
LUYA is powered by the Yii Framework which secures the application level implementations.
While we do everything to keep LUYA as secure as possible, no guarantee can be given and the system has to be used at your own risk.

LUYA SECURITY

1

A brief visual overview of what we do in order to
secure your web application



LUYA is powered by the Yii Framework which secures the application level implementations.
While we do everything to keep LUYA as secure as possible, no guarantee can be given and the system has to be used at your own risk.

APIs are protected by a custom access token 
which is generated individually for each login. 

Controllers and actions are protected with session 
based authentication

Hashed and salted 
password 

encryption in the 
database

CSRF token 
secures post and 
async requests

Encrypted data 
transfer between 
server and client 

login

File uploads are secured by the fileinfo PHP 
extension in order to ensure mime types

Auto logout after 15 minutes of inactivity 
destroys access token and session

auto logout

Administration
The LUYA admin module is secured by a number of techniques in 

order to fight attackers and prevent manipulations

Secure session token and user IP matching in 
order to prevent session hijacking

2

Two factor authentication
sends email with a token which needs to be 

entered in a second login step

Secure cookies, 
HSTS, X-XSS and 
X-Frame headers

Secure token 
expires after 5 

minutes

Session and user 
based lockout after 

a maximum of 
wrong logins

API response is prefixed 
with unparsable cruft to 
prevent JSON hijacking

E-mail address change 
must be confirmed with 
security code in order to 

prevent account 
take-over

Strong 
password 

policy



LUYA is powered by the Yii Framework which secures the application level implementations.
While we do everything to keep LUYA as secure as possible, no guarantee can be given and the system has to be used at your own risk.

Administration Infos
In addition to security techniques LUYA also keeps track of what is done by whom and when

● Any data change in the administration is logged with information about who changed what and when.

● Any user login is documented, with the user’s IP address and access token.

● A user can only be logged in once. Concurrent logins by the same user are avoided by terminating the previous 
session.

● The two-way factor authentication sends a custom token to the user’s email which has to be entered to complete 
login, therefore brute forcing is hindered and insecure passwords become less of a risk.

● We do not provide extension installation via a web interface – all extensions and modules are implemented via 
composer, therefore versioning and bug fixing is enforced. 

● LUYA stores configurations and data in files so they can be tracked via VCS systems like GIT and a full change 
history is provided.

Read more about how to configure a secure LUYA application:

https://luya.io/guide/app-security

3



LUYA is powered by the Yii Framework which secures the application level implementations.
While we do everything to keep LUYA as secure as possible, no guarantee can be given and the system has to be used at your own risk.

Frontend
Security measures of the website’s frontend

Encrypted data 
transfer between 
server and clientCSRF token secures 

requests

Database requests 
are protected 
against SQL 

injections

save
User input is 

encoded before 
display in order 
to prevent XSS

4

Client and server 
side form input 

validation

Secure cookies, 
HSTS, X-XSS and 
X-Frame headers



LUYA is powered by the Yii Framework which secures the application level implementations.
While we do everything to keep LUYA as secure as possible, no guarantee can be given and the system has to be used at your own risk.

Prevention technics in depth 
The frontend technics used to protect the application.

● All database requests are protected against SQL injections by the Yii 2 database abstraction layer, data binding (filtering out malicious 
inputs) is used for all SQL statements.

● CSRF: Cross-site request forgery (CSRF) is a typical web application vulnerability. It is based on the assumption that a user is 
authenticated at a legitimate website. Then he's visiting an attacker's website which issues requests to the legitimate website using 
JavaScript code, a form, <img src=""> tag or other means. This way, attackers could, for example, reset a victim's password or transfer 
funds from his bank account (in case the bank’s website isn't secure, of course). In order to prevent such request forgery, we use an 
encrypted token which is stored on the server and client side and is compared on each request.

● MITM: Man in the middle attacks are prevented by using encrypted data transfers between client and server as we use SSL.

● XSS: Cross site scripting is commonly a problem when user data is returned, therefore we use an encoding and HTML purifying 
technique.

● To prevent attackers from stealing the cookie used to authenticate the user on the remote server and create a false identity to take over 
the user’s session, we store the access token in combination with the IP address and compare those values on each request.

● File uploads to the storage system can contain dangerous files which then expose system informations. We prevent this with a secure 
file upload which uses the PHP fileinfo extension to deep check mime types.

5


