
PHP Pdf Creation

Module-free creation of Pdf documents
from within PHP

developed by R&OS Ltd

http://pdf-php.sf.net

Version 0.12.22

R&OShttp://pdf-php.sf.net/

http://pdf-php.sf.net Version 0.12.22

http://pdf-php.sf.net

Contents

Introduction 1
Changes 1

0.12.22 1
0.12.21 1
0.12.20 1
0.12.19 1
0.12.18 1
0.12.17 1
0.12.16 1
0.12.15 2
0.12.14 2
0.12.13 2
0.12.12 2
0.12.11 2
0.12.10 2
0.12.9 2
0.12.8 3
0.12.7 3
0.12.6 3
0.12.5 3
0.12.4 3
0.12.3 3
0.12.2 3
0.12.1 4
older versions 4

Use 5
Extensions 5
EZPDF Class Extension 6

Cezpdf 6
ezSetMargins 7
ezSetCmMargins 7
ezNewPage 7
ezColumnsStart 7
ezColumnsStop 8
ezInsertMode 8
ezSetY 8
ezSetDy 8
ezStartPageNumbers 9
ezWhatPageNumber 10
ezGetCurrentPageNumber 10
ezStopPageNumbers 11
ezTable 11
ezText 13
ezImage 13
ezOutput 14
ezStream 14
Inline codes 15

http://pdf-php.sf.net Version 0.12.22

Base Class Functions 17
addText 17
setColor 17
setStrokeColor 17
setLineStyle 17
line 18
curve 18
ellipse 19
partEllipse 19
polygon 20
filledRectangle 20
rectangle 21
newPage 21
getFirstPageId 21
stream 21
getFontHeight 21
getFontDescender 22
getTextWidth 22
saveState 22
restoreState 22
openObject 22
reopenObject 22
closeObject 22
addObject 23
stopObject 23
addInfo 23
setPreferences 23
addImage 23
addJpegFromFile 24
addPngFromFile 24
output 24
openHere 24
selectFont 25
setFontFamily 25
setEncryption 26
addLink 27
addInternalLink 27
addDestination 27
transaction 28

Misc 28
Callback functions 28
Units 30

http://pdf-php.sf.net Version 0.12.22

Introduction
This class is designed to provide a non-module, non-commercial alternative to dynamically creating
pdf documents from within PHP. Obviously this will not be quite as quick as the module alternatives,
but it is surprisingly fast, this demonstration page is almost a worst case due to the large number of
fonts which are displayed. There are a number of features which can be within a Pdf document that it
is not at the moment possible to use with this class, but I feel that it is useful enough to be released.

This document describes the possible useful calls to the class, the readme.php file (which will create
this pdf) should be sufficient as an introduction.

Note that this document was generated using the demo script 'readme.php' which came with this
package.

Changes
0.12.22

- recovered the addTextWrap method
- corrected temp path for windows systems using php-cgi

0.12.21

- added image rotation support

0.12.20

- fixed reported issue with Typo "decender" in Cpdf.php and Cezpdf.php.
 Please use "getFontDescender"

0.12.19

- applied patch "updated extension CezTableImage" from Code Snippets forum - thanks Sigurd Nes

0.12.18

- fixed reported bug #77 ezText html bold tag problem

0.12.17

- fixed reported bug #76 Invalid creation date

0.12.16

- fixed property $stack to be protected as a private property cause strange behaviours in PHP 5.1 and
5.2

1 of 30http://pdf-php.sf.net Version 0.12.22

0.12.15

- fixed PHP Notice "Undefined offset: -1" for unknown glyphs in TTFsubset.php

0.12.14

- fixed ezTableDrawLines in CezTableImage.php extension
- improved performance in openFont
- use max 255 chars for font type TrueType if unicode is disabled

0.12.13

- fixed encoding conversation when using core fonts.

0.12.12

NOTE: Some private properties have been changed in Cpdf.php
NOTE: selectFont does not return $this->currentFontNum anymore

- some slightly changes to Cpdf
- added $pdf->getCurrentFont([$withStyle = false]) to get the font name currently in use
- updated SVN version to 1.8

0.12.11

NOTE: A new option 'gridlines' in ezTable is available to allow additional line modes
NOTE: A new option 'alignHeadings' in ezTable is available to align the complete header row
NOTE: The option 'showLines' is DEPRECATED in ezTable option

- applied path #20 ezTable advanced grid lines (see examples/tables.php)
- fixed bug #75 Alignment fixes for tables and images
- applied patch #19 Table heading alignment
- fixed an old bug related to vertical lines in ezTable when page break occurs

0.12.10

- fixed bug #74 font subsetting ignored when no character is set | thank you Johannes
- applied ezTable changes to extension class CezTableImage.php
- added new example tables.php

0.12.9

NOTE: callback function and ezText option 'justification'=>'full' can cause bad results
NOTE: More info, see bug report #67 on https://sourceforge.net/p/pdf-php/bugs/67/

- applied patch #9 ezTable: permit coloured background for headings - See example on page 14
- applied patch #11 coloured text as callback by using <c:color:r,g,b>color text</c:color>
- optimized widths entry (/W [...]) for unicode font output
- fixed openFont function which caused an abnormal exit or blank browser page

2 of 30http://pdf-php.sf.net Version 0.12.22

- corrected ezTable 'showLine' option to display head line properly
- some other slightly changes

