

Electronic versions are uncontrolled unless directly accessed from the QA Document Control system.

Printed version are uncontrolled except when stamped with ‘VALID COPY’ in red.

External release of this document may require a NDA.

© Inside Secure 2018 – All rights reserved

MatrixCMS API and
Technical Reference

2 © Inside Secure 2018 – All rights reserved

TABLE OF CONTENTS

1 FEATURES AND CONFIGURATION... 4

1.1 Building the CMS Library .. 5

1.2 Running cmsTest .. 5

2 SIGNED-DATA CONTENT TYPE API ... 6

2.1 Signed Data Creation .. 6

2.1.1 Detached vs. Attached signed content .. 6

2.2 matrixCmsCreateSignedData .. 7

2.3 matrixCmsInitCreateSignedData ... 8

2.4 matrixCmsUpdateCreateSignedData .. 10

2.5 matrixCmsFinalCreateSignedData .. 10

2.6 matrixFreeStreamCreatedSignedData .. 11

2.7 Signed Data Parsing ... 11

2.8 matrixCmsParseSignedData ... 11

2.9 matrixCmsConfirmSignature ... 12

2.10 matrixCmsInitParseSignedData .. 13

2.11 matrixCmsUpdateParseSignedData ... 14

2.12 matrixCmsFinalParseSignedData ... 15

2.13 matrixCmsFreeParsedSignedData .. 16

3 AUTHENTICATED-ENVELOPED-DATA CONTENT TYPE API 17

3.1 AED Creation .. 17

3.2 matrixCmsCreateAuthEnvData ... 17

3.3 matrixCmsInitCreateAuthEnvData .. 20

3.4 matrixCmsUpdateCreateAuthEnvData .. 21

3.5 matrixCmsFinalCreateAuthEnvData ... 22

3.6 matrixCmsFreeStreamCreatedAuthEnvData .. 23

3.7 AED Parsing .. 23

3.7.1 Stream parsing AED and AuthAttributes ... 23

3.8 matrixCmsParseAuthEnvData... 23

3.9 matrixCmsInitParseAuthEnvData .. 25

3.10 matrixCmsPostInitParseAuthEnvData ... 26

3.11 matrixCmsUpdateParseAuthEnvData ... 27

3.12 matrixCmsFinalParseAuthEnvData ... 29

3.13 matrixCmsFreeParsedAuthEnvData ... 30

4 COMPRESSED-DATA CONTENT TYPE API .. 31

4.1 Compressed Data Creation ... 31

4.2 matrixCmsCreateCompressedData .. 31

4.3 matrixCmsInitCreateCompressedData .. 31

4.4 matrixCmsUpdateCreateCompressedData ... 32

4.5 matrixCmsFinalCreateCompressedData ... 32

3 © Inside Secure 2018 – All rights reserved

4.6 Compressed Data Parsing .. 33

4.7 matrixCmsParseCompressedData .. 33

4.8 matrixCmsInitParseCompressedData ... 34

4.9 matrixCmsUpdateParseCompressedData .. 34

4.10 matrixCmsFreeCompressedData .. 35

4 © Inside Secure 2018 – All rights reserved

1 FEATURES AND CONFIGURATION

The MatrixCMS implementation supports the creation and parsing of three CMS data types:

• Signed-Data Content Type (RFC 5652)

• Authenticated-Enveloped-Data Content Type (RFC 5083)

• Compressed-Data Type (RFC 3274)

The Signed-Data (SD) and Authenticated-Enveloped-Data (AED) types use Elliptic Curve public key
operations for the key agreement and digital signature operations.

The Signed-Data and Authenticated-Enveloped-Data types support SHA-2 digest algorithms SHA256,
SHA384, and SHA512.

The Authenticated -Enveloped-Data type supports AES_GCM and AES_CBC_CMAC encryption-with-
authentication algorithms.

The Compressed-Data (CD) type does not compress or decompress the data but does assume zlib as the
compression algorithm.

Each data type can be parsed or created in a single-pass atomic mode or an Init/Update/Final streaming
mode.

The following compile time settings can be found in the utilities/cms/matrixCmsConfig.h file.

USE_MCMS_STREAMING_SD_CREATE Enable the SD streaming creation APIs

USE_MCMS_ATOMIC_SD_CREATE Enable the SD atomic creation APIs

USE_MCMS_STREAMING_SD_PARSE Enable the SD streaming parsing APIs

USE_MCMS_ATOMIC_SD_PARSE Enable the SD atomic parsing APIs

USE_MCMS_STREAMING_AED_CREATE Enable the AED streaming creation APIs

USE_MCMS_ATOMIC_AED_CREATE Enable the AED atomic creation APIs

USE_MCMS_STREAMING_AED_PARSE Enable the AED streaming parsing APIs

USE_MCMS_ATOMIC_AED_PARSE Enable the AED atomic parsing APIs

MCMS_EMPTY_AED_AUTH_ATTRIBS Empty authenticated attributes must be enabled if
stream parsing AED with AES_GCM. This is
because the authenticated data must be available
to initialize the cipher but it appears after the data
in the ASN.1.

MCMS_EMPTY_CBC_CMAC_PARAMS This is a customer specific setting to exclude the
parameters from the AES_CBC_CMAC ASN.1
encodings. Defining this option will imply an
empty value for the Initialization Vector for the
AES_CBC_CMAC algorithm as the requirement
calls for.

USE_MCMS_STREAMING_CD_CREATE Enable the CD streaming creation APIs

5 © Inside Secure 2018 – All rights reserved

USE_MCMS_ATOMIC_CD_CREATE Enable the CD atomic creation APIs

USE_MCMS_STREAMING_CD_PARSE Enable the CD streaming parsing APIs

USE_MCMS_ATOMIC_CD_PARSE Enable the CD atomic parsing APIs

1.1 Building the CMS Library

Matrix packages that include CMS functionality can be identified by the presence of the ./utilities/cms
directory. There is a Makefile at that directory level that will generate a libmatrixcms.a static library.

In order to achieve a successful compile, the required crypto algorithms must be enabled in
./crypto/cryptoConfig.h. The set of algorithms that are disabled by default and must be enabled:

USE_ECC

USE_AES_CMAC

USE_AES_WRAP

USE_AES_GCM

AESNI Incompatibility

The Intel hardware accelerated AES algorithm, AESNI, does not function correctly with CMS in streaming
modes. Additionally, AESNI does not support AES with 192 bit key sizes. You must disable AESNI if
working with CMS in streaming mode or if using AES192.

1.2 Running cmsTest

A comprehensive CMS test application is included in the ./utilties/cms/test directory and depends on the
libmatrixcms.a library have been built.

Once compiled, invoke ./cmsTest to run.

NOTE: If running in streaming parse mode, crypto trace will not be a suitable run-time setting due to the
ASN.1 "parse errors" that will occur while testing with the partial data.

6 © Inside Secure 2018 – All rights reserved

2 SIGNED-DATA CONTENT TYPE API

The Signed-Data Content Type is defined in RFC 5652. It defines a standard ASN.1 encapsulation
mechanism to transport a digital signature. A digital signature is a private key encryption of a digest hash
of some given data. This data type allows authentication of arbitrary data.

Currently, the MatrixCMS library supports ECDSA SHA-2 algorithms for creating and validating signatures.

2.1 Signed Data Creation

There are two available mechanisms to create a Signed-Data type. The first is the atomic version in which
the data contents are given in a single parameter to the matrixCmsCreateSignedData function.

The second mechanism is a streaming version that uses an Init/Update/Final API. The APIs for this
method are matrixCmsInitCreateSignedData, matrixCmsUpdateCreateSignedData, and

matrixCmsFinalCreateSignedData. Each of these three APIs will return a portion of the full Signed-Data

Content Type to the caller who can append them in a single file (or memory buffer) or send them to the
receiving entity as they are created.

The signers X.509 certificate is always included in the Signed-Data Type in this current implementation.

2.1.1 Detached vs. Attached signed content

In some use-cases the plaintext data that is being signed is not included in the Signed-Data Content Type
itself. This is called a detached mode of operation and is the default for atomic SD creation. In this mode,
it is assumed the data will be exchanged via some other mechanism. To include the plaintext data in the
SD for atomic creations, include the MCMS_FLAGS_SD_NODETACH define in the flags parameter.

If running in detached mode it is not necessary to pass in the entire data contents. The data may be pre-
hashed and passed as the contents with the flag MCMS_FLAGS_SD_CONTENT_PREHASHED.

Detached mode is not available to the stream creation APIs. This is because there should be no reason to
stream-generate a SD if there is not a large quantity of data to include in the data type.

7 © Inside Secure 2018 – All rights reserved

2.2 matrixCmsCreateSignedData

int32 matrixCmsCreateSignedData(psPool_t *pool, unsigned char *content,

 int32 contentLen, int32 contentType, psX509Cert_t *cert,

 psPubKey_t *key, int32 hashId, unsigned char **outputBuf,

int32 *outputLen, int32 flags);

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. NULL if unused

content input The data that will be signed OR the pre-hashed data

contentLen input The byte length of data

contentType input The OID type of data that is being signed. Must be CMS_PKCS7_DATA,
CMS_PKCS7_SIGNED_DATA, CMS_PKCS9_AUTH_ENVELOPED_DATA,

or CMS_PKCS9_COMPRESSED_DATA

cert input The certificate of the signing entity

key input The private key of the signing entity

hashId input The digest algorithm for the desired signature

outputBuf output The DER encoded Signed-Data Type

outputLen output The byte length of outputBuf

flags input Creation control flags. See the discussion below

Return Value Description

PS_MEM_FAIL Failure. Internal memory allocation failure

< 0 Failure.

PS_UNSUPPORTED_FAIL Failure. An unsupported algorithm was encountered

PS_SUCCESS Success.

This is the atomic Signed-Data Content Type creation function.

The psX509Cert_t *cert parameter will have been obtained using psX509ParseCertFile or

psX509ParseCert. The certificate parse function MUST be called with a flags value of

CERT_STORE_UNPARSED_BUFFER | CERT_STORE_DN_BUFFER to keep the needed encoded portions of the

certificate available to CMS. For information on encoding a certificate chain instead of a single certificate,
see Creation Control Flags below.

