Parameter Input/Output Description

crl input The CRL structure to free

Free a CRL structure allocated by psX509ParseCRL. If the CRL entry had been added to the global CRL
cache with psCRL_Update or psCRL_Insert it will be deleted from the cache.

2.2.10 psCRL_GetCRLForCert

psX509Crl_t* psCRL_GetCRLForCert(psX509Cert_t *cert);

Parameter Input/Output Description

cert input The cert used to search for the associated CRL

Return Value Description

NULL Failure. No matching CRL was found

<valid pointer> Success. CRL is found and referenced by returned pointer

Locate a CRL for a given certificate in the global CRL cache. This function is useful to locate a CRL from
the global cache to be deleted when the certificate is reporting a value of CRL_CHECK_CRL_EXPIRED as
the revokedStatus status.

2.2.11 psX509GetCRLdistURL

int32_t psX509GetCRLdistURL(psX509Cert_t *cert, char **url, uint32_t *urlLen);

 42 © INSIDE Secure - 2018 - All rights reserved

Parameter Input/Output Description

cert input A parsed certificate from which to search for the CRL distribution point

url output A pointer to the URL distribution point or NULL if not found

urlLen output Byte length of url

Return Value Description

PS_TRUE Success. The url parameter will point to the URL distribution point of the CRL

PS_FALSE Failure. Certificate did not contain a URL distribution point for a CRL

PS_ARG_FAIL Failure. Bad input parameters

Return the URL of where to find the CRL for a given certificate. The url value will point directly into the

read-only psX509Cert_t structure and should not be destructively parsed or freed.

A known limitation is that this function will only return the first distribution point that is found in a certificate.

2.2.12 psX509AuthenticateCRL

int32_t psX509AuthenticateCRL(psX509Cert_t *CA, psX509Crl_t *CRL,

void *userPtr);

Parameter Input/Output Description

CA input The issuing certificate of the CRL that will be used to authenticate the CRL signature

CRL input The CRL to authenticate

userPtr input NULL or user context for internal memory pool usage

Return Value Description

PS_SUCESS Success. CRL is authenticated and the “authenticated” member has been set to
PS_TRUE

PS_CERT_AUTH_FAIL_EXTENSION Failure. Certificate extensions did not match what the CRL reported as the issuer

PS_CERT_AUTH_FAIL_DN Failure. Certificate name did not match what the CRL reported as the issuer

PS_UNSUPPORTED_FAIL Failure. Signature algorithm of CRL is not supported

PS_CERT_AUTH_FAIL_SIG Failure. Signature authentication failed

PS_MEM_FAIL Failure. Memory allocation error

PS_ARG_FAIL Failure. Bad input parameters

Performs the authentication tests on a CRL given an issuer. If the authentication is successful the
authenticated member of the CRL structure will be set to PS_TRUE (1).

This function will always attempt to perform the authentication so the authenticated member of the CRL

will be reset to 0 at the beginning of this function regardless of the current value.

This function is internally invoked as part of the psX509AuthenticateCert logic to handle use cases

where a server has presented a certificate chain and the parent certificate will only be available internally
during that handshake time window.

2.3 Distinguished Name Attributes

The following table lists the Distinguished Name (DN) attributes supported by MatrixSSL, together with the
compilation options needed to enable them.

 43 © INSIDE Secure - 2018 - All rights reserved

Compilation option Distinguished Name Attributes

always enabled Attributes listed as “MUST support” in RFC
5280:

country, organization, organizationalUnit,
dnQualifier, serialNumber, state,
commonName, domainComponent

#define
USE_EXTRA_DN_ATTRIBUTES_RFC5280_SHOULD

Attributes listed as “SHOULD support” in RFC
5280:

locality, title, surname, givenName, initials,
pseudonym, generationQualifier

#define USE_EXTRA_DN_ATTRIBUTES Attributes not mentioned in RFC 5280:

streetAddress, postalAddress,
telephoneNumber, uid, name, email

2.4 Certificate Extensions

2.4.1 Supported Extensions

The following table lists the certificate extensions supported by MatrixSSL during certificate parsing.

