Matrix Deterministic Memory

Technical Reference

Electronic versions are uncontrolled unless directly accessed from the QA Document Control system.

Printed version are uncontrolled except when stamped with ‘VALID COPY’ in red.
External release of this document may require a NDA. ' ‘ . S l e

© INSIDE Secure - 2013 - All rights reserved Ss E L U R E

Table of Contents

TABLE OF CONTENTS 1
OVERVIEW 2
MEMORY POOLS 2
WHY USE A MEMORY POOL? 2
LIMITATIONS OF MEMORY POOLS 3
MEMORY ALLOCATION STRATEGY AND DEFRAGMENTATION 3
TUNING MEMORY POOLS 3
DEBUGGING MEMORY ACCESS 5
STATIC MEMORY SUPPORT 6
LOCKING MEMORY POOLS 7
PSMALLOC API 8
PSDEFINEHEAP 8
PSOPENPOOL 8
PSADDPOOLCACHE 9
PSMALLOC 10
PSCALLOC 10
PSREALLOC 11
PSMALLOCALIGN 12
PSREALLOCALIGN 12
PSFREE 14
PSCLOSEPOOL 14
MATRIXSSL POOLS 14
KEY_ POOL 14
SESSION_POOL 15
HANDSHAKE POOL 15
TMP_PKI POOLS 15
HELLO_EXT pOOL 15
DATA BUFFERS USE MATRIX_NO_POOL BY DEFAULT 15

© INSIDE Secure - 2013 - All rights reserved

iNsid

= = o4

[

=

Memory management issues in C code libraries can often be a concern for those considering
the use of third-party software. Problems resulting from memory leaks and buffer overruns
are infamously difficult to reproduce and debug. These issues become especially critical in the
resource-constrained markets for which Matrix security products are designed. INSIDE
Secure has alleviated these memory management concerns with the implementation of
deterministic memory allocation. Throughout this document, the term psMalloc will be used
in reference to this feature.

The psMalloc implementation enables the user to perform a one-time allocation of memory
from the system that future allocations will draw from. This mechanism prevents the
possibility of memory leaks and greatly diminishes the chance of a fault resulting from an
overrun. In addition, the implementation gives the user complete control over the amount of
memory being allocated and also improves speed by eliminating expensive calls to native
memory routines such as malloc.

psMalloc implements a very fast and optimized version of the standard malloc library, with
the addition of pools, defragmentation, alignment, and checks for out-of-memory conditions.

Static memory buffers may also be used in conjunction with psMalloc support. The static
memory feature does not require a system malloc call at all. One-time static memory buffers
in the application space are carved off at initialization and all future allocations are taken
from this static buffer.

The psMalloc functionality is standalone but many examples and discussions in this
document are in reference to the MatrixSSL product in which built-in psMalloc support has
been included.

Memory Pools

The basis for the psMalloc implementation is a memory pool. A memory pool is an allotment
of system memory that subsequent smaller allocations will draw from. There may be any
number of user created memory pools. Information on how to create a memory pool can be
found in the Application Programming Interface section of this document.

Why Use a Memory Pool?

Memory pools enhance malloc functionality by associating memory usage with a specific life

cycle or functional area. For example, when designing a server a natural life cycle for memory

usage is the lifetime of a single client connection. A pool can be created when the connection

is accepted, used to allocate memory associated with that connection, and be deleted when

the session is closed. Closing a pool frees all memory blocks within a pool, even if they have

not been explicitly freed. Memory leaks often occur due to error conditions that are difficult ¢ '

2 © INSIDE Secure - 2013 - All rights reserved ' ‘ ' S '

s =E Cd /R

to reproduce, so closing a pool guarantees that even ‘leaked’ memory is freed. The Apache
Web Server uses a similar per-connection pool allocation method.

Memory pools also help to identify where memory is used, and how to minimize its usage.
psMalloc returns NULL from functions that allocate memory if not enough memory is
available. It is important to always check the return values of these functions to gracefully
handle out-of-memory errors.