The content and contentLen will identify the data to be signed. The contentType should identify the

data that is being signed and this OID value will be written as the eContentType member of the
encapContentInfo encoding. If the data being signed is a generic blob use the CMS_PKCS7_DATA identifier.

Otherwise, choose the CMS_PKCS7_SIGNED_DATA, CMS_PKCS9_AUTH_ENVELOPED_DATA, or

CMS_PKCS9_COMPRESSED_DATA if the signed data is itself a CMS data type. The See the Creation Control

Flags section below for more information regarding detached and pre-hashed content.

The psPubKey_t *key parameter is the signing private key associated with the certificate and will have

been obtained using psEcdsaParsePrivKey.

The hashId parameter shall be one of MCMS_SHA256_ALG, MCMS_SHA384_ALG, or MCMS_SHA512_ALG.

The outputBuf data must be freed using psFree when no longer needed.

Creation Control Flags

The flags parameter controls the options on whether the plaintext signed data will be attached, how the

signer’s certificate is identified within the Signed-Data, and whether the ContentInfo header will be written
to the SignedData encoding.

The first configuration option is to determine whether the plaintext data will be attached. By default, it will
not be attached. When the data is not attached it is not necessary to pass in the entire contents of the

8 © Inside Secure 2018 – All rights reserved

data. The caller may choose to only pass in the hash digest of the data in this case. If the content

parameter is the pre-hashed digest value the value MCMS_FLAGS_SD_CONTENT_PREHASHED must be

included in the flags parameter.

To attach the full plaintext data, include the MCMS_FLAGS_SD_NODETACH value in flags.

To encode a certificate chain instead of a single certificate, include the MCMS_FLAGS_SD_CERT_CHAIN

value in flags. In addition, the cert parameter must point to the child-most certificate, with the next

member of each certificate pointing to its issuer certificate. It is possible to automatically setup the links
properly by concatenating the chain certificates into a PEM file in child-to-parent order and parsing the file
with psX509ParseCertFile.

The second configuration option is to determine how the signer’s certificate will be identified in the SD.
The options are between using the X.509 issuer Distinguished Name and Serial Number or the X.509
Subject Key Identifier extension. The default is IssuerAndSerialNumber and there is no flags value to
identify this choice. Supplying the value MCMS_FLAGS_SD_SUBJECT_KEY_ID to the flags will create the SD

with the SubjectKeyIdentifier instead.

The final configuration option is to determine whether the outer ContentInfo ASN.1 header is written to the
output. If the ContentInfo should be excluded, add the MCMS_FLAGS_NO_CONTENT_INFO flag.

The table below shows some viable combinations of flags for creating Signed-Data types.

Flag combinations
Meaning

MCMS_FLAGS_SD_NODETACH Full plaintext data passed to content and will be included in the
Signed-Data type. IssuerAndSerialNumber will be used as the
certificate identification as the SignerIdentifier.

MCMS_FLAGS_SD_CONTENT_PREHASHED Detached mode. Pre-hashed data passed to content.
IssuerAndSerialNumber will be used as the certificate
identification as the SignerIdentifier.

MCMS_FLAGS_SD_NODETACH |
MCMS_FLAGS_SD_SUBJECT_KEY_ID

Full plaintext data passed to content and will be included in the
Signed-Data type. The SignerIdentifier will use the
SubjectKeyId extension of the certificate for identification

0 Detached mode. Full plaintext data passed to content but it
will not be included in the data. IssuerAndSerialNumber will be
used as the certificate identification as the SignerIdentifier.

MCMS_FLAGS_SD_SUBJECT_KEY_ID Detached mode. Full plaintext data passed to content but it
will not be included in the data. The SignerIdentifier will use
the SubjectKeyId extension of the certificate for identification

MCMS_FLAGS_SD_CONTENT_PREHASHED |
MCMS_FLAGS_SD_SUBJECT_KEY_ID

Detached mode. Pre-hashed data passed to content. The
SignerIdentifier will use the SubjectKeyId extension of the
certificate for identification

2.3 matrixCmsInitCreateSignedData

int32 matrixCmsInitCreateSignedData(psPool_t *pool, psX509Cert_t *cert,

psPubKey_t *key, int32 hashId, int32 contentType,

unsigned char **outputBuf, int32 *outputLen,

int32 flags, cmsSdStream_t **sdCtx);

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. NULL if unused

cert input The certificate of the signing entity

key input The private key of the signing entity

hashId input The digest algorithm for the desired signature

contentType input The OID type of data that is being signed. Must be CMS_PKCS7_DATA,
CMS_PKCS7_SIGNED_DATA, CMS_PKCS9_AUTH_ENVELOPED_DATA,

or CMS_PKCS9_COMPRESSED_DATA

9 © Inside Secure 2018 – All rights reserved

outputBuf output The initial portion of a BER encoded Signed-Data Type

outputLen output The byte length of outputBuf

flags input See the discussion below

sdCtx output The context that will be passed to the Update/Final components

Return Value Description

PS_MEM_FAIL Failure. Internal memory allocation failure

< 0 Failure.

PS_UNSUPPORTED_FAIL Failure. An unsupported algorithm was encountered

PS_SUCCESS Success.

Begins the streaming creation of the Signed-Data Content Type. This mode can only be used when the
full plaintext data will be attached to the SD. There is no detached option for stream creation because
such a data type should be small enough to create with the atomic version.

On success, the outputBuf will contain the BER encoded Signed-Data type all the way to the constructed

OCTET STRING of the EncapsulatedContentInfo. Each subsequent
matrixCmsUpdateCreateSignedData function calls will output a component OCTET STRING of the

content data that is passed to it. The matrixCmsFinalCreateSignedData function call will complete the

signature process and return the final BER encoding to complete the full data type.

The psX509Cert_t *cert parameter will have been obtained using psX509ParseCertFile or

psX509ParseCert. The certificate parse function MUST be called with a flags value of

CERT_STORE_UNPARSED_BUFFER | CERT_STORE_DN_BUFFER to keep the needed encoded portions of the

certificate available to CMS.

The psPubKey_t *key parameter is the signing private key associated with the certificate and will have

been obtained using psEcdsaParsePrivKey.

The hashId parameter shall be one of MCMS_SHA256_ALG, MCMS_SHA384_ALG, or MCMS_SHA512_ALG.

The contentType should identify the data that is being signed and this OID value will be written as the

eContentType member of the encapContentInfo encoding. If the data being signed is a generic blob use
the CMS_PKCS7_DATA identifier. Otherwise, choose the CMS_PKCS7_SIGNED_DATA,

CMS_PKCS9_AUTH_ENVELOPED_DATA, or CMS_PKCS9_COMPRESSED_DATA if the signed data is itself a CMS

data type.

The outputBuf data must be freed using psFree when no longer needed.

The sdCtx context parameter must be freed at the conclusion of the streaming creation using
matrixCmsFreeStreamCreatedSignedData

Creation Control Flags

This streaming mode can only be used if the content will be included in the Signed-Data structure. There
should be no reason to require a streaming mode for detached content because the pre-hash of the data
can be performed via the streaming mechanism of a SHA-2 Init/Update/Final API.

Therefore, the creation control flags are only used for certificate identification and whether the ContentInfo
header is to be included when using this stream creation method. If the ContentInfo should be excluded,
add the MCMS_FLAGS_NO_CONTENT_INFO flag.

Flag combinations

0 IssuerAndSerialNumber will be used as the certificate
identification as the SignerIdentifier.

MCMS_FLAGS_SD_SUBJECT_KEY_ID The SignerIdentifier will use the SubjectKeyId extension of the
certificate for identification

10 © Inside Secure 2018 – All rights reserved

2.4 matrixCmsUpdateCreateSignedData

int32 matrixCmsUpdateCreateSignedData(psPool_t *pool, cmsSdStream_t *sdCtx,

unsigned char *content, int32 contentLen,

unsigned char **outputBuf, int32 *outputLen);

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. MUST be same pool as
matrixCmsInitCreateSignedData. NULL if unused

sdCtx input The context from a previous call to matrixCmsInitCreateSignedData

content input The next portion of the data that will be signed

contentLen input The byte length of content

outputBuf output The next portion of a BER encoded Signed-Data Type

outputLen output The byte length of outputBuf

Return Value Description

PS_MEM_FAIL Failure. Internal memory allocation failure

PS_SUCCESS Success.

Continues the streaming creation of the Signed-Data Content Type.

On success, the outputBuf will contain the BER encoded OCTET STRING of the content that should be

appended to the output of a previous call to matrixCmsUpdateCreateSignedData (or

matrixCmsInitCreateSignedData if this is the first portion). Each subsequent

matrixCmsUpdateCreateSignedData function calls will output a component OCTET STRING of the

content data. The matrixCmsFinalCreateSignedData function call will complete the signature process

and return the final BER encoding to complete the full data type.

The outputBuf data must be freed using psFree when no longer needed.

The sdCtx context parameter must be freed at the conclusion of the streaming creation using
matrixCmsFreeStreamCreatedSignedData

2.5 matrixCmsFinalCreateSignedData

int32 matrixCmsFinalCreateSignedData(psPool_t *pool, cmsSdStream_t *sdCtx,

unsigned char **outputBuf, int32 *outputLen);

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. MUST be same pool as
matrixCmsInitCreateSignedData. NULL if unused

sdCtx input The context from a previous call to matrixCmsInitCreateSignedData

outputBuf output The final portion of a BER encoded Signed-Data Type

outputLen output The byte length of outputBuf

11 © Inside Secure 2018 – All rights reserved

Return Value Description

PS_MEM_FAIL Failure. Internal memory allocation failure

PS_SUCCESS Success.

< 0 Failure.

Finalizes the streaming creation of the Signed-Data Content Type.

On success, the outputBuf will contain the remainder of the BER encoded Signed-Data type.

The outputBuf data must be freed using psFree when no longer needed.