0.12.8

NOTE: Due to the fontPath change it is recommend to only use the font name in $pdf->selectFont().
NOTE: Define the font location by using $pdf->fontPath = '/dir/to/your/fonts'

- added "fontPath" property to define font folders outside the project root
- fixed AAR search by setting unique fileIdentifiers

0.12.7

- fixed bug #72 - directives cause wrong line alignment

0.12.6

- fixed bug #71 - wrong fileIdentfier cause Adobe Reader to invalidate search
- corrected table border on page break

0.12.5

- fixed bug when table page breaks (changed some private declarations into protected)
- font cache fixed by disabling subsets for non-unicode fonts (need improvement)
- NEW PROPERTY cacheTimeout to allow setting the cache lifetime (default: 1 day)

0.12.4

- indexed PNG fixed (but without alpha channel)
- background color check simplified in Cezpdf.php which causes sporadic errors on line 219
- custom callback for underlined (c:uline) is set to allowedTags by default
- some fixes with text directives (E.g. [new line]text[new line]text)
- corrected getTextWidth by removing all directives set in $pdf->allowedTags

0.12.3

- removed unused Begin Text - objects (BT ... ET) by checking empty text in addText method
- fixed bug #66 Bug in specifying font size
- bug fixed: font style now ends up properly after line break has forced
- optimized pdf output for link annotation (actions are now set inline)
- fixed sprintf locale output for rectangle in o_annotation
- NEW FEATURE: new annotation called comments - demo in examples/annotations.php
- applied patch no# 13 - 16

0.12.2

- bug fixed for missing ET tags (caused pdf viewer to resave the file when closing)
- fixed bug with wrong calculation of the char "0" (zero) in $pdf->uniord($c)
- code optimization

3 of 30http://pdf-php.sf.net Version 0.12.22

0.12.1

- additional bug fixes for directive (especially for UTF-8 text)
- slightly performance improvements
- addTextWrap function is no more, use addText instead
- added FreeSerif font from http://ftp.gnu.org/gnu/freefont/

- use UTF-8 text input in addText and addTextWrap by default
- fixed issue with directives when using unicode (underline, bold, ...)

- fixed bug: wrong width is used when document is set to unicodee
- optimized and simplified the methods for custom callbacks (checkTextDirective is no more)
- improved performance (readme.php is 30% faster)
- new property allowedTags, which is important when using custom callbacks (see barcode.php,
CezTableImage.php or CezDummy.php)
- font subsetting completed
- No ttf2afm or ttf2ufm is required - Thank goes to Thanos Efraimidis (4real.gr) for TTF.php and
TTFsubset.php

older versions

click here for version 0.11.8
click here for PHP4 compatibility version 0.11-7c

4 of 30http://pdf-php.sf.net Version 0.12.22

http://sourceforge.net/p/pdf-php/code/HEAD/tree/tags/0.11.8/readme.pdf?format=raw
http://sourceforge.net/projects/pdf-php/files/v%20011%20with%20Fonts/0.11.7c-php4.zip/download

Use
It is free for use for any purpose (public domain), though we would prefer it if you retain the notes at
the top of the class containing the authorship, and feedback details.

Note that there is no guarantee or warranty, implied or otherwise with this class, or the extension.

Extensions
In order to create simple documents with ease a class extension called 'ezPdf' has been developed, at
the moment this includes auto page numbering, tabular data presentation, text wrapping to new pages,
etc. This document has been created using mostly ezPdf functions.

The functions of ezpdf are described in the next section, though as it is a class extension, all of the
basic functions from the original class are still available.

Please excuse this blatant 'plug', but if your company wishes some customization of these routines for
your purposes, R&OS can do this at very reasonable rates, just drop us a line at info@ros.co.nz.

5 of 30http://pdf-php.sf.net Version 0.12.22

EZPDF Class Extension

(note that the creation of this document in readme.php was converted to ezpdf with the saving of
many lines of code).

It is anticipated that in practise only the simplest of documents will be able to be created using just
ezpdf functions, they should be used in conjunction with the base class functions to achieve the
desired result.

Cezpdf

Cezpdf([paper='a4'],[orientation='portrait'],[type='none'],[options=array()])

This is the constructor function, and allows the user to set up a basic page without having to know
exactly how many units across and up the page is going to be.
Valid values for paper are listed below, a two or four member array can also be passed, a two member
array will be interpreted as the size of the page in centimeters, and a four member array will be the
size of the page in points, similar to the call to the base calss constructor function.
Starting ezpdf with the code below will create an a4 portrait document.