Limitations of Memory Pools

Because a memory pool is specified with a fixed size, it can rarely be sized as small as the
exact amount of memory that is required. The pool will typically be sized with larger free area
than required. This, combined with the overhead of the pool management itself will typically
require more memory than if pools were not used.

Using a single pool for the entire application or system can minimize pool overhead. This
removes most of the benefit of memory leak resilience, but still provides the optimizations
and fragmentation reduction of the psMalloc system.

Most memory management algorithms impose some overhead in memory per allocated
block. psMalloc is no exception. Each allocation within a pool requires a header of 4 bytes + 2
* sizeof(void *). On 32 bit platforms this amounts to 12 bytes of overhead. Additionally,
allocation requests smaller than 16 bytes as defined MIN_BLOCK_SIZE in psmalloc.h, are
rounded up to this value. psMalloc also imposes a limit of 216 - 1 bytes as the maximum size
of an allocated block within a pool, due to the way auto-defragmentation is implemented.

Memory Allocation Strategy and Defragmentation

psMalloc implements a very efficient memory allocation algorithm. Memory is allocated from
pools using queues of defined sizes (cached queues) and from lists of arbitrary sizes. Cached
queues are defined with the psAddPoolCache APl. Memory blocks of other sizes are stored in
sorted lists. For any two cache sizes, there is a sorted list of block sizes that range in size
between the two cache sizes. In this way, the cache queues not only provide fast allocation of
blocks of a particular size, they also control the length of the arbitrary sized queues.

In practice, neither the cached queues nor the arbitrary queues grow very long because
memory blocks are automatically merged with adjacent blocks when they are freed. This
defragmentation is very quick, and optimal for constrained memory applications.

psMalloc also uses ‘magic’ values in the headers of allocated and free memory to help detect

memory overruns or doubly freed memory.

Tuning Memory Pools

3 © INSIDE Secure - 2013 - All rights reserved l ‘ ' S ' d E

= = O d /RO

It is essential that the pool size is set large enough so that available memory will never be
exceeded by a call to psMalloc . This will require the user to run the application under the
most heavy use cases to determine the correct balance of available memory and the
totalUsed statistic. In the case of the MatrixSSL handshake pool, for example, this will mean
testing SSL connections with the longest supported certificate chains and key sizes.

To help with tuning, the user can activate the built-in statistics to profile the memory pools.
Enable the MEM_STATS define in the psMalloc.h file to produce memory pool trace. These
statistics can be used to help determine the overall pool size and the memory cache sizes.
Memory statistics can be shown at any time using the psShowPoolStats API. Stats are also
shown when a pool is closed; here is a sample of the trace provided when psClosePool is
called.

Pool TMP_PKI:
size 6144
remaining 6144
highWater 3304
totalUsed 0
numSplit 75
numMerge 75
Size Split Count Water

C block[00] 16 40 5 5
C block[01] 64 11 2 1
C block[02] 72 7 12 12
C block[03] 136 0 8 8
C block[04] 144 4 41 39
block[05] 152 4 2 1
C block[06] 192 0 5 5

C - Cached block

0 % Memory in Use

Memory Currently In-use: 0 bytes

Pool potentially can be shrunk by: 2672 bytes

size indicates the number of bytes of memory in pool storage. It is the value passed in to
psOpenPool, minus sizeof(psPool_t).

remaining is the current amount of memory in bytes that is unallocated in the pool.

highWater indicates the largest total amount of memory allocated within the pool at any
moment in time. It does not include the per-block header overhead.

totalUsed shows the total amount of memory in use by allocations within the pool. This
number includes the per-block header overhead.

numSplit and numMerge indicate the number of times blocks have been split into smaller
blocks (fragmented) and how many times blocks have been merged (de-fragmented).

The remaining rows show the statistics for each allocation size in the pool.