The sdCtx context parameter must be freed at the conclusion of the streaming creation using
matrixCmsFreeStreamCreatedSignedData

2.6 matrixFreeStreamCreatedSignedData

void matrixFreeStreamCreatedSignedData(cmsSdStream_t *sdCtx);

Parameter Input/Output Description

sdCtx input The context from a previous call to matrixCmsInitCreateSignedData

Frees the SD stream creation context.

2.7 Signed Data Parsing

There are two available mechanisms to parse a Signed-Data type. The first is the atomic version that uses
the matrixCmsParseSignedData function to parse the data type in a single pass. After the parse is

complete, the signature confirmation is performed with the matrixCmsConfirmSignature API. This

process allows the user to examine the data fields after the parse phase to validate the signing certificate
that is then used to confirm the signature.

The second mechanism is a stream parsing based flow in which an Init/Update/Final sequence is used to
process the SD. The APIs for this method are matrixCmsInitParseSignedData,

matrixCmsUpdateParseSignedData, and matrixCmsFinalParseSignedData. The final phase performs

the signature confirmation.

2.8 matrixCmsParseSignedData

int32 matrixCmsParseSignedData(psPool_t *pool, unsigned char *sdBuf,

 uint32 sdBufLen, cmsSignedData_t **signedData, int32 flags);

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. NULL if unused

sdBuf input ASN.1 formatted signed data to parse

sdBufLen input Byte length of sdBuf

signedData output Signed data structure

flags input Whether the incoming SignedData type includes the ContentInfo header. Set to
MCMS_FLAGS_NO_CONTENT_INFO if absent. Set to 0 if the full CMS data type is being
parsed.

12 © Inside Secure 2018 – All rights reserved

Return Value Description

PS_MEM_FAIL Failure. Internal memory allocation failure

PS_PARSE_FAIL Failure. SignedData ASN.1 parse failure

PS_UNSUPPORTED_FAIL Failure. An unsupported algorithm was encountered

PS_SUCCESS Success. The signedData can now be validated with matrixCmsConfirmSignature

MCMS_PARTIAL Success. The ASN.1 stream is DER encoded and the passed in sdBufLen is not large enough

based on the initial encoded size of the Content Type. The caller must retrieve the remainder of
the data and call again. It is not possible to return this code with a BER encoded ASN.1 stream
that uses indefinite-length encoding.

The atomic parse of a CMS Signed-data Content Type. The function returns the parsed information in a
cmsSignedData_t structure that will be passed as input to matrixCmsConfirmSignature.

The most important fields in the signedData structure will be cert, eContent, and eContentLen. The cert

is the X.509 certificate whose private key was used to sign the data and should be validated by the user.
The eContent and eContentLen will contain the data from the Encapsulated Content that has been

signed. If the Signed-Data type was generated in detached mode, eContent will be NULL.

The caller should take this opportunity before calling matrixCmsConfirmSignature to locate the signing

certificate in the cmsSignedData_t structure and confirm a trusted Certificate Authority has issued it.

On success, signedData must be freed with matrixCmsFreeParsedSignedData when no longer needed.

2.9 matrixCmsConfirmSignature

int32 matrixCmsConfirmSignature(psPool_t *pool,

 cmsSignedData_t *signedData, unsigned char *data,

 int32 dataLen, psX509Cert_t *validationCert);

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. NULL if unused

signedData input Populated signedData structure from a previous call to

matrixCmsParseSignedData

data input Optional. Plaintext data to confirm signature. Required if not attached in the signedData

structure

dataLen input Byte length of data

validationCert input Optional. X.509 certificate to perform signature validation. Required if not provided in
signedData structure

Return Value Description

PS_ARG_FAIL Failure. Bad input parameters

MCMS_SIG_FAIL_CONTENT_MISMATCH Failure. The provided data did not match what was attached in the
signedData structure

MCMS_SIG_FAIL_NO_CONTENT Failure. No data was provided and no content was found attached in the
signedData structure

MCMS_SIG_FAIL_BAD_USER_CERT Failure. The user provided validationCert did not match the

certificate found in the signedData structure

MCMS_SIG_FAIL_NO_CERT Failure. No validationCert was provided and no certificate was

found embedded in the signedData structure

MCMS_SIG_FAIL_SIGNATURE_FAIL Failure. The signature operation failed.

MCMS_SIG_FAIL_SIGNATURE_MISMATCH Failure. The signature operation succeeded but the signedData digest

comparison failed.

13 © Inside Secure 2018 – All rights reserved

MCMS_SIG_FAIL_CONTENT_HASH_MISMATCH Failure. The signature operation succeeded and the signedData hash

digest matched but the raw digest of the content did not match the value in
signedData

PS_SUCCESS The signature was successfully authenticated

This function performs the signature validation of an SD that was parsed with
matrixCmsParseSignedData.

If used, the psX509Cert_t *validation parameter will have been obtained using psX509ParseCertFile

or psX509ParseCert.

signedData must be freed with matrixCmsFreeParsedSignedData when no longer needed.

2.10 matrixCmsInitParseSignedData

int32 matrixCmsInitParseSignedData(psPool_t *pool,

 unsigned char *sdBuf, uint32 sdBufLen,

 cmsSignedData_t **sdCtx, unsigned char **remainder,

uint32 *remainderLen, int32 flags);

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. NULL if unused

sdBuf input The first portion of an SD type to decrypt.

sdBufLen input The byte length of sdBuf

sdCtx output On success, the context to use as input to the parse routines to follow

remainder output The remaining SD data from sdBuf that this Init function did not process. The next call to

matrixCmsUpdateParseSignedData must begin with this remainder data

remainderLen output The byte length of any remainder

flags input Whether the incoming SignedData type includes the ContentInfo header. Set to
MCMS_FLAGS_NO_CONTENT_INFO if absent. Set to 0 if the full CMS data type is being
parsed.

Return Value Description

PS_LIMIT_FAIL Failure. The input buffer did not contain enough of the SD to complete
the Init. The buffer must be appended with additional SD data and called
again. The original sdBuf is NOT saved within this function and must be

resubmitted along with the newly appended data.

PS_UNSUPPORTED_FAIL Failure. An unsupported algorithm was encountered

PS_PARSE_FAIL Failure. The SD type could not be parsed at the ASN.1 level

PS_MEM_FAIL Failure. An internal memory allocation failed

PS_SUCCESS Success. The initialization is complete and
matrixCmsUpdateParseSignedData can now be called.

This is the first call to perform a stream parse of a Signed-Data type. This function requires that all the SD
data up to the signed content itself be available in the sdBuf parameter. The function will return

PS_LIMIT_FAIL if this requirement is not met and the user must append additional SD data and call again.

The sdCtx output context will become input to the other streaming parse routines for this SD.

The remainder output parameter points to the sdBuf location where this function stopped processing.

The remainder must be the start of the data that is passed to the first call to

matrixCmsUpdateParseSignedData to continue the parse.

14 © Inside Secure 2018 – All rights reserved

sdCtx must be freed with matrixCmsFreeParsedSignedData when the parse is complete.

2.11 matrixCmsUpdateParseSignedData

int32 matrixCmsUpdateParseSignedData(psPool_t *pool,

 cmsSignedData_t *sdCtx, unsigned char *sdBuf,

 uint32 sdBufLen, unsigned char **data, uint32 *dataLen,

 unsigned char **remainder, uint32 *remainderLen);

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. NULL if unused

sdCtx input The context from a previously successful call to matrixCmsInitParseSignedData

sdBuf input/output The next portion of an SD type to process.

sdBufLen input The byte length of sdBuf

data output If the plaintext signed data is included in the SD, this parameter will hold that data

dataLen output The byte length of the data output

remainder output The remaining SD data from sdBuf that this Update function did not process. Only used with

MCMS_PARTIAL return codes

remainderLen output The byte length of any remainder

Return Value Description

PS_SUCCESS Success. The end of the contents has been found.
matrixCmsFinalSignedData can now be called.

MCMS_PARTIAL Success. The update successfully completed but there is still more data
expected. This function must be called again with more SD. The
remainder parameter will indicate where the next SD data should

begin

PS_LIMIT_FAIL Failure. The input buffer did not contain enough data to complete the
update. Append more SD data and call again.

PS_PARSE_FAIL Failure. The SD type could not be parsed at the ASN.1 level

This is the continuation of the SD stream parse. This function will be called with SD data until PS_SUCESS

is returned. If the plaintext signed data is included in the SD it will be returned in the data and dataLen

output parameters. The data parameter points into sdBuf so the caller should be aware of the sdBuf

lifecycle if the data needs to be saved aside.

The MCMS_PARTIAL return code will be returned while parsing the SD if more data is expected. In this case

the caller should still test the data and dataLen parameters for data that was successfully parsed.

Additionally, the caller must use the remainder and remainderLen parameters as the start of the next

sdBuf that is passed to this function.

The PS_LIMIT_FAIL return code can occur while parsing the SD ASN.1 that follows the plaintext content.

If this return code is hit, the caller must append additional SD to the sdBuf and call again. The remainder

and data parameters will not be used in this return code case.

sdCtx must be freed with matrixCmsFreeParsedSignedData when the parse is complete.

15 © Inside Secure 2018 – All rights reserved

2.12 matrixCmsFinalParseSignedData

int32 matrixCmsFinalParseSignedData(psPool_t *pool,

 cmsSignedData_t *sdCtx, const unsigned char *hash,

 uint32 hashLen, psX509Cert_t *validationCert);

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. NULL if unused

sdCtx input The context from a previously successful call to matrixCmsInitParseSignedData

hash input The SHA2 hash of the plaintext data whose signature is being authenticated

hashLen input The byte length of hash. Must be SHA256_HASH_SIZE, SHA384_HASH_SIZE, or

SHA512_HASH_SIZE

validationCert input Optional signer certificate.

Return Value Description

PS_ARG_FAIL Failure. Bad input parameters

MCMS_SIG_FAIL_BAD_USER_CERT Failure. The user provided validationCert did not match the

certificate found in the sdCtx structure

MCMS_SIG_FAIL_NO_CERT Failure. No validationCert was provided and no certificate was

found embedded in the signedData structure

MCMS_SIG_FAIL_SIGNATURE_FAIL Failure. The signature operation failed.