$paper The valid values for the paper (thanks to the work of Nicola Asuni) are:
'4A0', '2A0', 'A0', 'A1', 'A2', 'A3', 'A4', 'A5', 'A6' , 'A7', 'A8', 'A9', 'A10', 'B0', 'B1', 'B2',
'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B9', 'B10', 'C0', 'C1', 'C2' , 'C3', 'C4' , 'C5', 'C6', 'C7', 'C8',
'C9', 'C10' , 'RA0', 'RA1', 'RA2', 'RA3', 'RA4', 'SRA0', 'SRA1', 'SRA2', 'SRA3', 'SRA4',
'LETTER', 'LEGAL', 'EXECUTIVE', 'FOLIO'

$orientation 'portrait' and 'landscape' can be used

$type following types are possible: 'none' | 'color' | 'image'

$options if type is diffent then 'none' $options can be set as follows
 if $type is set to 'color'
 $options['r'] = red-component of backgroundcolour (0 <= r <= 1)
 $options['g'] = green-component of backgroundcolour (0 <= g <= 1)
 $options['b'] = blue-component of backgroundcolour (0 <= b <= 1)
 if $type is set to 'image' then the $options array has other attributes
 $options['img'] = location of image file; URI's are allowed if allow_url_open is enabled
 $options['width'] = width of background image; default is width of page
 $options['height'] = height of background image; default is height of page
 $options['xpos'] = horizontal position of background image; default is 0
 $options['ypos'] = vertical position of background image; default is 0
 $options['repeat'] = repeat image horizontally (1), repeat image vertically (2) or full in both
directions (3); default is 0
 highly recommend to set this->hashed to true when using repeat function

This document shows you the 'color' type with following:

$pdf = new Cezpdf('a4','portrait','color',array(0.8,0.8,0.8));

If you want to get started in an easy manner, then here is the 'hello world' program:

6 of 30http://pdf-php.sf.net Version 0.12.22

<?php
include ('class.ezpdf.php');
$pdf = new Cezpdf();
$pdf->selectFont('Helvetica');
$pdf->ezText('Hello World!',50);
$pdf->ezStream();
?>

ezSetMargins

ezSetMargins(top,bottom,left,right)

Sets the margins for the document, this command is optional and they will all be set to 30 by default.
Setting these margins does not stop you writing outside them using the base class functions, but the
ezpdf functions will wrap onto a new page when they hit the bottom margin, and will not write over
the side margins when using the ezText command below.

ezSetCmMargins

ezSetCmMargins(top,bottom,left,right)

Sets the margins for the document using centimeters

ezNewPage

ezNewPage()

Starts a new page. This is subtly different to the newPage command in the base class as it also places
the ezpdf writing pointer back to the top of the page. So if you are using the ezpdf text functions, then
this is the one to use when manually requesting a new page.

ezColumnsStart

ezColumnsStart([options])

This will start the text flowing into columns, options is an array which contains the control options.

The options are:
'gap' => the gap between the columns
'num' => the number of columns.

Both options (and the array itself) are optional, if missed out then the defaults are gap=10, num=2;

Example calls could be (you would use only one of these):

$pdf->ezColumnsStart();
$pdf->ezColumnsStart(array('num'=>3));
$pdf->ezColumnsStart(array('num'=>3,'gap'=>2));
$pdf->ezColumnsStart(array('gap'=>20));

ezColumnStop is used to stop multi-column mode.

7 of 30http://pdf-php.sf.net Version 0.12.22

ezColumnsStop

ezColumnsStop()

This stops multi-column mode, it will leave the writing point at whatever level it was at, it is
recommended that an ezNewPage() command is executed straight after this command, but for
flexibility this is left up to the individual consumer.

ezInsertMode

ezInsertMode([status=1,$pageNum=1,$pos='before'])

This command can be used to stop and start page insert mode, while this mode is on then any new
page will be inserted into the midst of the document. If it is called with status=1, then insert mode is
started and subsequent pages are added before or after page number 'pageNum'. 'pos' can be set to
'before' or 'after' to define where the pages are put. The 'pageNum' is set to which page number this
position is relative to.

All subsequent pages added with ezNewPage are then inserted within the document following the last
inserted page.

Insertion page is ended by calling this command with 'status'=0, and further pages are added to the
end of the document.

ezSetY

ezSetY(y)

Positions the ezpdf writing pointer to a particular height on the page, don't forget that pdf documents
have y-coordinates which are zero at the bottom of the page and increase as they go up the page.

ezSetDy

ezSetDy(dy [,mod])

Changes the vertical position of the writing point by a set amount, so to move the pointer 10 units
down the page (making a gap in the writing), use:

ezSetDy(-10)

If this movement makes the writing location below the bottom margin, then a new page will
automatically be made, and the pointer moved to the top of it.

The optional parameter 'mod' can be set to the value 'makeSpace', which means that if a new page is
forced, then the pointer will be moved the distance 'dy' on the new page as well. The intention of this
is if you needed 100 units of space to draw a picture, then doing:

ezSetDy(-100,'makeSpace')

guarantees that there will be 100 units of space above the final writing point.

8 of 30http://pdf-php.sf.net Version 0.12.22

ezStartPageNumbers

setNum = ezStartPageNumbers(x,y,size,[pos],[pattern],[num])

 Add page numbers on the pages from here, place then on the 'pos' side of the coordinates (x,y) (pos
can be 'left' or 'right').
 Use the given 'pattern' for display, where {PAGENUM} and {TOTALPAGENUM} are replaced as
required, by default the pattern is set to '{PAGENUM} of {TOTALPAGENUM}'
 If $num is set, then make the first page this number, the number of total pages will be adjusted to
account for this.

 the following code produces a seven page document, numbered from the second page (which will be
labelled '1 of 6'), and numbered until the 6th page (labelled '5 of 6')

$pdf = new Cezpdf();
$pdf->selectFont('Helvetica');
$pdf->ezNewPage();
$pdf->ezStartPageNumbers(300,500,20,'','',1);
$pdf->ezNewPage();
$pdf->ezNewPage();
$pdf->line(300,400,300,600); // line drawn to check 'pos' is working
$pdf->ezNewPage();
$pdf->ezNewPage();
$pdf->ezNewPage();
$pdf->ezStopPageNumbers();
$pdf->ezStream();

This function was modified in version 009 to return a page numbering set number (setNum in the call
bove), this allows independent numbering schemes to be started and stopped within a single
ocument. This number is passed back into ezStopPageNumbers when it is called.