© INSIDE Secure - 2013 - All rights reserved l ‘ ' S ' d E

= = O d /RO

Size is the size requested by a call to psMalloc.

Split is the number of times a block of this size was split from another block, as opposed to
coming off a cached list size.

Count is the total number of times that size was requested from the pool.

Water number is the highest number of simultaneous allocations for that given size.

If a C precedes the row for a size, that size is a memory cache queue size.

The next two stats show the amount of memory currently in use. Memory Currently In-use
should always be 0% when closing a pool to indicate there is no memory leak (although it
isn’t a true memory leak because the entire pool is being freed it is highly recommended each
allocation have a corresponding psFree)

The last statistic is the amount of memory that was never used within the pool. This could
indicate that the pool can be reduced in size by this amount, if the memory usage of the pool
is relatively constant run-to-run.

These statistics are useful for tuning the overall size of the memory pool and for identifying
allocation sizes that are candidates for reusable cache sizes. If the count number is high, that
size may benefit slightly from caching.

The process for tuning memory is as follows:

Set the memory pool size high

Run the application with maximum key sizes, cert chains, etc.
Observe the MEM_STATS cache suggestions

Cache some recommended block sizes with psAddPoolCache
Re-run the application with similar inputs

Observe the MEM_STATS “Pool potentially can be shrunk by” field
Set the memory pool size a bit larger than this value

NoupkwnNeR

Pool sizes can also be parameterized based on what they are used for. In the above MatrixSSL
example, factors affecting memory pool requirements are:

Size of local keys (512 — 2048 bit)

Size of peer RSA key from certificate (512 — 2048 bit)
Number and length of fields in an X.509 certificate
Number of chained certificates sent by peer

Native digit size (MP_16BIT, MP_32BIT, etc.)

vk wnNh e

Debugging Memory Access

5 © INSIDE Secure - 2013 - All rights reserved l ‘ ' S ' d E

= = O d /RO

Each pool keeps track of how many bytes are allocated at any time. If this value is not zero
when the pool is closed, the software will assert, indicating that a memory leak occurred. The
psMalloc module also can detect double-frees and memory overruns on free with guard
bytes. In addition, trace is available showing memory statistics for each psMalloc and psFree
call, and whenever a pool is closed when MEM_STATS is enabled.

Example per-malloc statistics:
C memAlloced=6712 pool 00420068 (+ 256)
F memAlloced=6712 pool 00420068 (- 256)
F memAlloced=6440 pool 00420068 (- 256)
M memAlloced=6440 pool 00420068 (+ 80)
F memAlloced=6264 pool 00420068 (- 256)
M memAlloced=6264 pool 00420068 (+ 80)
F memAlloced=6088 pool 00420068 (- 256)
M memAlloced=6088 pool 00420068 (+ 152)
F memAlloced=5984 pool 00420068 (- 256)
M memAlloced=5984 pool 00420068 (+ 152)
F memAlloced=5880 pool 00420068 (- 256)

H memAlloced=5024 pool 00420068 (- 840)

M — psMalloc call

C - psCalloc call

F — psFree call (with caching)

H — psFree call (un-cached, "Heaped")

memAlloced — total memory allocated currently (shown pre-malloc and post-free)
pool — current pool operation applies to

(+ val) — Malloc request size

(- val) — Size of freed block

For more elaborate memory allocation debugging, third party tools are available to track
buffer overruns, leaks and other memory related issues. For these tools to operate correctly,
USE_MATRIX_MEMORY_MANAGEMENT must be disabled. This allows the standard C library
memory routines to be used and monitored by third party tools.

Static Memory Support

6 © INSIDE Secure - 2013 - All rights reserved l ‘ ' S ' d E

= = O d /RO

The standard deterministic memory feature as described above uses the system malloc and
free calls to allocate the base pool, a session pool and (when executing a full handshake) a
handshake pool. If these system-level APIs are not available on a given platform, or are not to
be used, the alternative is to use the static memory support built into the library. The concept
is identical to the standard deterministic memory feature except that instead of grabbing a
one time chunk of memory with the system malloc(), a hard coded static buffer at the
application layer is created for each of the three pool types.