MCMS_SIG_FAIL_SIGNATURE_MISMATCH Failure. The signature operation succeeded but the sdCtx digest

comparison failed.

MCMS_SIG_FAIL_CONTENT_HASH_MISMATCH Failure. The signature operation succeeded and the sdCtx hash digest

matched but the raw digest of the content provided by the user did not
match the value in sdCtx

PS_SUCCESS The signature was successfully authenticated

This is the final step of a SD stream parse and performs the signature authentication.

The caller should look in the cmsSignedData_t structure after PS_SUCCESS has been returned from

matrixCmsUpdateParseSignedData to determine the input parameters to this function. The hash and

hashLen parameters are the user-calculated values of the plaintext data that is being authenticated.

To determine which hash algorithm was used in the creation of the SD the user can examine the digestId

member of the sdCtx structure. Possible supported values are OID_SHA256_ALG, OID_SHA384_ALG, and

OID_SHA512_ALG to identify the correct SHA-2 algorithm. If needed, the Matrix SHA-2 functions may be

used to calculate the hash value. For example, psSha256Init, psSha256Update, and psSha256Final are

the routines for OID_SHA256_ALG identities.

A validationCert will be required in some cases to provide the public key portion for the signature

validation. In MatrixCMS-created SD types, the signer certificate will be embedded in the data type but
users may be working with a third party SD type or may simply wish to confirm the certificate by looking at
the certificate identification within the sdCtx. Certificates may be identified in one of two ways:

IssuerAndSerialNumber or SubjectKeyIdentifier. The choice is found in the version member of the

cmsSignerId_t *signerId pointer which itself is referenced through the cmsSignerInfos *signers

16 © Inside Secure 2018 – All rights reserved

member of the sdCtx. So in C, sdCtx->signers->signerId ->version will get the user to the certificate

identification option. A version value of 1 is IssuerAndSerialNumber. A version value of 3 is

SubjectKeyIdentifier.

If the version is 1 the signers issuer distinguished name will be found in the dn member in the same

cmsSignerId_t *signerId structure where version was found. The serial number will be found in the sn

member with a length of snLen. NOTE: It is the ISSUER distinguished name in the X.509 certificate… not

the SUBJECT distinguished name.

If the version is 3 the subject key identifier extension of the signer will be found in the sn member and will

have a length of snLen.

sdCtx must be freed with matrixCmsFreeParsedSignedData when the parse is complete.

2.13 matrixCmsFreeParsedSignedData

void matrixCmsFreeParsedSignedData(cmsSignedData_t *signedData);

Parameter Input/Output Description

signedData input The context from a previous call to matrixCmsParseSignedData or

matrixCmsInitParseSignedData

Frees the SD parsing data structure.

17 © Inside Secure 2018 – All rights reserved

3 AUTHENTICATED-ENVELOPED-DATA CONTENT TYPE API

The Authenticated-Enveloped-Data (AED) Content Type is defined in RFC 5083. It defines a standard
ASN.1 format for transporting arbitrary content that is both authenticated and encrypted.

MatrixCMS currently supports the “Key Agreement” technique for deriving AES keys that are used to
encrypt the data. ECDH is the supported public key algorithm for key agreement.

MatrixCMS currently supports AES_GCM and AES_CBC_CMAC as the authenticated encryption modes.

3.1 AED Creation

There are two available mechanisms to create an Authenticated-Enveloped-Data type.

The first is the atomic version in which the entire data contents are given in a single parameter to the
matrixCmsCreateAuthEnvData function.

The second is a streaming version that uses an Init/Update/Final flow to create the data type. The APIs for
this method are matrixCmsInitCreateAuthEnvData, matrixCmsUpdateCreateAuthEnvData, and

matrixCmsFinalCreateAuthEnvData. Each of these streaming APIs will return a portion of the full

Authenticated-Enveloped-Data Content Type to the caller who can append them in a single file (or memory
buffer) or send them to the receiving entity for them to reconstruct.

3.2 matrixCmsCreateAuthEnvData

int32 matrixCmsCreateAuthEnvData(psPool_t *pool,

const psX509Cert_t *myCert,

 const psPubKey_t *privKey,

const psX509Cert_t *recipientCert,

const int32 keyMethod,

 const int32 encryptMethod,

const int32 wrapMethod,

const int32 keyAgreeScheme,

 unsigned char *content,

const int32 contentLen,

const in32 contentType,

unsigned char **outputBuf,

int32 *outputLen,

const int32 flags);

Parameter Input/Output Description

pool input Optional. Matrix Deterministic memory pool for allocations. NULL if unused

myCert input Optional. The originator certificate. Must be included if embedding certificate in AED. See
Creation Control Flags section below for more info

privKey input Optional. The private key of the originator used the for key agreement algorithm. May be
omitted if using ephemeral keys. See Creation Control Flags section below for more info

recipientCert input Required. The certificate of the receiving entity

keyMethod input MCMS_AED_KEY_AGREE_METHOD

encryptMethod input The authenticated encryption algorithm. See below

wrapMethod input The AES key wrap algorithm. See below

keyAgreeScheme input The ECDH key agreement scheme. See below

content input The content to be encrypted and tagged

contentLen input Byte length of content

18 © Inside Secure 2018 – All rights reserved

contentType input The OID type of data that is being signed. Must be CMS_PKCS7_DATA,
CMS_PKCS7_SIGNED_DATA, CMS_PKCS9_AUTH_ENVELOPED_DATA,

or CMS_PKCS9_COMPRESSED_DATA

outputBuf output The AED output

outputLen output Byte length of the output

flags input Creation Control Flags. See Creation Control Flags section below for more info

Return Value Description

PS_MEM_FAIL Failure. Internal memory allocation failure

PS_ARG_FAIL Failure. Unsupported input parameters

PS_UNSUPPORTED_FAIL Failure. An unsupported algorithm was encountered

PS_PLATFORM_FAIL Failure. One of the crypto algorithms failed

PS_SUCCESS Success.

This is the atomic Authenticated-Enveloped-Data Content Type creation function.

The psX509Cert_t *myCert and *recipientCert parameters will have been obtained using the Matrix

crypto API psX509ParseCertFile or psX509ParseCert. When parsed with these functions the recipient

certificate parse function MUST be called with a flags value of CERT_STORE_DN_BUFFER to store the needed

encoded portions of the certificate that are required by CMS. The originator certificate (myCert) parse

MUST be called with a flags value of CERT_STORE_UNPARSED_BUFFER | CERT_STORE_DN_BUFFER to keep

the needed encoded portions of the certificate that are required by CMS.

The psPubKey_t *privKey parameter is the static ECDH key agreement private key associated with

myCert and will have been obtained using psEcdsaParsePrivKey.

The keyMethod parameter must be MCMS_AED_KEY_AGREE_METHOD.

The encryptMethod parameter must be one of: MCMS_AES128_GCM, MCMS_AES192_GCM,

MCMS_AES256_GCM, MCMS_AES128_CBC_CMAC, MCMS_AES192_CBC_CMAC, or MCMS_AES256_CBC_CMAC

The wrapMethod parameter must be one of: MCMS_AES128_WRAP, MCMS_AES192_WRAP, or

MCMS_AES256_WRAP.

The keyAgreeScheme parameter must be one of: MCMS_ECKA_X963KDF_SHA256,

MCMS_ECKA_X963KDF_SHA384, or MCMS_ECKA_X963KDF_SHA512

The contentType should identify the data that is being encrypted and this OID value will be written as the

eContentType member of the authEncyprtedContentInfo encoding. If the data being encrypted is a
generic blob use the CMS_PKCS7_DATA identifier. Otherwise, choose the CMS_PKCS7_SIGNED_DATA,

CMS_PKCS9_AUTH_ENVELOPED_DATA, or CMS_PKCS9_COMPRESSED_DATA if the data is itself a CMS data type.

The outputBuf data must be freed using psFree when no longer needed.

Creation Control Flags

The flags parameter controls the options on which key agreement method is used, how the originator and

recipient are identified within the Authenticated-Enveloped-Data, and whether the outer ContentInfo ASN.1
encoding should be included when writing the data type.

The first configuration option is to determine whether the ECKA key agreement will be static or ephemeral.
Static mode is the default and does not have a flag value. If static is chosen, the originator private key will
be used when generating the secret key so the privKey parameter must be provided. If ephemeral, a

random private key is created based on the EC parameters of the supplied recipient certificate. In this
case it is not necessary to include privKey or myCert, however myCert is encouraged to be included so

there is some information on the originator in the AED. To use ephemeral mode, include the value
MCMS_FLAGS_AED_ORIG_DHE_PUBLIC_KEY in the flags parameter.

The second configuration option is to determine how the originator and recipient will be identified in the
AED. For recipients the options are between using the X.509 issuer Distinguished Name and Serial
Number or the X.509 Subject Key Identifier extension. The default is IssuerAndSerialNumber and there is

19 © Inside Secure 2018 – All rights reserved

no flags value to identify this choice. Supplying the value MCMS_FLAGS_AED_RECIP_SUBJECT_KEY_ID to the

flags will create the AED with the SubjectKeyIdentifier instead.

For originator identification, you have already chosen the method if you are using ephemeral key
agreement. In addition to the IssuerAndSerialNumber and SubjectKeyIdentifier options a third option for
OriginatorPublicKey is available. Ephemeral key agreement must use the OriginatorPublicKey to transfer
the public key directly instead of referencing a X.509 certificate. If you are using static mode the two other
options are available and IssuerAndSerialNumber is the default and has no flags value. Set
MCMS_FLAGS_AED_ORIG_SUBJECT_KEY_ID to identify the originator certificate using the Subject Key Id

extension instead. Therefore, It is not an allowed combination to supply
MCMS_FLAGS_AED_ORIG_DHE_PUBLIC_KEY | MCMS_FLAGS_AED_ORIG_SUBJECT_KEY_ID to flags.

The third configuration option is whether or not to include the originator X.509 certificate in the AED
originatorInfo ASN.1. This is controlled by the MCMS_FLAGS_AED_INCLUDE_CERT flag value and can be

used in any combination with other flags.