Here is a more complex example:

$pdf->selectFont('Helvetica');
$pdf->ezNewPage();
$i=$pdf->ezStartPageNumbers(300,500,20,'','',1);
$pdf->ezNewPage();
$pdf->ezNewPage();
$pdf->ezStopPageNumbers(1,1,$i);
$pdf->ezNewPage();
$i=$pdf->ezStartPageNumbers(300,500,20,'','',1);
$pdf->ezNewPage();
$pdf->ezNewPage();
$pdf->ezStopPageNumbers(1,1,$i);
$pdf->ezNewPage();
$i=$pdf->ezStartPageNumbers(300,500,20,'','',1);
$pdf->ezNewPage();
$pdf->ezNewPage();
$pdf->setColor(1,0,0);
$pdf->ezNewPage();
$pdf->ezStopPageNumbers(1,1,$i);
$pdf->ezNewPage();
$i=$pdf->ezStartPageNumbers(300,500,20,'','',1);
$pdf->ezNewPage();
$pdf->ezNewPage();
$pdf->ezNewPage();
$pdf->ezNewPage();
$j=$pdf->ezStartPageNumbers(300,400,20,'','',1);
$k=$pdf->ezStartPageNumbers(300,300,20,'','',1);
$pdf->ezNewPage();
$pdf->ezNewPage();

9 of 30http://pdf-php.sf.net Version 0.12.22

$pdf->ezNewPage();
$pdf->ezStopPageNumbers(1,1,$i);
$pdf->ezNewPage();
$pdf->ezNewPage();
$pdf->ezStopPageNumbers(1,1,$j);
$pdf->ezStopPageNumbers(0,1,$k);
$pdf->ezNewPage();
$pdf->ezNewPage();

This will create a document with 23 pages, the numbering shown on each of the pages is:

page contents

ezWhatPageNumber

num = ezWhatPageNumber(pageNum,[setNum])

Returns the number of a page within the specified page numbering system.

'pageNum' => the absolute number of the page within the document (this is based on the order that
they are created).
'setNum' => the page numbering set, returned from the ezStartPageNumbers command.

ezGetCurrentPageNumber

return the page number of the current page

10 of 30http://pdf-php.sf.net Version 0.12.22

1 blank

2 1 of 3

3 2 of 3

4 3 of 3

5 1 of 3

6 2 of 3

7 3 of 3

8 1 of 3

9 2 of 3

10 3 of 3

11 4 of 4

12 1 of 8

13 2 of 8

14 3 of 8

15 4 of 8

16 5 of 8, 1 of 6, 1 of 8

17 6 of 8, 2 of 6, 2 of 8

18 7 of 8, 3 of 6, 3 of 8

19 8 of 8, 4 of 6, 4 of 8

20 5 of 6, 5 of 8

21 6 of 6, 6 of 8

22 blank

23 blank

ezStopPageNumbers

ezStopPageNumbers([stopTotal],[next],[setNum])

In version 009 this function was enhanced to include a number of extra parameters:

'stopTotal' => 0 or 1 (default 0), stops the totaling for the page numbering set. So for example if you
start numbering a 10 page document on the second page, and stop it on the 4th page, with stopTotal
set to 1, then the numbers will be reported as "x of 3".
'next' => 0 or 1, stops on the next page, not this one.
'setNum' => (defaults to 0) define which set number is to be stopped, this is the number returned f
om the ezStartPageNumbers command.

ezTable

y=ezTable(array data,[array cols],[title],[array options]

$data The easy way to throw a table of information onto the page, can be used with just the data
variable, which must contain a two dimensional array of data. This function was made with data
extracted from database queries in mind, so is expecting it in that format, a two dimensional array
with the first array having one entry for each row (and each of those is another array).

The table will start writing from the current writing point, and will proceed until the all the data has
been presented, by default, borders will be drawn, alternate limes will be shaded gray, and the table
will wrap over pages, re-printing the headers at the top of each page.

The return value from the function is the y-position of the writing pointer after the table has been
added to the document.

The other options are described here:

$cols (optional) is an associative array, the keys are the names of the columns from $data to be
presented (and in that order), the values are the titles to be given to the columns, if this is not wanted,
but you do want later options then '' (the empty string) is a suitable placeholder.

$title (optional) is the title to be put on the top of the table

$options is an associative array which can contain:
'showHeadings' => 0 or 1 (enable or disable head line)
'shaded'=> 0,1,2, default is 1 (alternate lines are shaded)
 0->no shading, 2->both sets are shaded
'showBgCol'=> 0,1 default is 0 (no column background, no bgcolor setting is used in 'cols')
 1->active bg color column setting and allow bgcolor attribute in 'cols'
'shadeCol' => (r,g,b) array, defining the colour of the shading, default is (0.8,0.8,0.8)
'shadeCol2' => (r,g,b) array, defining the colour of the shading of the second set, default is
(0.7,0.7,0.7), used when 'shaded' is set to 2.
'fontSize' => 10
'textCol' => (r,g,b) array, text colour
'titleFontSize' => 12
'rowGap' => 2 , the space between the text and the row lines on each row
'colGap' => 5 , the space between the text and the column lines in each column
'lineCol' => (r,g,b) array, defining the colour of the lines, default, black.