Supported Extension Description

basicConstraints Identifies a cert as a CA and how long a certificate chain it will allow

nameConstraints This extension is used in CA certificates to restrict the name space within
which all subject names in subsequent certificates must be located.

subjectAltName Alternative names that associate specific DNS, IP Address, and other
identification with the certificate

issuerAltName Analogous to subjectAltName, but contains issuer information

subjectKeyId Fingerprint of the subject’s public key (automatically included)

authorityKeyId Fingerprint of the issuer’s public key (automatically included)

keyUsage Supports keyAgreement and keyCertSign usage

extendedKeyUsage Supports TLS Server Authentication and TLS Client Authentication

authorityInfoAccess This extension is used to specify ways for accessing information about a CA.
The most common use is to provide the URI of the CA’s OCSP responder in
this extension

certificatePolicies Policies indicating the terms under which the certificate should be used

policyConstraints The requireExplicitPolicy and inhibitPolicyMappings constraints are supported

policyMappings This extension is used in CA certificates to specify pairs of policies that the
CA considers to be equivalent

cRLDistributionPoints Used in CA certificates to specify the locations of the certificate revocation
lists (CRLs)

 44 © INSIDE Secure - 2018 - All rights reserved

2.4.2 Accessing information in certificate extensions

After a certificate has been successfully parsed, the information contained in the extensions can be
accessed in the extensions member of the psX509Cert_t. In most cases, the parsed extension contents

are stored as C strings, together with the string length. If an extension contains multiple entries of a single
type, these entries are parsed into a linked list.

The following example checks whether the parsed certificate contains the authorityInfoAccess extension. If
it does, it counts out the number of OCSP responder URI entries in that extension, as well as their total
length.

#include “matrixssl/matrixsslApi.h”

psX509Cert_t *cert;

psx509authorityInfoAccess_t *authInfo;

int32 rc;

int num_ocsp_uris = 0;

int total_uri_len = 0;

psCryptoOpen(PS_CRYPTO_CONFIG);

rc = psX509ParseCertFile(NULL, “mycert.pem”, &cert,

 CERT_STORE_UNPARSED_BUFFER);

if (rc == PS_SUCCESS) {

 if (cert->extensions.authorityInfoAccess != NULL) {

 authInfo = cert->extensions.authorityInfoAccess;

 do {

 if (authInfo->ocsp != NULL) {

 num_ocsp_uris++;

 total_uri_len += authInfo->ocspLen;

 }

 authInfo = authInfo->next;

} while (authInfo);

 }

}

psX509FreeCert(cert);

 45 © INSIDE Secure - 2018 - All rights reserved

3 CERTIFICATE REVOCATION LISTS

CRL is an X.509 format for publishing lists of certificate files that have been revoked. A certificate file that
has been revoked should not be trusted for use in PKI environments.

3.1 Overview
Retrieving and maintaining a collection of CRLs is the responsibility of the application that is choosing to
trust the remote certificate of a peer. In standard SSL connections, this application is the client because
that is the peer that is placing trust in the certificate that is sent from the server. In SSL connections that
use client authentication, the server could also maintain CRLs to authentication the certificates that are
sent by the client.

3.2 X.509 Certificates and CRL Distribution Points
The location of where to retrieve a CRL is embedded within X.509 certificates in the cRLDistributionPoints
extension. The Matrix CRL implementation only supports Internet web URL formats that have been
encoded as a uniformResourceIdentifier within the fullName of the distributionPoint.

It may be helpful to note that distribution points encoded within an X.509 certificate are references to
where the CRL is located that could potentially revoke that very certificate. In other words, the certificate is
not specifying the CRL location of where to find CRLs that it itself issues. This should make sense when
you consider that the content of an X.509 certificate is created by the issuing certificate. So the issuing CA
certificate is placing the CRL distribution location into the subject cert of where that CA intends to store the
CRL for the certificates it issues.

Matrix CRL makes the assumption that the issuer of an X.509 certificate is also the issuer of the CRL for a
given subject certificate.

3.3 Parsing and Authentication of a CRL
A CRL is a signed data format. The parsing of a CRL will result in a list of certificates that have been
revoked but trust in that list should be limited if the CRL itself has not been authenticated. The process of
parsing and authenticating a CRL are two distinct operations.

A CRL may be parsed and stored in Matrix data formats without being authenticated. During revocation
testing, the status of the CRL authentication will be reported independently from the revocation status of
the subject certificate.