The final configuration option is to determine whether the outer ContentInfo ASN.1 header is written to the
output. If the ContentInfo should be excluded, add the MCMS_FLAGS_NO_CONTENT_INFO flag.

The table below shows some viable combinations of flags for creating Authenticated-Enveloped-Data
types.

AED flag combinations with relationships to myCert and privKey parameters

Representative Flag Combinations Interpretation myCert or privKey Required

0 Key agreement will be static so private
key will be required.

OriginatorIdentifierOrKey will be
IssuerAndSerialNumber and will
require originator certificate.

Originator certificate is not included in
OriginatorInfo

KeyAgreeRecipientIdentifier will be
IssuerAndSerialNumber.

myCert

privKey

MCMS_FLAGS_AED_ORIG_DHE_PUBLIC_KEY |
MCMS_FLAGS_AED_INCLUDE_CERT

Key agreement will be ephemeral so no
private key will be required.

OriginatorIdentifierOrKey will be
OriginatorPublicKey so originator
certificate will not be required.

Originator certificate is included in
OriginatorInfo so will be required

KeyAgreeRecipientIdentifier will be
IssuerAndSerialNumber.

myCert

MCMS_FLAGS_AED_ORIG_DHE_PUBLIC_KEY |
MCMS_FLAGS_AED_RECIP_SUBJECT_KEY_ID

Key agreement will be ephemeral so no
private key will be required.

OriginatorIdentifierOrKey will be
OriginatorPublicKey so originator
certificate will not be required.

Originator certificate is not included in
OriginatorInfo

KeyAgreeRecipientIdentifier will be
SubjectKeyId.

20 © Inside Secure 2018 – All rights reserved

MCMS_FLAGS_AED_RECIP_SUBJECT_KEY_ID Key agreement will be static so private
key will be required.

OriginatorIdentifierOrKey will be
IssuerAndSerialNumber and will
require originator certificate.

Originator certificate is not included in
OriginatorInfo

KeyAgreeRecipientIdentifier will be
SubjectKeyId.

myCert
privKey

MCMS_FLAGS_AED_ORIG_DHE_PUBLIC_KEY

(This mode will result in an anonymous originator
AED)

Key agreement will be ephemeral so no
private key will be required.

OriginatorIdentifierOrKey will be
OriginatorPublicKey so originator
certificate will not be permitted.

Originator certificate is not included in
OriginatorInfo

KeyAgreeRecipientIdentifier will be
IssuerAndSerialNumber.

MCMS_FLAGS_AED_INCLUDE_CERT Key agreement will be static so private
key will be required.

OriginatorIdentifierOrKey will be
IssuerAndSerialNumber and will
require originator certificate.

Originator certificate is included in
OriginatorInfo

KeyAgreeRecipientIdentifier will be
IssuerAndSerialNumber.

myCert
privKey

MCMS_FLAGS_AED_INCLUDE_CERT |
MCMS_FLAGS_AED_ORIG_SUBJECT_KEY_ID |
MCMS_FLAGS_AED_RECIP_SUBJECT_KEY_ID

Key agreement will be static so private
key will be required.

OriginatorIdentifierOrKey will be
SubjectKeyId and will require originator
certificate.

Originator certificate is included in
OriginatorInfo

KeyAgreeRecipientIdentifier will be
SubjectKeyId.

myCert

privKey

3.3 matrixCmsInitCreateAuthEnvData

int32 matrixCmsInitCreateAuthEnvData(psPool_t *pool,

const psX509Cert_t *myCert,

 const psPubKey_t *privKey,

const psX509Cert_t *recipientCert,

const int32 keyMethod,

 const int32 encryptMethod,

const int32 wrapMethod,

const int32 keyAgreeScheme,

const int32 contentType,

 unsigned char **outputBuf,

int32 *outputLen,

const int32 flags,

 cmsAuthEnvelopedData_t **aedCtx);

21 © Inside Secure 2018 – All rights reserved

Parameter Input/Output Description

pool input Optional. Matrix Deterministic memory pool for allocations. NULL if unused

myCert input Optional. The originator certificate. Must be included if attaching certificate. See the table
in matrixCmsCreateAuthEnvData above for creation control flag information.

privKey input Optional. The private key or the originator used the for key agreement algorithm. May be
omitted if using ephemeral keys. See the table in matrixCmsCreateAuthEnvData

above for creation control flag information.

recipientCert input Required. The certificate of the receiving entity

keyMethod input MCMS_AED_KEY_AGREE_METHOD

encryptMethod input The authenticated encryption algorithm. See the descriptive text in the API for
matrixCmsCreateAuthEnvData for details.

wrapMethod input The AES key wrap algorithm. See the descriptive text in the API for
matrixCmsCreateAuthEnvData for details.

keyAgreeScheme input The ECDH key agreement scheme. See the descriptive text in the API for
matrixCmsCreateAuthEnvData for details.

contentType input The OID type of data that is being signed. Must be CMS_PKCS7_DATA,
CMS_PKCS7_SIGNED_DATA, CMS_PKCS9_AUTH_ENVELOPED_DATA,

or CMS_PKCS9_COMPRESSED_DATA

outputBuf output The AED output

outputLen output Byte length of the output

flags input Creation flags. See matrixCmsCreateAuthEnvData API documentation for

Creation Control Flags for information.

aedCtx output The streaming context for calls to matrixCmsUpdateCreateAuthEnvData and

matrixCmsFinalCreateAuthEnvData

Return Value Description

PS_MEM_FAIL Failure. Internal memory allocation failure

PS_ARG_FAIL Failure. Unsupported input parameters

PS_UNSUPPORTED_FAIL Failure. An unsupported algorithm was encountered

PS_PLATFORM_FAIL Failure. One of the crypto algorithms failed

PS_SUCCESS Success.

This is the initialization function for the streaming mode of Authenticated-Enveloped-Data Content Type
creation.

This function will return the ASN.1 BER encoded data up to the point of the OCTET STRING for the
encrypted data. Each subsequent matrixCmsUpdateCreateAuthEnvData function call will output a

component OCTET STRING of the encrypted content data. The matrixCmsFinalCreateAuthEnvData

function call will complete the encryption and authentication process and return the final BER encoding to
complete the full data type.

The outputBuf data must be freed using psFree when no longer needed.

The aedCtx streaming context will be input to the Update/Final API calls and must be freed with

matrixCmsFreeStreamCreatedAuthEnvData when no longer needed.

Please see the information in the API matrixCmsCreateAuthEnvData for details on the parameters to this

function.

3.4 matrixCmsUpdateCreateAuthEnvData

int32 matrixCmsUpdateAuthEnvData(psPool_t *pool,

 cmsAuthEnvelopedData_t *aedCtx,

22 © Inside Secure 2018 – All rights reserved

const unsigned char *dataIn,

 const int32 dataInLen,

unsigned char **out,

int32 *outLen);

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. NULL if unused

aedCtx input/output The context from a previous call to matrixCmsInitCreateAuthEnvData

content input The next portion of the data that will be encrypted

contentLen input The byte length of content

outputBuf output The next portion of the output BER encoded data

outputLen output The byte length of outputBuf

Return Value Description

PS_MEM_FAIL Failure. Internal memory allocation failure

PS_FAILURE Failure. An internal crypto process failed

PS_SUCCESS Success.

Continues the streaming creation of an Authenticated-Enveloped-Data Content Type.

On success, the outputBuf will contain the BER encoded OCTET STRING of the encrypted content that

should be appended to the output of a previous call to matrixCmsUpdateCreateAuthEnvData (or

matrixCmsInitCreateAuthEnvData if this is the first portion). Each subsequent

matrixCmsUpdateCreateAuthEnvData function call will output a component OCTET STRING of the

content data. The matrixCmsFinalCreateAuthEnvData function call will complete the encryption and

authentication process and return the final BER encoding to complete the full data type.

The outputBuf data must be freed using psFree when no longer needed.

The aedCtx context must be freed with matrixCmsFreeStreamCreatedAuthEnvData when no longer

needed.

3.5 matrixCmsFinalCreateAuthEnvData

int32 matrixCmsFinalCreateAuthEnvData(psPool_t *pool,

 cmsAuthEnvelopedData_t *aedCtx,

unsigned char **out,

int32 *outLen);

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. NULL if unused

aedCtx input/output The context from a previous call to matrixCmsInitCreateAuthEnvData

outputBuf output The next portion of the BER encoded type

outputLen output The byte length of outputBuf

Return Value Description

PS_MEM_FAIL Failure. Internal memory allocation failure

PS_FAILURE Failure. An internal crypto process failed

PS_SUCCESS Success.

Finishes the streaming creation of an Authenticated-Enveloped-Data Content Type.

23 © Inside Secure 2018 – All rights reserved

On success, the outputBuf will contain the remainder of the BER encoded Authenticated-Enveloped-Data

type.

The outputBuf data must be freed using psFree when no longer needed.

The aedCtx context must be freed with matrixCmsFreeStreamCreatedAuthEnvData when no longer

needed.

3.6 matrixCmsFreeStreamCreatedAuthEnvData

void matrixCmsFreeStreamCreatedAuthEnvData(cmsAuthEnvelopedData_t *aedCtx);

Parameter Input/Output Description

aedCtx input The context from a previous call to matrixCmsInitCreateAuthEnvData

Frees the AED stream creation data structure.

3.7 AED Parsing

There are two available mechanisms to parse an AED type.

The first is the atomic version in which the entire encrypted envelope type is supplied to a single parsing
API matrixCmsParseAuthEnvData. In this atomic version, the caller must also provide its EC private key

and possibly the X.509 originator certificate at the time of the API call. So the use case must involve a
known recipient and originator, as there will be no opportunity for the caller to identify the recipient or
originator during the parse.

The second is a streaming version that uses an Init/PostInit/Update/Final flow to parse the data type. The
APIs for this method are matrixCmsInitParseAuthEnvData, matrixCmsPostInitParseAuthEnvDataBuf,

matrixCmsUpdateParseAuthEnvData, and matrixCmsFinalParseAuthEnvData. The PostInit phase

allows the caller to locate the recipient private key and originator X.509 certificate to allow more flexible
use cases.