11 of 30http://pdf-php.sf.net Version 0.12.22

'xPos' => 'left','right','center','centre',or coordinate, reference coordinate in the x-direction
'xOrientation' => 'left','right','center','centre', position of the table w.r.t 'xPos'. This entry is to be
used in conjunction with 'xPos' to give control over the lateral position of the table.
'width' => <number>, the exact width of the table, the cell widths will be adjusted to give the table
this width.
'maxWidth' => <number>, the maximum width of the table, the cell widths will only be adjusted if
the table width is going to be greater than this.
'cols' => array(<colname>=> array('justification'=>'left', 'width'=>100, 'link'=><linkColName>,
'bgcolor'=> (r,g,b)), <colname>=>....) allow the setting of other paramaters for the individual
columns, each column can have its width and/or its justification set.
'innerLineThickness' => <number>, the thickness of the inner lines, defaults to 1
'outerLineThickness' => <number>, the thickness of the outer lines, defaults to 1
'protectRows' => <number>, the number of rows to keep with the heading, if there are less than this
on a page, then all is moved to the next page.
'nextPageY'=> true or false (eg. 0 or 1) Sets the same Y position of the table for all future pages

0.12.9:
 'shadeHeadingCol'=>(r,g,b) array, defining the backgound color of headings, default is empty

0.12.11:
 'gridlines'=> EZ_GRIDLINE_* default is EZ_GRIDLINE_DEFAULT, overrides 'showLines' to
provide finer control
 'alignHeadings' => 'left','right','center'

Below is an example output of ezTable containing the following $data

$data = array(
 array('num'=>1,'name'=>'gandalf','type'=>'wizard')
,array('num'=>2,'name'=>'bilbo','type'=>'hobbit','url'=>'http://www.ros.co.
nz/pdf/')
,array('num'=>3,'name'=>'frodo','type'=>'hobbit')
,array('num'=>4,'name'=>'saruman','type'=>'bad
dude','url'=>'http://sourceforge.net/projects/pdf-php')
,array('num'=>5,'name'=>'sauron','type'=>'really bad dude')
);

$pdf->ezTable($data,$cols,'',array(
 'gridlines'=> EZ_GRIDLINE_DEFAULT,
 'shadeHeadingCol'=>array(0.6,0.6,0.5),
 'showBgCol'=>1,
 'width'=>400,
 'cols'=> array(
 'name'=>array('bgcolor'=>array(0.9,0.9,0.7)),
 'type'=>array('bgcolor'=>array(0.6,0.4,0.2))
)
));

Please refer to examples/tables.php for more demos

12 of 30http://pdf-php.sf.net Version 0.12.22

Number Name Type

1 gandalf wizard

2 bilbo hobbit

3 frodo hobbit

4 saruman bad dude

5 sauron really bad dude

ezText

y=ezText(text,[size],[array options])

This is designed for putting blocks of text onto the page. It will add a string of text to the document
(note that the string can be very large, spanning multiple pages), starting at the current drawing
position. It will wrap to keep within the margins, including optional offsets from the left and the right,
if $size is not specified, then it will be the last one used, or the default value (12 I think). The text will
go to the start of the next line when a return code "\n" is found.

The return value from the function (y) is the vertical position on the page of the writing pointer, after
the text has been added.

possible options are:
 'left'=> number, gap to leave from the left margin
 'right'=> number, gap to leave from the right margin
 'aleft'=> number, absolute left position (overrides 'left')
 'aright'=> number, absolute right position (overrides 'right')
 'justification' => 'left','right','center','centre','full'

 only set one of the next two items (leading overrides spacing)
 'leading' => number, defines the total height taken by the line, independent of the font height.
 'spacing' => a real number, though usually set to one of 1, 1.5, 2 (line spacing as used in word
processing)

This function now supports the use of underlining markers (<u> </u>), these are implemented
via a callback function, which is information that you need only of you want to use them in functions
in the base class, as these markers will not work there and the full callback function markers wil have
to be used (though note that ezPdf stillhas to be part of the class object as the callback function are
included with that code base. The callback function markers would look like
<c:uline>this</c:uline>.

ezImage

ezImage(image,[padding],[width],[resize],[justification], [angle],[array border])

This function makes it much easier to simply place an image (either jpeg or png) within the flow of
text within a document. Although this function can certainly be used with full page documents, its
functionality is most suited to documents that are formatted in multiple columns.

This function can be used by simply supplying the name of an image file as the first argument. The
image will be resized to fit centered within the current column with the default padding of 5 on each
side.

The arguments are:

$image is a string containing the filename and path of the jpeg or png image you want to insert into
the page. If allow_url_fopen is enabled in the PHP ini settings this can be an HTTP or FTP URL.

$padding (optional) is the number of page units that will pad the image on all sides. The default is
five (5). If you do not want any padding, you may enter 0.