3.4 MatrixSSL and CRL
MatrixSSL provides an API to load and manage CRLs in a global cache that will be used when a certificate
expects to have a revocation test. Fetching and loading the CRLs into the cache is currently a manual
process that is discussed in the following sections.

MatrixSSL will attempt to perform a CRL authentication and certificate revocation test for any certificate
that contains a cRLDistrubutionPoints extension while that certificate is being processed by the
psX509AuthenticateCert function. There are several possible outcomes when performing those tests

and the only status that will cause the authentication to fail and immediately return with an error is if the
certificate has been revoked by an authenticated CRL. Other combinations of the test will set the
revokedStatus member of the psX509Cert_t structure and the remainder of the authentication process

will occur.

 46 © INSIDE Secure - 2018 - All rights reserved

In all cases, the application SHOULD look to the revokedStatus members of the certificate chain when

control is passed to the certificate callback function to determine the revocation status and apply
application policy.

Due to CRL implementation details the SSL peer will often not have information about a CRL distribution
point at the time of the initial SSL connection. As mentioned in the previous section, the CRL distribution
location embedded in a certificate is where to find the CRL that could potentially revoke that very
certificate. So when an end-entity certificate from a server is received for the first time, it is highly likely
that the application is seeing the CRL distribution point for the first time so will not have a CRL loaded for
that certificate. The CRL revocation status will be returned in the certificate callback for the application to
process.

The dilemma of not holding a CRL during connection time poses an interesting implementation problem for
CRL support in SSL connections. Do you go out and fetch the CRL via HTTP in the certificate callback
while in the middle of the handshake? Or do you fail the handshake to go fetch the CRL and retry the SSL
connection later? The ./apps/ssl/client.c application has examples for both of these solutions and is
discussed in the following sections.

3.5 Example application CRL support
The ./apps/ssl/client.c application demonstrates how an SSL application can manage CRL. There are
three points of integration that are described here. The following sections are API documentation for this
integration.

1. At initialization time, the CA files are parsed to look for any CRL distribution points. If any are
found, the CRL will be fetched via HTTP. Each CRL will then be parsed into the Matrix format and
loaded into the global CRL cache. At this time, the list of CA files will also be used to attempt to
authenticate any of the CRLs that were fetched. It is not a requirement that a CRL be
authenticated prior to an SSL connection but it would be an optimization if that authentication was
complete during initialization.

2. The next point of integration for CRL occurs within the certificate callback function (certCb) after
the internal CRL test was made against the global cache. The primary focus of the certificate
callback implementation is to confirm the authentication of the server certificate chain and the
“alert” value of that function is processed first to see if there are any issues. If there are no
authentication problems, the revocation status processing is hit near the bottom of the function
where each certificate in the chain has its “revokedStatus” examined. These are the status options
that would require an action.

a. CRL_CHECK_EXPECTED is an indication that the certificate has a CRL distribution point
but there was no CRL found in the global cache to test against. Here is where we make
the design decision to either fetch the CRL right there in the middle of the handshake or to
fail the handshake to fetch the CRL and attempt the connection again. The compile time
define set in client.c to determine the path is MIDHANDSHAKE_CRL_FETCH. In the
midhandshake case, the set of server certs are passed to a function for processing and
then the “revokedStatus” of each cert is examined again. There is a sanity check in the
code so the CRL fetch will only be attempted one time. In the case where the handshake
is failed to fetch the CRLs, the distribution point URLs are pulled out of the server
certificates and saved aside. The current handshake is failed with the alert
CERTIFICATE_UNKNOWN.

b. CRL_CHECK_REVOKED_AND_AUTHENTICATED is an indication that we truly have a
revoked certificate. Return the CERTIFICATE_REVOKED alert to stop the handshake.

c. CRL_CHECK_REVOKED_BUT_NOT_AUTHENTICATED is an indication that we found
the certificate was revoked in a CRL that is stored in the cache but that CRL has not yet
been authenticated. Return the CERTIFICATE_REVOKED alert to stop the handshake.

 47 © INSIDE Secure - 2018 - All rights reserved

d. CRL_CHECK_CRL_EXPIRED is an indication that the cache held the correct CRL for the
certificate but is no longer valid. Here, the example removes the CRL from the cache and
moves to the same logic as CRL_CHECK_EXPECTED as though the CRL never existed.