3.7.1 Stream parsing AED and AuthAttributes

Authenticated attributes are plaintext components that are included in the CMAC or GCM algorithms when
calculating the MAC of an AED type. These AuthAttributes are defined in RFC 5083 to follow the
EncryptedContentInfo in the ASN.1 format. This poses a significant stream-parsing problem for
AES_GCM because AES_GCM requires the plaintext additional authenticated data to be an input to the
initialization of the algorithm.

Unless you are willing to tolerate a MCMS_AED_KEY_AGREED_BUT_AUTH_FAILED return code from

matrixCmsFinalParseAuthEnvData, it is not possible to get a successful return code when stream-

parsing AES_GCM based AED if AuthAttributes are included. The data will still decrypt correctly.

The AuthAttributes are OPTIONAL in the ASN.1 definition, however, and they are disabled by default in
that Matrix CMS implementation. If you wish to include the default AuthAttributes in the AED for CMAC
usage you may disable the MCMS_EMPTY_AUTH_ATTRIBS in matrixCmsConfig.h.

3.8 matrixCmsParseAuthEnvData

int32 matrixCmsParseAuthEnvData(psPool_t *pool,

 unsigned char *buf,

 const uint32 bufLen,

24 © Inside Secure 2018 – All rights reserved

 const psX509Cert_t *originatorCert,

 const psPubKey_t *privKey,

 const int32 flags,

 unsigned char **data,

 int32 *dataLen,

 cmsEncryptedEnvelope_t **authData);

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. NULL if unused

buf input The AED type to decrypt. Not a const type because optional insitu decryption will overwrite

bufLen input The byte length of buf

originatorCert input Optional. The expected originator certificate that was used to create the data type if it has not
been provided in the AED itself

privKey input Required. The recipient ECDSA private key

flags input Supply MCMS_FLAGS_EE_OVERWRITE_CT to perform an insitu decryption that destroys the
cipher text. Omit to decrypt to a dedicated buffer and preserve the cipher text.

Supply MCMS_FLAGS_NO_CONTENT_INFO if the incoming AED type does not includes the
ContentInfo header. Set to 0 if the full CMS data type is being parsed.

data output The decrypted contents output. Must be freed with psFree if flags parameter is 0

dataLen output The byte length of the output data

authData output The context structure that was created during parse. Must be freed with
matrixCmsFreeParsedAuthEnvData

Return Value Description

MCMS_AED_FAIL_NO_CERT Failure. The originator cert was not provided or did not match the identity
specified in the data type

MCMS_AED_FAIL_KEY_AGREE Failure. The internal ECKA algorithm failed

MCMS_AED_FAIL_KEY_UNWRAP Failure. The key unwrap algorithm failed.

MCMS_AED_KEY_AGREED_BUT_AUTH_FAILED Failure. The key extraction worked but the CMAC or GCM tag did not
authenticate. The decrypted content will be available in content in this
return case.

MCMS_PARTIAL Failure. The input buffer was not as large as the initial ASN.1 length
identifier

PS_LIMIT_FAIL Failure. The input buffer ran out of data before parsing could complete

PS_UNSUPPORTED_FAIL Failure. An unsupported algorithm was encountered

PS_PARSE_FAIL Failure. The AED type could not be parsed at the ASN.1 level

PS_MEM_FAIL Failure. An internal memory allocation failed

PS_SUCCESS Success. The decrypted and authenticated data is available in the data

parameter

This is the atomic parse API for an AED type. This parser does require that the caller know in advance the
originator certificate so is only suitable for some use cases. In some uses cases the originator may have
included its certificate in the AED itself so no originatorCert would be needed. If an originator cert is

provided and the AED also contains one, the two will be compared for a match.

If used, the psX509Cert_t *originatorCert parameter will have been obtained using

psX509ParseCertFile or psX509ParseCert.

The psPubKey_t *privKey parameter is the private key of this recipient and will have been obtained using

psEcdsaParsePrivKey.

The output eedData structure allows the caller to see some of the details of the AED if desired. It must be

freed with matrixCmsFreeParsedAuthEnvData when no longer needed. However, the decrypted contents

might be held within the structure so it is important not to free the context until the data has been

processed. The following section describes the memory usage.

25 © Inside Secure 2018 – All rights reserved

Memory Profile

Using the MCMS_FLAGS_EE_OVERWRITE_CT as the flags parameter will perform an insitu decryption and will

always require less overall memory than if the value is set to 0. However, there are some differences in

implementation based on whether the AED type had encoded its contents as one large OCTET_STRING
or a constructed OCTET_STRING made up of several components. In the MatrixSSL library, an atomic
creation will result in the single large OCTET_STRING format and a stream creation will result in a
constructed OCTET_STRING format. When the constructed OCTET_STRING format is parsed, there will
ALWAYS be a dedicated memory location allocated within the cmsEncryptedEnvelope_t structure to

store the packed component parts. This means that matrixCmsFreeParsedAuthEnvData must not be

called until the data has been used.

If the flags value is 0 the caller must use psFree to free data directly when no longer needed. The buf

parameter may be freed at any time after this call and matrixCmsFreeParsedAuthEnvData may be called

any time after this call.

The following table summarizes the relationship between the AED type and flags parameter:

 MCMS_FLAGS_EE_OVERWRITE_CT 0

Single
OCTET_STRING
(Atomic creation)

The decryption will happen directly in
the buf parameter so buf must not be

freed or invalidated until data has been
used.

The authData context may

theoretically be freed immediately after
this parse call but the rule should still
be to call
matrixCmsFreeParsedAuthEnvData

after data is used because caller

probably doesn’t know the AED type.

The decryption is made into a
dedicated output memory buffer so
buf may be freed immediately and
matrixCmsFreeParsedAuthEnvData

may be called immediately.

The output data must be freed with
psFree when done being used.

Constructed
OCTET_STRING
(Streaming creation)

The decryption will be written to an
allocated memory buffer inside the
authData structure.

The buf parameter may be freed

immediately after the parse call.

matrixCmsFreeParsedAuthEnvData

must not be called until after data is
used.

The decryption is made into a
dedicated output memory buffer so
buf may be freed immediately and
matrixCmsFreeParsedAuthEnvData

may be called immediately.

The output data must be freed with
psFree when done being used.

This option results in three memory
buffers to manage the decryption of
buf and therefore this is the most

memory inefficient option.

3.9 matrixCmsInitParseAuthEnvData

int32 matrixCmsInitParseAuthEnvData(psPool_t *pool,

 const unsigned char *buf,

const uint32 bufLen,

 cmsEncryptedEnvelope_t **eeCtx,

unsigned char **remainder,

 int32 *remainderLen,

int32 flags);

26 © Inside Secure 2018 – All rights reserved

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. NULL if unused

buf input The first portion of an AED type to decrypt.

bufLen input The byte length of buf

eeCtx output On success, the context to use as input to the parse routines to follow

remainder output The remaining AED data from buf that this Init function did not process. The next call to

matrixCmsUpdateParseAuthEnvData must begin with this remainder data

remainderLen output The byte length of any remainder

flags input Whether the incoming AuthEnv type includes the ContentInfo header. Set to
MCMS_FLAGS_NO_CONTENT_INFO if absent. Set to 0 if the full CMS data type is being
parsed.

Return Value Description

PS_LIMIT_FAIL Failure. The input buffer did not contain enough of the AED to complete
the Init. The buffer must be appended with additional AED data and
called again. The original buf is NOT saved within this function and

must be resubmitted along with the newly appended data.

PS_UNSUPPORTED_FAIL Failure. An unsupported algorithm was encountered

PS_PARSE_FAIL Failure. The AED type could not be parsed at the ASN.1 level

PS_MEM_FAIL Failure. An internal memory allocation failed

PS_SUCCESS Success. The initialization is complete and
matrixCmsPostInitParseAuthEnvData can now be called.

This is the initialization routine for stream parsing an AED type. This function requires that all the AED
data up to the encrypted content itself be available in the buf parameter. The function will return

PS_LIMIT_FAIL if this requirement is not met and the user must append additional AED data and call

again.

The eeCtx output context will become input to the other streaming parse routines for this AED.

The remainder output parameter points to the buf location where this function stopped processing. The

remainder must be the start of the data that is passed to the first call to

matrixCmsUpdateParseAuthEnvData to continue the parse.

However, before Update the next step in the streaming parse is to call
matrixCmsPostInitParseAuthEnvData to register the originator certificate and the recipient private key

that will be used to perform the ECDH key agreement.

3.10 matrixCmsPostInitParseAuthEnvData

int32 matrixCmsPostInitParseAuthEnvData(psPool_t *pool,

 cmsEncryptedEnvelope_t *eeCtx,

const psX509Cert_t *originatorCert,

 const psPubKey_t *privKey);

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. NULL if unused

eeCtx input/output Context from previous successful call to matrixCmsInitParseAuthEnvData

originatorCert input The X.509 certificate of the originator of the AED

privKey input The EC private key of this local recipient

27 © Inside Secure 2018 – All rights reserved

Return Value Description

MCMS_AED_FAIL_NO_CERT Failure. The originatorCert parameter was NULL and there was

no certificate embedded within the AED itself.

MCMS_AED_FAIL_KEY_AGREE Failure. The ECDH key agreement function failed.

MCMS_AED_FAIL_KEY_UNWRAP Failure. The AES unwrap function failed.

PS_UNSUPPORTED_FAIL Failure. An unsupported crypto algorithm was encountered in the
privKey or in the AED.

PS_SUCCESS Success. Parsing should move to the
matrixCmsUpdateParseAuthEnvData phase.

This PostInit phase of stream parsing allows the user to locate and load the proper key material for
decrypting the AED. It is required to be called after a successful return from
matrixCmsInitParseAuthEnvData.

The user may know the originatorCert and recipient privKey based on the use case or maybe the

parser needs to locate that information from the AED itself. The matrixCmsInitParseAuthEnvData

routine has parsed the OriginatorInfo and RecipientInfos ASN.1 of the data type, which the caller may
examine to locate the key material as described in the following sections.