The memory statistics will work in the same way as the standard deterministic memory and
the calculations of the pool sizes may be adjusted in the same way.

Locking Memory Pools

The deterministic memory implementation does not internally handle multi-threaded locking
for any pools other than the NULL pool. If multiple threads access a single pool, the user must
manually implement mutex locking for access to the pool. Because the memory operations
are quite efficient, a fast spin lock is the optimal solution if locking can't be avoided. In
MatrixSSL, associating a memory pool per session is a natural way to avoid the overhead of
locking because typically only one thread will interact with a session at any one time.

7 © INSIDE Secure - 2013 - All rights reserved l ‘ ' S ' d E

= = O d /RO

psMalloc API

By default, deterministic memory is disabled in Matrix commercial products. The compile-
time #define that enables psMalloc is USE_ MATRIX_MEMORY_MANAGEMENT which can be
found in the coreConfig.h header file. If this #define is commented out, the functions for
creating pools, adding caches, and freeing pools will not be available. In addition, the
psMalloc and psFree routines will map to the platform specific memory routines defined at
the bottom of the psmalloc.h header file (ignoring the pool parameter).

Application code will transparently include the coreApi.h file when the primary Matrix
product header is included (ie matrixsslApi.h).

psDefineHeap

Prototype
void psDefineHeap(void *heap, int32 bytes);

Parameters
heap input A pointer to static or dynamic memory to be used
for all subsequent allocations.
bytes input The size in bytes of the heap.

Return Values
None.

Description

Define a heap pointer and size, from which to allocate pools and memory. This is useful on
systems with no system malloc implementation, or when a high performance malloc
implementation is desired. If a heap is defined, system memory allocation functions including
malloc, calloc, free and realloc are not used. This function should be called before
psOpenMalloc (or psCoreOpen ,or matrixSslOpen) so that all memory allocation is done from
the defined heap.

psOpenPool

Prototype

psPool_t *psOpenPool(char *name, uint32 size,
int32 flags, void *staticAddress,
void *userPtr);

L
8 © INSIDE Secure - 2013 - All rights reserved ' ‘ . S '

s =E Cd /R

Parameters

name input Optional string identifier for the pool being
created that is output by psShowPoolStats
when statistics are displayed. This is not
duplicated by the pool, and should not be
deleted by the caller while the pool exists.

size input The size in bytes of the pool

flags input POOL_TYPE_MALLOC or
POOL_TYPE_STATIC

staticAddress | input The memory address to the start of the
static memory pool if POOL_TYPE_STATIC
flags.

NULL if POOL_TYPE_MALLOC flags

userPtr input Opaque pointer for integrators who are
creating their own memory
implementation and require a context to be
saved to the psPool_t output for future
calls to psMalloc, psFree, and psRealloc

Return Values
NULL Failure
psPool_t | Success

Description
Creates a new memory pool. The returned pool pointer is used in subsequent calls to
psMalloc, psFree, and psRealloc.

psAddPoolCache

Prototype
1nt32 psAddPoolCache(psPool_t *pool, uint32 size);

Parameters
pool input Pool handle from a previous call to
psOpenPool.
size input The size in bytes of the desired cache size

Return Values
PS_FAILURE | Failure

PS_SUCCESS | Success

9 © INSIDE Secure - 2013 - All rights reserved l ‘ ' S ' d E

= = O d /RO

Description
Use this function to specify a memory cache queue size for a specific pool.

psMalloc

Prototype
void *psMalloc(psPool_t *pool, uint32 size);

Parameters
pool input Pool handle from a previous call to
psOpenPool.
size input The size in bytes of the desired memory
block

Return Values

NULL Failure
Memory pointer Success
Description

Allocate memory from a memory pool of the given size. A valid memory pointer is returned
on success and NULL is returned if there is not enough memory to allocate.
psCalloc