13 of 30http://pdf-php.sf.net Version 0.12.22

$width (optional) is the width of the image on the page. The default is to use the actual width of the
image in pixels. Whether or not you specify a width, the actual width of the image on the page will
depend on what you enter for the $resize argument as well as the placement of the image on the page.

$resize (optional) can be one of 'full', 'width', or 'none'. The default value is 'full'.

The value 'none' means that an image will not be sized up to fit the width of a column and will not be
sized down vertically to fit within the current page. If the image is too long to fit on the page it will be
placed on the next page or column. If the image is too wide to fit within the current column, it will
still be sized down. This is because there is no alternative, other than to actually let the image run off
the page.

The value 'width' behaves the same as 'none' with the exception that images will be resized to fit the
width of the current column if the given width is smaller that the current column (minus the padding).

The value 'full' behaves the same as 'width' with the exception that images will be resized down
vertically to fit within the current page and column if their height is too long to fit.

$justification (optional) determines the horizontal position of the image within the current column.
The default is 'center', and can be specified as either 'center', 'left', or 'right'. This setting has little
meaning if the image has been resized to fit the column and only makes a practical difference if the
width of the image is smaller than the width of the column.

$angle (optional) allows you the rotate the image

$border (optional) is an array which specifies the details of the border around the image. The default
is no border if this argument is not given. You may specify any of the following border elements:

$border['width'] is the width of the border. The default is 1.
$border['cap'] is the cap type as specified in setLineStyle. The default is 'round'.
$border['join'] is the join type as specified in setLineStyle. The default is 'round'.
$border['color'] is an associative array for specifying the line color of the border.
The values are as specified in setStrokeColor and should be assigned to:
$border['color']['red'], $border['color']['green'] and $border['color']['blue'] respectively.

ezOutput

ezOutput([debug])

Very similar to the output function from the base class, but performs any closing tasks that ezpdf
requires, such as adding the page numbers.

If you are using ezpdf, then you should use this function, rather than the one from the base class.

ezStream

ezStream([options])

Very similar to the stream function from the base class (all the same options, see later in this

14 of 30http://pdf-php.sf.net Version 0.12.22

document), but performs any closing tasks that ezpdf requires, such as adding the page numbers.

If you are using ezpdf, then you should use this function, rather than the one from the base class.

Inline codes

There are a few callback functions (see callback functions) which are contained within the ezPdf
class, these are intended to make life easier. They enable complex operations to be done by including
codes within the text stream.

Underline
Though underlining is supported in the ezPdf class by using the <u> directive,
if you use the base class functions to add text (such as addtext) then this wont work, instead you can u
e the uline callback function.

(Note that what the ezPdf class does internally is convert the <u> and </u> directives into
callback function calls)

So as an example, this code adds some text with two pieces of underlining, one done each way

$pdf->ezText('The <u>quick brown</u> fox, <c:uline>is
sick of jumping</uline> the lazy dog')

The quick brown fox, is sick of jumping the lazy dog

Links to URLs

If you are adding links to a document, it is quite tricky to figure out where to put the rectange which
will be clckable, especially if the text in teh link starts wrapping across pages, etc.

The alink callback allows for simple insertion of links, the format is:

<c:alink:your_url_here>text to be clickable</c:alink>

So as an example:

$pdf->ezText('<c:alink:http://ros.co.nz/pdf/>R&OS pdf
class</c:alink>');

R&OS pdf class

Links within the document

There is a directive similar to alink, but designed for linking within the document, this is the ilink callb
ack function.

It is similar to alink except that instead of providing a URL the label of a pre-created destination
should be used.

<c:ilink:destination_label>text to be clickable</c:ilink>

// place required to be marked
$pdf->addDestination('xxxyyyzzz','Fit');

15 of 30http://pdf-php.sf.net Version 0.12.22

http://ros.co.nz/pdf/

// add lots of stuff, new pages etc, then...
$pdf->ezText('<c:ilink:xxxyyyzzz>R&OS pdf class</c:ilink>');

Click here to go to the 5th item on the table of contents.

Note that the code for the example and the actual one shown are not identical for technical reasons.

16 of 30http://pdf-php.sf.net Version 0.12.22

Base Class Functions

addText

addText(x,y,size,text[,width=0][,justification='left'][,angle=0][,wordSpaceAdjust=0][,test=0])

Add the text at a particular location on the page, noting that the origin on the axes in a pdf document
is in the lower left corner by default.
An angle can be supplied as this will do the obvious (in degrees).

'adjust', gives the value of units to be added to the width of each space within the text. This is used
mainly to support the justification options within the ezpdf ezText function.

The text stream can now (version 006) contain directives to make the text bold and/or italic. The
directives are similar the basic html:

bold text
<i>italic text</i>
<i>bold italic text<i>

Note that there can be no spaces within the directives, and that they must be in lower case.