3. In the CRL_CHECK_EXPECTED case where we have decided to fail the connection to retrieve
the CRL at a later time, the next point of integration can be found where the function
fetchSavedCRL is called. Note that the reconnection attempt will only occur if the example client
has been configured to attempt multiple connections to begin with. This is controlled with the “-n”
command line option that sets the number of connection attempts.

3.6 Example application API
Matrix packages do not currently provide APIs that support specific socket implementations. For example,
the MatrixSSL API is “buffer based” and requires the application to send and receive data buffers using a
socket implementation of their choosing. Supporting CRL requires that the application connect to an HTTP
server and retrieve a CRL over sockets. This functionality is not provided within the supported APIs of the
Matrix package. However, the ./apps/ssl/client.c example application has implemented this functionality
that will provide a useful template for other applications that wish to add CRL support.

3.6.1 fetchCRL

int32_t fetchCRL(psPool_t *pool, char *url, uint32_t urlLen,

unsigned char **crlBuf, uint3_t *crlBufLen);

Parameter Input/Output Description

pool input Optional memory pool to where allocations will be made. NULL if not needed

url input The fully formed URL of the CRL to fetch (http://www.crlstore.com/mycrl.crl)

urlLen input The byte length of url

crlBuf output On success, the DER stream of the CRL that was fetched

crlBufLen output The byte length of crlBuf

Return Value Description

PS_SUCCESS

This function is an example implementation to fetch a given CRL using an HTTP GET request. The
implementation uses blocking POSIX sockets to connect to a web server, send the GET request, parse the
reply and store the CRL in a newly allocated buffer.

The caller must free the CRL buffer returned in crlBuf with psFree.

There are known limitations with the parsing of the host response. The parsing code is not a robust HTTP
implementation and is looking for specific strings in the reply to determine success and CRL binary size. If
a recv() call happens to fall in the middle of one of these strings the behaviour is undefined.

3.6.2 fetchParseAndAuthCRLfromCert

int32_t fetchParseAndAuthCRLfromCert(psPool_t *pool, psX509Cert_t *cert,

 psX509Cert_t *potentialIssuers);

 48 © INSIDE Secure - 2018 - All rights reserved

Parameter Input/Output Description

pool input Optional memory pool to where allocations will be made. NULL if not needed

cert input The output CRL structure. Must be freed by caller

potentialIssuers input The DER formatted CRL stream

Return Value Description

PS_SUCCESS

Given a certificate, this function combines the functionality of fetchCRL with the supported Matrix CRL API

to parse and load CRLs into the global cache and then attempt to authenticate the CRL.

The cert parameter may be a certificate chain. In that case, each certificate in the chain will be checked

for a CRL distribution point and put through the process of fetch, parse, load to cache, and authentication
attempt.

For the authentication phase, the potentialIssuers chain will be used for each retrieved CRL to attempt

an authentication. The CA files of a client are often the set that would expected to be issuers. In addition,
any certificates in the subject certificate chain itself will also be tested as issuers. Checking the certificate
chain itself is a useful feature to support servers that send certificate chains of 2 or more certificates where
a parent is also likely the CRL issuer.

This function is used in two places in the client.c example.

1. At initialization time, the list of CA files is passed through to see if the global cache can be seeded
with any known CRLs

2. In the midhandshake fetch implementation, the server certificates are passed to this function
during the certificate callback.

3.6.3 fetchParseAndAuthCRLfromUrl

int32_t fetchParseAndAuthCRLfromUrl(psPool_t *pool, unsigned char *url,

 uint32_t urlLen, psX509Cert_t *potentialIssuers);

Parameter Input/Output Description

pool input Optional memory pool to where allocations will be made. NULL if not needed

url input The fully formed URL of the CRL to fetch (http://www.crlstore.com/mycrl.crl)

urlLen input The byte length of url

potentialIssuers input The DER formatted CRL stream

Return Value Description

PS_SUCCESS

Given a URL, this function combines the functionality of fetchCRL with the supported Matrix CRL API to

parse and load CRLs into the global cache and then attempt to authenticate the CRL.

For the authentication phase, the potentialIssuers chain will be used for each retrieved CRL to attempt

an authentication. The CA files of a client are often the set that would expected to be issuers.

This function is used for the example where the handshake is failed so that the application can go out and
fetch the CRLs for later connection attempts. The URL in this case will have been saved aside during the
certificate callback to be used here.