Locating the Originator certificate

If the AED type was created with the originator certificate embedded directly in the ASN.1 it would be
found in the originator member of the eeCtx. That data type is a psX509Cert_t

(crypto/keyformat/x509.h), which is a fully parsed X.509 certificate including the serial number and
distinguished name that should enable the user to verify it is the expected originator. In this case where the
originator cert was embedded, it is NOT NECESSARY to pass an originatorCert to this

matrixCmsPostInitParseAuthEnvData API because the public key material is already available. The

originatorCert may be set to NULL in this case.

If the certificate was not embedded in the AED type the originator member will be NULL. In that case,

the user can look inside the recipients member of eeCtx. There are two ways an AED may identify its

originator certificate; IssuerAndSerialNumber or SubjectKeyIdentifier. The choice is found in the
originatorId where it will be one of either MCMS_ORIGIN_ID_ISSUERDN or MCMS_ORIGIN_ID_KEYID.

If MCMS_ORIGIN_ID_ISSUERDN the issuer distinguished name of the originator will be found in the

originatorDn member and the serial number will be found in the originatorSn member with a length of

originatorSnLen. NOTE: It is the ISSUER distinguished name in the X.509 certificate… not the

SUBJECT distinguished name.

If the originatorId is MCMS_ORIGIN_ID_KEYID the subject key identifier of the originator will be found

in the originatorSn member and will have a length of originatorSnLen.

In either case, if the certificate was not embedded in the AED type the originatorCert parameter to this
matrixCmsPostInitParseAuthEnvData must be provided. That psX509Cert_t * parameter will have

been obtained using psX509ParseCertFile or psX509ParseCert.

Confirming the Recipient private key

The recipient should ideally only hold one private identity key but if verification of that key to the X.509
certificate is required, the user can look in the recipients member of eeCtx. The recipientDn and

recipientSn sub-members will hold the distinguished name and serial number of the intended recipient.

The psPubKey_t* structure for the privKey parameter will have been obtained from a call to

psEcdsaParsePrivFile.

3.11 matrixCmsUpdateParseAuthEnvData

28 © Inside Secure 2018 – All rights reserved

int32 matrixCmsUpdateParseAuthEnvData(psPool_t *pool,

 unsigned char *buf,

uint32 bufLen,

cmsEncryptedEnvelope_t *eeCtx,

 unsigned char **data,

int32 *dataLen,

uint32 dataSize,

 unsigned char **remainder,

int32 *remainderLen);

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. NULL if unused

buf input/output The next portion of an AED type to decrypt.

bufLen input The byte length of buf

eeCtx input The context from a previously successful call to matrixCmsInitParseAuthEnvData

data input/output Decrypted content data from the AED.

dataLen output The byte length of the data output

dataSize input The byte length of the available memory of data that can be written to. Must be at least same

size as bufLen

remainder output The remaining AED data from buf that this Update function did not process.

remainderLen output The byte length of any remainder

Return Value Description

PS_SUCCESS Success. The end of the contents has been found and decrypted.
matrixCmsFinalParseAuthEnvData can now be called.

MCMS_PARTIAL Success. The update successfully completed but there is still more data
expected. This function must be called again with more AED.

MCMS_UNKNOWN Success. A corner case for AED using a block cipher mode with
constructed OCTET_STRING where the parse fell on a component
boundary and it can’t be determined if this is the final component or there
is more to follow. See discussion below for more information.

PS_LIMIT_FAIL Success. A rare corner case for AED using constructed OCTET_STRING
contents where 3 or less bytes are passed in bufLen and they fall right

on the ASN.1 parse of the OCTET_STRING component. Append more
data and recall.

PS_PARSE_FAIL Failure. The AED type could not be parsed at the ASN.1 level

PS_ARG_FAIL Failure. The dataSize parameter must be at least as large as

bufLen. Or this function has been called after PS_SUCCESS has

already been returned.

This Update phase of stream parsing is used to decrypt the actual encrypted content of the AED. The
decrypted data is returned in the data and dataLen parameters.

SECURITY NOTE: The outgoing decrypted data has not been authenticated. The MAC authentication
occurs during the matrixCmsFinalParseAuthEnvData call. In theory, the decrypted data should not be

used until authenticated.

The output data location MAY point to the same location as in the incoming encrypted buf if an in-situ

decryption is desired. In other words, the decrypted data will overwrite the encrypted data to save on
memory usage if the original encrypted content does not need to be saved.

If the output data is to be written to a different dedicated buffer, the caller is responsible for allocating (and

freeing) that memory.

29 © Inside Secure 2018 – All rights reserved

The dataSize parameter is used to explicitly remind the caller that the destination data buffer must be at

least as large as in the incoming buf. If insitu decryption is desired it is fine to assign dataSize to be the

same value as bufLen.

When MCMS_PARTIAL is returned to indicate there is more data expected for decrypting, the remainder and

remainderLen parameters will identify any bytes from buf that were not processed. The reason these

bytes could not be processed is because there was not enough to feed to the AES block cipher. So the
caller should expect that remainderLen will always be less than the AES blocksize of 16. The next call to

matrixCmsUpdateParseAuthEnvData must begin with these remainder bytes.

Constructed OCTET_STRING AED considerations

AED that was generated using stream creation uses indefinite length ASN.1 encoding which creates a
couple corner cases in stream parsing. The MCMS_UNKNOWN return code is one such case. Because the

overall length of the encrypted content is not known, the only way for the parser to know if more data is
expected is by looking at the bytes following each component decrypt.

If the buf ends exactly on one of these component boundaries and the symmetric cipher is block based

(currently only AES_CBC_CMAC) there are no further bytes to determine if this is the final block that must
be unpadded. In this case the MCMS_UNKNOWN return code is used. When this return code is encountered

the decrypted data may be the final unpadded component of the contents OR it may be a full decrypted

component with more data to follow. In either case, the caller must gather more AED data and call
matrixCmsUpdateParseAuthEnvData again to see what the next result is. If that next call results in more

decrypted data, the previous unknown is not the final block and can be used exactly as returned. If the

next call does not result in more decrypted data and the return code is PS_SUCESS, the previous unknown

data was the final block and it will include the pad bytes. The padding bytes can be removed by
looking at the final byte of the data, taking the decimal value of that byte, and subtracting that
number of bytes from the end.

The PS_LIMIT_FAIL is also a potential return code if indefinite length encoding was used at AED creation.

This return code was chosen to match the meaning of matrixCmsInitFinalParseAuthEnvData that

indicates there was not enough data to act on. The caller must append more AED to the existing buf and

call again.

3.12 matrixCmsFinalParseAuthEnvData

int32 matrixCmsFinalParseAuthEnvData(psPool_t *pool,

 unsigned char *buf,

uint32 bufLen,

cmsEncryptedEnvelope_t *eeCtx);

Parameter Input/Output Description

pool input Optional Matrix Deterministic memory pool for allocations. NULL if unused

buf input The remainder of AED data after matrixCmsUpdateParseAuthEnvData returns

PS_SUCESS

bufLen input The byte length of buf

eeCtx input The context from a previously successful call to matrixCmsInitParseAuthEnvData

Return Value Description

PS_SUCCESS Success. The AED is fully decrypted and authenticated

PS_MEM_FAIL Failure. An internal memory allocation failed

MCMS_AED_KEY_AGREED_BUT_AUTH_FAILED Failure. The final CMAC or GCM tag validation failed. The previously
decrypted data from the matrixCmsUpdateParseAuthEnvData

calls did not ultimately authenticate correctly.

30 © Inside Secure 2018 – All rights reserved

PS_LIMIT_FAIL Failure. There was not enough data to complete the AED parse. Append
more AED data and call again

PS_PARSE_FAIL Failure. The AED type could not be parsed at the ASN.1 level

PS_UNSUPPORTED_FAIL Failure. An unknown crypto algorithm was encountered

This is the final step for stream parsing an AED.

After PS_SUCCESS is returned from matrixCmsUpdateParseAuthEnvData this function should be called with

the remainder of the AED.

When finished with the AED processing, the eeCtx parameter must be freed with a call to

matrixCmsFreeParsedAuthEnvData.

NOTE: If you are receiving the MCMS_AED_KEY_AGREED_BUT_AUTH_FAILED return code and the decrypted

data looks correct please see section 4.2.1 for a discussion on AES_GCM stream parsing and
AuthAttributes as a possible explanation.

3.13 matrixCmsFreeParsedAuthEnvData

void matrixCmsFreeParsedAuthEnvData(cmsEncryptedEnvelope_t *ee);

Parameter Input/Output Description

ee input The context from a previous call to matrixCmsInitParseAuthEnvData or

matrixCmsParseAuthEnvData

Frees the data structure. To guarantee memory safety, call this routine after the final decrypted data has
been processed.

31 © Inside Secure 2018 – All rights reserved

4 COMPRESSED-DATA CONTENT TYPE API

The Compressed-Data Content Type is defined in RFC 3274. It defines a standard ASN.1 format for
transporting compressed data.

MatrixCMS does not support the compression and decompression of data. The API only provides
the ASN.1 wrapping and unwrapping functionality. However, zlib compression is assumed and zlib OID
values will be used in the encoding.

4.1 Compressed Data Creation

There are two available mechanisms to create a Compressed-Data type. The first is the atomic version in
which the entire data contents are given in a single parameter to the matrixCmsCreateCompressedData

function.

The second is a streaming version that uses an Init/Update/Final API. The APIs for this method are
matrixCmsInitCreateCompressedData, matrixCmsUpdateCreateCompressedData, and

matrixCmsFinalCreateCompressedData. Each of these three APIs will return a portion of the full

Compressed-Data Content Type to the caller who can append them in a single file (or memory buffer) or
send them to the receiving entity for them to reconstruct.

4.2 matrixCmsCreateCompressedData

int32 matrixCmsCreateCompressedData(psPool_t *pool,

 unsigned char *compressedData, int32 compressedDataLen,

 unsigned char **outputBuf, int32 *outputLen, int32 flags);

Parameter Input/Output Description

pool input Optional. Matrix Deterministic memory pool for allocations. NULL if unused

compressedData input The compressed content to be wrapped

compressedDataLen input Byte length of content

outputBuf output The compressed data type output

outputLen output Byte length of the output

flags input Supply MCMS_FLAGS_NO_CONTENT_INFO if the outer ContentInfo header should be
excluded from the output. Use 0 to create the full CMS data type.