Prototype
void *psCalloc(psPool_t *pool, size_t n, size_t size);

Parameters

pool input Pool handle from a previous call to
psOpenPool.

n input The count of how many ‘size’ bytes to
allocate. Total allocated memory will be
size * n

size input The size in bytes of each ‘n” memory chunk
to allocate. Total allocated memory will be
size * n

10 © INSIDE Secure - 2013 - All rights reserved l ‘ ' S l d E

= = O d /RO

Return Values

NULL

Failure

Memory pointer

Success

Description

Use this routine as an alternative to psMalloc to allocate and initialize each byte in the pool to
zero. As in the system call calloc, n * size should equal to the total buffer size required.

psRealloc

Prototype

void *psRealloc(void *ptr,

size_t n, psPool_t *pool);

Parameters
ptr input Pointer to already-allocated memory
n input New size for the allocated memory
pool input The memory pool to which the ptr was

previously allocated.

Return Values
NULL Failure
Memory pointer Success

Description

Use this API to reallocate a buffer to a new size, either larger or smaller. The original memory
pointed to by ptr is copied and then zeroed internally. The pointer to the resized memory
block is returned and ptr is invalid after this call. NULL may be returned if the pool is not large
enough to hold the resized buffer (this may occur even if reducing the buffer size).

Note

This API does not exactly match the functionality of the system call realloc in one case. If
NULL is passed as the input ptr to psRealloc, NULL is returned. In the system realloc call, valid
memory of size ‘n’ is returned. psMalloc should be used in this case to allocate new memory.

11

© INSIDE Secure - 2013 - All rights reserved l ‘ ' S ' d E

= = O d /RO

psMallocAlign

Prototype
1nt32 psMallocAlign(psPool_t *pool,
unsigned char **memptr,
unsigned char **trueptr, size_t size);

Parameters

pool input Pool handle from a previous call to
psOpenPool.

memptr output The 32-bit aligned memory address that
the caller will use

trueptr output The true memory location to the beginning
of the allocated memory. This is the
address that must be freed with psFree

size input The size in bytes of desired memory block

Return Values
PS_MEM_FAIL Failure. Internal call to
psMalloc failed

> 0 Success. Number of
allocated bytes (beginning
at trueptr)

Description

A variation on the standard psMalloc call that returns a 32-bit aligned memory address that
has also been sized to a multiple of 32-bits. This functionality can be useful in integrations
with hardware crypto in which drivers require cache alignment for DMA.

This function is implemented outside the USE_ MATRIX_MEMORY_MANAGEMENT define
and so may be used as a replacement for a system memalign API.

psReallocAlign

Prototype

1nt32 psReallocAlign(unsigned char **memptr,
unsigned char **trueptr, size_t size,
psPool_t *pool);

12 © INSIDE Secure - 2013 - All rights reserved l ‘ ' S ' d E

= = O d /RO

Parameters
memptr Input/output INPUT: The current memory address that is
being reallocated.

OUTPUT: The new 32-bit alighed memory
address that the caller will use.

trueptr Input/output INPUT: If this realloc is being performed on
an aligned address that was returned from
a previous call to psMallocAlign, the trueptr
is the memory address that was returned
from that previous call. Otherwise, set to
same address as memptr.

OUTPUT: The true memory location to the
beginning of the allocated memory. This is
address that must be freed with psFree.

size input The size in bytes of desired memory block
pool input The memory pool to which the memptr
was previously allocated

Return Values
PS_MEM_FAIL Failure. Internal call to
psRealloc failed

> 0 Success. Number of
allocated bytes (beginning
at trueptr)
Description

A variation on the standard psRealloc call that grows or shrinks a previously returned
memory address to return a 32-bit aligned memory address that has also been sized to a
multiple of 32-bits. This functionality can be useful in integrations with hardware crypto in
which drivers require cache alignment for DMA.