 49 © INSIDE Secure - 2018 - All rights reserved

3.7 Supported CRL API
These supported functions are implemented as part of the supported crypto package of Matrix distributions
and will enable applications to manage CRLs.

3.7.1 psX509Crl_t data type

typedef struct x509revoked {

 unsigned char *serial;

 uint16_t serialLen;

 struct x509revoked *next;

} x509revoked_t;

typedef struct psCRL {

 psPool_t *pool;

 int32_t authenticated; /* Has this CRL been authenticated */

 unsigned char sigHash[MAX_HASH_SIZE];

 int32_t sigHashLen;

 int32 nextUpdateType;

 char *nextUpdate; /* Only concerned about expiration */

 int32_t sigAlg;

 unsigned char *sig;

 uint16_t sigLen;

 uint16_t expired;

 x509DNattributes_t issuer;

 x509v3extensions_t extensions;

 x509revoked_t *revoked;

 struct psCRL *next;

} psX509Crl_t;

3.7.2 psX509ParseCRL

int32_t psX509ParseCRL(psPool_t *pool, psX509Crl_t **crl,

 unsigned char *crlBin, int32 crlBinLen);

Parameter Input/Output Description

pool input Optional memory pool to where the optput CRL will be allocated

crl output The output CRL structure. Must be freed by caller

crlBin input The DER formatted CRL stream

crlBinLen input Byte length of crlBin

 50 © INSIDE Secure - 2018 - All rights reserved

Return Value Description

PS_SUCCESS Success. A valid CRL structure is allocated and populated in “crl” parameter

PS_MEM_FAIL Failure. Unable to allocate memory for the structure

PS_PARSE_FAIL Failure. Unable to parse CRL stream

PS_ARG_FAIL Failure. Bad input parameters

Parses a CRL DER stream into a Matrix psX509Crl_t structure.

3.7.3 psCRL_Update

int psCRL_Update(psX509Crl_t *CRL, int deleteExisting);

Parameter Input/Output Description

CRL input A parsed CRL to be added to the global CRL cache

deleteExisting input 1 to replace an existing CRL if found. 0 to append

Return Value Description

0 Failure. The CRL parameter was NULL or already existed in cache

1 Success. CRL was added to cache

Add the CRL reference to the global CRL cache.

IMPORTANT: A direct reference to the supplied pointer is stored in the cache. A copy of the CRL is not
added to the global cache. Therefore, if the CRL is deleted in the future via psCRL_Delete or

psX509FreeCRL it will be removed from the cache and the memory freed.

3.7.4 psCRL_determineRevokedStatus

int32_t psCRL_determineRevokedStatus(psX509Cert_t *cert);

Parameter Input/Output Description

cert input The cert to test for the revoked status

Return Value Description

0 Failure. NULL cert parameter

CRL_CHECK_CRL_EXPIRED Success. CRL is found but has expired. No revoked tests were
run on certificate

CRL_CHECK_PASSED_AND_AUTHENTICATED Success. Authenticated CRL was found for this certificate and the
certificate has not been revoked

CRL_CHECK_PASSED_BUT_NOT_AUTHENTICATED Success. CRL was found for this certificate and the certificate has
not been revoked BUT the CRL has not been authenticated

CRL_CHECK_REVOKED_AND_AUTHENTICATED Success. Authenticated CRL was found for this certificate and the
certificate has been revoked

CRL_CHECK_REVOKED_BUT_NOT_AUTHENTICATED Success. CRL was found for this certificate and the certificate has
been revoked BUT the CRL has not been authenticated

CRL_CHECK_EXPECTED Success. No CRL was found in the global CRL cache but the
certificate had a CRL distribution point. The CRL should be fetched

CRL_CHECK_NOT_EXPECTED Success. No CRL was found in the globacl CRL cache but this
certificate did not have a CRL distribution point so a CRL probably
does not exist for this certificate.

 51 © INSIDE Secure - 2018 - All rights reserved

Run the given certificate through the revocation tests. The value of revokedStatus of the psX509Cert_t

structure will be set to whatever the return value of this function call is.

3.7.5 psCRL_Delete

int psCRL_Delete(psX509Crl_t *CRL);

Parameter Input/Output Description

CRL input The CRL to be deleted from the global CRL cache

Return Value Description

0 Failure. The CRL parameter was NULL or didn’t exist

1 Success. CRL was deleted from the cache

Delete a CRL from the global CRL cache and free the memory of the CRL. This function has the same
behaviour as psX509FreeCRL but was given a psCRL_ prefix to create a consistent set of functions that

manage the global CRL cache.