Especially bold and italic requires the style of the font being used

If you wish to print an actual '<', most of the time it would cause no problem, except in the instance
where it would form a directive. Use HTML special char < and >

$pdf->addText(150,$y,10,"the quick brown fox jumps
<i>over</i> the lazy dog!",0, 'left',-10);

the quick brown fox jumps over the lazy dog!

setColor

setColor(r,g,b,[force=0])

Set the fill colour to the r,g,b triplet, each in the range 0->1.
If force is set, then the entry will be forced into the pdf file, otherwise it will only be put in if it is
different from the current state.

setStrokeColor

setStrokeColor(r,g,b,[force=0])

Set the stroke color, see the notes for the fill color.

setLineStyle

17 of 30http://pdf-php.sf.net Version 0.12.22

setLineStyle([width],[cap],[join],[dash],[phase])

This sets the line drawing style.
 width, is the thickness of the line in user units
 cap is the type of cap to put on the line, values can be 'butt','round','square' where the difference
between 'square' and 'butt' is that 'square' projects a flat end past the end of the line.
 join can be 'miter', 'round', 'bevel'
 dash is an array which sets the dash pattern, is a series of length values, which are the lengths of the
on and off dashes.
 for example: (2) represents 2 on, 2 off, 2 on , 2 off ...
 (2,1) is 2 on, 1 off, 2 on, 1 off.. etc
 phase is a modifier on the dash pattern which is used to shift the point at which the pattern starts.

$pdf->setLineStyle(1);

$pdf->setLineStyle(5);

$pdf->setLineStyle(5,'round');

$pdf->setLineStyle(5,'','',array(5));

$pdf->setLineStyle(5,'','',array(10,5));

$pdf->setLineStyle(5,'','',array(20,5,10,5));

$pdf->setLineStyle(5,'round','',array(0,15));

Note that the code shown with each of these lines is just the line style command, the drawing of each
line also requires a line command, which is not shown.

line

line(x1,y1,x2,y2)

Draw a line from (x1,y1) to (x2,y2), set the line width using setLineStyle.

curve

curve(x0,y0,x1,y1,x2,y2,x3,y3)

Draw a Bezier curve. The end points are (x0,y0)->(x3,y3), and the control points are the other two.

Bezier curves are neat, but probably not for the novice. The ellipse command uses a series of Bezier
curves to make the ellipse.

The distinctive feature of these curves is that the curve is guaranteed to lie within the 4 sided polygon
formed from the 4 control points (they are also computationally easy to draw). An example is shown
below with the control points marked.

$pdf->curve(200,$y+40,250,$y+5,350,$y,400,$y+45);

18 of 30http://pdf-php.sf.net Version 0.12.22

Note that the Bezier curve is a tangent to the line between the control points at either end of the curve.

ellipse

ellipse(x0,y0,r1,[r2=0],[angle=0],[nSeg=8])

Draw an ellipse, centred ay (x0,y0), with radii (r1,r2), oriented at 'angle' (anti-clockwise), and formed
from nSeg bezier curves (the default 8 gives a reasonable approximation to the required shape).

If r2 is left out, or set to zero, then it is assumed that a circle is being drawn.

$pdf->ellipse(300,$y+25,20);

$pdf->ellipse(300,$y+25,40,20);

$pdf->ellipse(300,$y+25,40,20,45);

Of course the previous line style features also apply to these lines

$pdf->setLineStyle(4,'round','',array(0,6,4,6));
$pdf->ellipse(300,$y+25,40,20,45);

partEllipse

partEllipse(x,y,a1,a2,r1 [,r2] [,angle] [,nSeg])

Draw a part ellipse (or circle), draw an ellipse centered on (x,y) from angle 'a1' to angle 'a2' (in
degrees), with radius 'r1' in the x-direction and 'r2' in the y-direction and oriented at angle 'angle'. If
'r2' is not supplied the it defaults to 'r1' and a circle is formed.

$pdf->ellipse(300,$y+25,38);
$pdf->partEllipse(300,$y+25,119,421,80,12,10);
$pdf->partEllipse(300,$y+25,117,423,84,14,10);
$pdf->partEllipse(300,$y+25,115,425,85,15,10);

19 of 30http://pdf-php.sf.net Version 0.12.22

polygon

polygon(p,np,[f=0])

Draw a polygon, where there are np points, and p is an array containing (x0,y0,x1,y1,x2,y2,...,x(np
1),y(np-1)).
If f=1 then fill the area.

$pdata = array(200,10,400,20,300,50,150,40);
$pdf->polygon($pdata,4);

$pdf->polygon($pdata,4,1);

$pdf->setColor(0.9,0.9,0.9);
$pdf->polygon($pdata,4,1);

filledRectangle

filledRectangle(x1,y1,width,height)

Build a rectangle with filled color.

$pdf->filledRectangle(400, $pdf->y, 120, 50);

20 of 30http://pdf-php.sf.net Version 0.12.22

rectangle

rectangle(x1,y1,width,height)

Build a rectangle with no background, only borders

$pdf->rectangle(400, $pdf->y, 120,50);

newPage

id=newPage([insert,id,pos])

Starts a new page and returns the id of the page contents, this can be safely ignored, but storing it will
allow the insertion of more information back into the page later, through the use of the 'reopenObject'
function.

The command is usually used without any of the options to simply add a new page to the end of the
current bunch, but with the options can be used to insert a page within the existing pages. The 'insert'
value can be set to 0 or 1 (use 1 to insert). 'id' should be set to a value which was returned by a
previous newPage command (this is actually the object id of the contents of a page). 'pos' will
determine whether the page is inserted before or after the specified page, it should be set to 'before' or
'after'.

getFirstPageId

id=getFirstPageId()

A related command is this which returns the id of the first page, this page is created during the class
instantiation and so does not have its id returned to the user, this is the only way to fetch it, but it can
be done at any point.

stream

stream([array options])

Used for output, this will set the required headers and output the pdf code.