Return Value Description

PS_MEM_FAIL Failure. Internal memory allocation failure

PS_SUCCESS Success.

This is the atomic Compressed-Data Content Type creation function.

The outputBuf data must be freed using psFree when no longer needed.

4.3 matrixCmsInitCreateCompressedData

int32 matrixCmsInitCreateCompressedData(psPool_t *pool,

 unsigned char **outputBuf, int32 *outputLen, int32 flags);

32 © Inside Secure 2018 – All rights reserved

Parameter Input/Output Description

pool input Optional. Matrix Deterministic memory pool for allocations. NULL if unused

outputBuf output The Compressed-Data output

outputLen output Byte length of the output

flags input Supply MCMS_FLAGS_NO_CONTENT_INFO if the outer ContentInfo header should be
excluded from the output. Use 0 to create the full CMS data type.

Return Value Description

PS_MEM_FAIL Failure. Internal memory allocation failure

PS_SUCCESS Success.

This is the initialization function for the streaming Compressed-Data Content Type creation. The internall
allocated output buffer will be the ASN.1 data right up to the point of expected compressed data. That
compressed data will be sent in subsequent calls to matrixCmsUpdateCreateCompressedData.

Note that there is no context to associate the streaming creation with the update and final calls. It is the
caller’s responsibility to give any necessary context to the creation if required.

The outputBuf data must be freed using psFree when no longer needed.

4.4 matrixCmsUpdateCreateCompressedData

int32 matrixCmsUpdateCreateCompressedData(psPool_t *pool,

 unsigned char *compressedData, int32 compressedDataLen,

 unsigned char **outputBuf, int32 *outputLen);

Parameter Input/Output Description

pool input Optional. Matrix Deterministic memory pool for allocations. NULL if unused

compressedData input The compressed content to be wrapped

compressedDataLen input Byte length of content

outputBuf output The compressed data type output

outputLen output Byte length of the output

Return Value Description

PS_MEM_FAIL Failure. Internal memory allocation failure

PS_SUCCESS Success.

This is the continuation function for the streaming Compressed-Data Content Type creation. The input
compressedData must be zlib compressed before calling this function.

Note that there is no context to associate the streaming update with the init and final calls. It is the caller’s
responsibility to give any necessary context to the creation.

The internally allocated outputBuf data should be appended on to the output from the previous call to

matrixCmsInitCreateCompressedData. Additionally, the outputBuf must be freed using psFree when

no longer needed.

4.5 matrixCmsFinalCreateCompressedData

int32 matrixCmsFinalCreateCompressedData(psPool_t *pool,

33 © Inside Secure 2018 – All rights reserved

 unsigned char **outputBuf, int32 *outputLen, int32 flags);

Parameter Input/Output Description

pool input Optional. Matrix Deterministic memory pool for allocations. NULL if unused

outputBuf output The Compressed-Data output

outputLen output Byte length of the output

flags input Supply MCMS_FLAGS_NO_CONTENT_INFO if the outer ContentInfo header should be
excluded from the output. Use 0 to create the full CMS data type. Must match whatever
was passed as the flags value to matrixCmsInitCreateCompressedData

Return Value Description

PS_MEM_FAIL Failure. Internal memory allocation failure

PS_SUCCESS Success.

This is the finalize function for the streaming Compressed-Data Content Type creation. The internally
allocated output buffer should be appended to the output from the previous calls to
matrixCmsUpdateCreateCompressedData.

Note that there is no context to associate the streaming finalize with the Init and Update calls. It is the
caller’s responsibility to give any necessary context to the creation. Therefore, this Final creation must
also provide the same flags parameter that was passed to the matrixCmsInitCreateCompressedData

function.

The outputBuf data must be freed using psFree when no longer needed.

4.6 Compressed Data Parsing

There are two available mechanisms to parse a CD type. The first is the atomic version in which the entire
data contents are given in a single parameter to matrixCmsParseCompressedData.

The second is a streaming version that uses an Init/Update API. The APIs for this method are
matrixCmsInitParseCompressedData and matrixCmsUpdateParseCompressedData. Note there is no

Final API for stream parsing a CD type because there is no ASN.1 data that follows the data in that
particular CMS data type.

4.7 matrixCmsParseCompressedData

int32 matrixCmsParseCompressedData(psPool_t *pool,

 unsigned char *cdBuf, uint32 cdBufLen, cmsCompressedData_t **cd,

int32 flags);

Parameter Input/Output Description

pool input Optional. Matrix Deterministic memory pool for allocations. NULL if unused

cdBuf input The Compressed-Data input

cdBufLen input Byte length of the input

cd output Data structure containing the parsed information

flags input Supply MCMS_FLAGS_NO_CONTENT_INFO if the outer ContentInfo header is not
included in the CD being parsed. Use 0 to parse the full CMS data type.

34 © Inside Secure 2018 – All rights reserved

Return Value Description

PS_MEM_FAIL Failure. Internal memory allocation failure

PS_PARSE_FAIL Failure. ASN.1 parse failure

PS_SUCCESS Success. The compressed data is available in the cd structure

MCMS_PARTIAL Success. If the ASN.1 stream is DER encoded and the passed in cdBufLen is not large enough
for the initial encoded size of the Content Type, this return code will be passed back. The caller
must retrieve the remainder of the data and call again. It is not possible to return this code with a
BER encoded ASN.1 stream that uses indefinite-length encoding.

This is the atomic parse of a Compressed Data type. The compressed data information can be found in
the cmsCompressedData_t structure. The compressed data itself is contained in the compressedData

member with a length of compressedDataLen. The caller must inflate with zlib.

cd must be freed with matrixCmsFreeCompressedData when no longer needed.

4.8 matrixCmsInitParseCompressedData

int32 matrixCmsInitParseCompressedData(psPool_t *pool, unsigned char *cdBuf,

 uint32 cdBufLen, cmsCompressedData_t **cdCtx,

 unsigned char **compressedOut, int32 *compressedOutLen,

int32 flags);

Parameter Input/Output Description

pool input Optional. Matrix Deterministic memory pool for allocations. NULL if unused

cdBuf input The initial bytes of a Compressed-Data type

cdBufLen input Byte length of the input

cdCtx output Context data structure that will be passed to
matrixCmsUpdateParseCompressedData

compressedOut output Pointer to start of compressed data within the CD. NULL if data not reached

compressedOutLen output Byte length of compressedOut if not NULL

flags input Supply MCMS_FLAGS_NO_CONTENT_INFO if the outer ContentInfo header is not
included in the CD being parsed. Use 0 to parse the full CMS data type.

Return Value Description

PS_LIMIT_FAIL Failure. The input buffer did not contain enough of the CD to complete
the Init. The buffer must be appended with additional CD data and called
again. The original cdBuf is NOT saved within this function and must be

resubmitted along with the newly appended data.

PS_PARSE_FAIL Failure. The CD type could not be parsed at the ASN.1 level

PS_MEM_FAIL Failure. An internal memory allocation failed

PS_SUCCESS Success. The initialization is complete and
matrixCmsUpdateParseCompressedData can now be called.

This is the stream parse initialization function for Compressed Data types. If there are not enough initial
bytes to reach the compressed data, this function will return PS_LIMIT_FAIL and the user must append
additional CD data and call again.

If non-NULL the compressedOut output parameter will be a pointer directly into the supplied cdBuf

memory. If the application requires the compressed data to remain available for other uses, it may copy
the output elsewhere before inflating.

4.9 matrixCmsUpdateParseCompressedData

35 © Inside Secure 2018 – All rights reserved

int32 matrixCmsUpdateParseCompressedData(cmsCompressedData_t *cdCtx,

 unsigned char *cdBuf, uint32 cdBufLen,

unsigned char **compressedOut, int32 *compressedOutLen,

unsigned char **remainder, int32 *remainderLen);

Parameter Input/Output Description

cdCtx input Context structure from a previous call to
matrixCmsInitParseCompressedData

cdBuf input The next bytes of a Compressed-Data type

cdBufLen input Byte length of the input

compressedOut output Pointer to start of the next portion of compressed data within the CD. NULL if data not
found

compressedOutLen output Byte length of compressedOut if not NULL

remainder output Pointer to CD data from cdBuf that was not parsed. Must be the start of the cdBuf to

the next call to matrixCmsUpdateParseCompressedData

remainderLen output Byte length of remainder if not NULL

Return Value Description

MCMS_PARTIAL Success. The parse was successful and more CD bytes are expected.
Gather more (or check for data in remainder) and call this function again.

PS_PARSE_FAIL Failure. The CD type could not be parsed at the ASN.1 level

PS_SUCCESS Success. The CD has fully completed the parse.

This is the continuation of a stream parsed CD type.

If non-NULL the compressedOut output parameter will be a pointer directly into the supplied cdBuf

memory. If the application requires the compressed data to remain available for other uses, it may copy
the output elsewhere before inflating.

If parsing a CD that was generated with indefinite length encoding the remainder and remainderLen

output parameters may be populated to point to the next OCTET_STRING component to be parsed. If
non-NULL the remainder output will be pointing to a location within cdBuf. The caller MUST make the

remainder pointer the start of data passed to the next matrixCmsUpdateParseCompressedData call.

Note there is no Final API for CD stream parsing. The compressed data is the final ASN.1 component in a
CMS Compressed Data type so there will be no further data to parse to a final routine. The return code of
PS_SUCCESS is the indication that all compressed data has been returned to the caller.

The cdCtx must be freed with a call to matrixCmdFreeCompressedData when parsing is complete.

4.10 matrixCmsFreeCompressedData

void matrixCmsFreeCompressedData(cmsCompressedData_t *compressedData);

Parameter Input/Output Description

compressedData input Data structure created from a previous call to
matrixCmsParseCompressedData or

matrixCmsInitParseCompressedData

Frees the data structure.