3.7.6 psCRL_DeleteAll

void psCRL_DeleteAll();

Deletes all CRLs from the global CRL cache and frees the memory for each CRL.

3.7.7 psCRL_Remove

int psCRL_Remove(psX509Crl_t *CRL);

Parameter Input/Output Description

CRL input The CRL to be removed from the global CRL cache

Return Value Description

0 Failure. The CRL parameter was NULL or didn’t exist

1 Success. CRL was removed from the cache

Remove a CRL from the global CRL cache but do not free the memory of the CRL. The CRL may be
deleted with psX509FreeCRL at a later time.

3.7.8 psCRL_RemoveAll

void psCRL_RemoveAll();

Removes all CRLs from the global CRL cache but does not free the memory. Each managed CRLs may
be deleted with psX509FreeCRL at a later time.

 52 © INSIDE Secure - 2018 - All rights reserved

3.7.9 psX509FreeCRL

void psX509FreeCRL(psX509Crl_t *crl);

Parameter Input/Output Description

crl input The CRL structure to free

Free a CRL structure allocated by psX509ParseCRL. If the CRL entry had been added to the global CRL
cache with psCRL_Update or psCRL_Insert it will be deleted from the cache.

3.7.10 psCRL_GetCRLForCert

psX509Crl_t* psCRL_GetCRLForCert(psX509Cert_t *cert);

Parameter Input/Output Description

cert input The cert used to search for the associated CRL

Return Value Description

NULL Failure. No matching CRL was found

<valid pointer> Success. CRL is found and referenced by returned pointer

Locate a CRL for a given certificate in the global CRL cache. This function is useful to locate a CRL from
the global cache to be deleted when the certificate is reporting a value of CRL_CHECK_CRL_EXPIRED as
the revokedStatus status.

3.7.11 psX509GetCRLdistURL

int32_t psX509GetCRLdistURL(psX509Cert_t *cert, char **url, uint32_t *urlLen);

Parameter Input/Output Description

cert input A parsed certificate from which to search for the CRL distribution point

url output A pointer to the URL distribution point or NULL if not found

urlLen output Byte length of url

Return Value Description

PS_TRUE Success. The url parameter will point to the URL distribution point of the CRL

PS_FALSE Failure. Certificate did not contain a URL distribution point for a CRL

PS_ARG_FAIL Failure. Bad input parameters

Return the URL of where to find the CRL for a given certificate. The url value will point directly into the

read-only psX509Cert_t structure and should not be destructively parsed or freed.

A known limitation is that this function will only return the first distribution point that is found in a certificate.

3.7.12 psX509AuthenticateCRL

 53 © INSIDE Secure - 2018 - All rights reserved

int32_t psX509AuthenticateCRL(psX509Cert_t *CA, psX509Crl_t *CRL,

void *userPtr);

Parameter Input/Output Description

CA input The issuing certificate of the CRL that will be used to authenticate the CRL signature

CRL input The CRL to authenticate

userPtr input NULL or user context for internal memory pool usage

Return Value Description

PS_SUCESS Success. CRL is authenticated and the “authenticated” member has been set to
PS_TRUE

PS_CERT_AUTH_FAIL_EXTENSION Failure. Certificate extensions did not match what the CRL reported as the issuer

PS_CERT_AUTH_FAIL_DN Failure. Certificate name did not match what the CRL reported as the issuer

PS_UNSUPPORTED_FAIL Failure. Signature algorithm of CRL is not supported

PS_CERT_AUTH_FAIL_SIG Failure. Signature authentication failed

PS_MEM_FAIL Failure. Memory allocation error

PS_ARG_FAIL Failure. Bad input parameters

Performs the authentication tests on a CRL given an issuer. If the authentication is successful the
authenticated member of the CRL structure will be set to PS_TRUE (1).

This function will always attempt to perform the authentication so the authenticated member of the CRL

will be reset to 0 at the beginning of this function regardless of the current value.

This function is internally invoked as part of the psX509AuthenticateCert logic to handle use cases

where a server has presented a certificate chain and the parent certificate will only be available internally
during that handshake time window.