This function is implemented outside the USE_ MATRIX_MEMORY_MANAGEMENT define
and so may be used in any library configuration.

© INSIDE Secure - 2013 - All rights reserved l ‘ ' S ' d E

= = O d /RO

psFree

Prototype
void psFree(void *ptr, psPool_t *pool);

Parameters
ptr input Memory to be freed and returned to the
pool
pool input The memory pool to which ptr was
previously allocated
Description

Free an allocated memory block. The memory will be merged (defragmented) with free
memory blocks (if available) immediately proceeding and following the free block, if not in
use. The newly merged blocks will be put on the relevant free memory list based on size.

psClosePool

Prototype
void psClosePool(psPool_t *pool);

Parameters
pool input Pool to close. Enable MEM_STATS for
statistics
Description

Close an open pool. Pass in the pool identifier returned from the open call. This call will call
the system free.

MatrixSSL Pools

If USE_MATRIX_MEMORY_MANAGEMENT is enabled while compiling MatrixSSL, several
memory pools throughout the life-cycle of the SSL connection are activated. This section
highlights some of the memory pools used within the MatrixSSL library.

KEY_POOL

The loading of secure key information using matrixSsINewKeys and matrixSsiLoadRsaKeys
must occur prior to session creation so the key material is stored in a dedicated pool that is

[J
14 © INSIDE Secure - 2013 - All rights reserved ' ‘ . S '

s =E Cd /R

created each time matrixSsINewKeys is called. The pool is deleted when matrixSsiDeleteKeys
is called.

The size of the key pool is defined by SSL_KEY _POOL_SIZE in matrixssllib.h and has a default
value of 8KB. If your implementation uses long certificate chains or numerous Certificate
Authority files you may need to increase this default.

SESSION_POOL

The session pool is the second memory pool used within the MatrixSSL library and is designed
to be completely transparent to the user. This pool is created at session initiation and is
intelligently sized to contain storage for the primary ssl_t data type.

HANDSHAKE_POOL

The handshake pool is created internally during the SSL handshake to store temporary
security and certificate information.

Like the KEY_POOL, certificate chains present the largest unknown when determining the size
of the pool. If implementing a client (or a server that performs client-authentication) it may
be necessary to increase the value of SSL_CERTIFICATE_MSG_OVERHEAD in matrixssllib.h to
account for potentially large incoming certificate chains.

TMP_PKI pools

Public key encryption operations can be very memory intensive and prior to version 3.0 this
memory overhead was included in the HANDSHAKE_POOL. Now, each public key operation is
wrapped within a dedicated memory pool to have the shortest possible lifespan. These pools
should be completely transparent to the user.

HELLO_EXT pool

The loading of CLIENT_HELLO extensions using matrixSsINewHelloExtension and
matrixSsiLoadHelloExtension must occur prior to session creation so the key material is
stored in a dedicated pool that is created each time matrixSsINewHelloExtension is called. The
pool is deleted when matrixSsiDeleteHelloExtension is called.

The size of the hello extension pool is hardcoded in matrixSsINewHelloExtension with a value
of 1KB, which can be increased if necessary.

Data buffers use MATRIX_NO_POOL by default

The one functional area of MatrixSSL in which memory pools are not used are the data
buffers that are managed with the matrixSsiGetOutdata family of APIs. Because of the large
16KB maximum record size in the SSL specification, it was not practical to create a memory
pool to satisfy this requirement. Instead, the data buffer memory is internally managed to
initially be a small size and grown to exactly fit the record data. Once a record is processed
the data buffer will be reduced in size.

It is possible to provide a custom memory pool for these allocations by manually creating a
pool with psOpenPool and assigning that pool to the bufferPool member of the sslSessOpts_t
pointer that is passed to matrixSsINewClientSession or matrixSsINewServerSession.

15 © INSIDE Secure - 2013 - All rights reserved l ‘ ' S ' d E

= = O d /RO