The options array can be used to set a number of things about the output:

 'Content-Disposition'=>'filename' sets the filename, though not too sure how well this will work as
in my trial the browser seems to use the filename of the php file with .pdf on the end.
 'Accept-Ranges'=>1 or 0 - if this is not set to 1, then this header is not included, off by default this
header seems to have caused some problems despite the fact that it is supposed to solve them, so I am
leaving it off by default.
 'compress'=> 1 or 0 - apply content stream compression, this is on (1) by default.

getFontHeight

x=getFontHeight(size)

21 of 30http://pdf-php.sf.net Version 0.12.22

Returns the height of the current font, in the given size. This is the distance from the bottom of the
descender to the top of the Capitals.

getFontDescender

x=getFontDescender(size)

Returns a number which is the distance that the descender goes beneath the Baseline, for a normal
character set this is a negative number.

getTextWidth

x=getTextWidth(size,text)

Returns the width of the given text string at the given size.

saveState

saveState()

Save the graphic state.

restoreState

restoreState()

Restore a saved graphics state.

openObject

id=openObject()

Start an independent object. This will return an object handle, and all further writes to a page will
actually go into this object, until a closeObject call is made.

reopenObject

reopenObject(id)

Makes the point of current content insertion the numbered object, this 'id' must have been returned
from a call to 'openObject' or 'newPage' for it to be a valid object to insert content into. Do not forget
to call 'closeObject' to close off input to this object and return it to where it was beforehand (most
likely the current page).
This will allow the user to add information to previous pages, as long as they have stored the id of the
pages.

closeObject

closeObject()

22 of 30http://pdf-php.sf.net Version 0.12.22

Close the currently open object. Further writes will now go to the current page.

addObject

addObject(id,[options='add'])

Add the object specified by id to the current page (default). If a string is supplied in options, then the
following may be specified:
'add' - add to the current page only.
'all' - add to every page from the current one on.
'odd' - add to all odd numbered pages from now on.
'even' - add to all even numbered pages from now on.
'next' - add to just the next page.
'nextodd' - add to all odd numbered pages from the next one.
'nexteven' - add to all even numbered pages from the next one.

stopObject

stopObject(id)

If the object (id) has been appearing on pages up to now, then stop it, this page will be the last one
that could contain it.

addInfo

addInfo(label,value)

Add document information, the valid values for label are:
Title, Author, Subject, Keywords, Creator, Producer, CreationDate, ModDate, Trapped

modified in version 003 so that 'label' can also be an array of key->value pairs, in which case 'value'
should not be set.

setPreferences

setPreferences(label,value)

Set some document preferences, the valid values for label are:
HideToolbar, HideMenuBar, HideWindoUI, FitWindow, CenterWindow, NonFullScreenPageMode,
Direction

modified in version 003 so that 'label' can also be an array of key->value pairs, in which case 'value'
should not be set.

addImage

addImage(img,x,y,w,[h],[quality=75],[angle=0])

Add an image to the document, this feature needs some development. But as it stands, img must be a
handle to a GD graphics object, and one or both of w or h must be specified, if only one of them is

23 of 30http://pdf-php.sf.net Version 0.12.22

specified, then the other is calculated by keeping the ratio of the height and width of the image
constant.
The image will be placed with its lower left corner at (x,y), and w and h refer to page units, not pixels.

addJpegFromFile

addJpegFromFile(imgFileName,x,y,w,[h],[angle=0])

Add a JPEG image to the document, this function does not require the GD functionality, so should be
usable to more people, interestingly it also seems to
be more reliable and better quality. The syntax of the command is similar to the above 'addImage'
function, though 'img' is a string containing the file name of the jpeg image.

x,y are the position of the lower left corner of the image, and w,h are the width and height. Note that
the resolution of the image in the document is defined only by the resolution of the image that you
insert, and the size that you make it on the page. If you have an image which is 500 pixels across and
then you place it on the page so that it is 72 units across then this image will be about 500 dpi (as 72
units is about 72 points which is 1 inch).

addPngFromFile

addPngFromFile(imgFileName,x,y,w,[h],[angle=0])

Similar to addJepgFromFile, but for PNG images.

output

a=output([debug=0])

As an alternative to streaming the output directly to the browser, this function simply returns the pdf
code. No headers are set, so if you wish to stream at a later time, then you will have to manually set
them. This is ideal for saving the code to make a pdf file, or showing the code on the screen for debug
purposes.

If the 'debug' parameter is set to 1, then the only effect at the moment is that the compression option
is not used for the content streams, so that they can be viewed clearly.

openHere

openHere(style[,a][,b][,c])

Make the document open at a specific page when it starts. The page will be the one which is the
current page when the function is called.

The style option will define how it will look when open, valid values are:
(where the extra parameters will be used to supply any values specified for the style chosen)

'XYZ' left, top, zoom open at a particular coordinate on the page, with a given zoom factor
'Fit' fit the page to the view
'FitH' top fit horizontally, and at the vertical position given
'FitV' left fit vertically, and at the horizontal position given

24 of 30http://pdf-php.sf.net Version 0.12.22

'FitB' fit the bounding box of the page into the viewer
'FitBH' top fit the width of the bounding box to the viewer and set at the vertical position given
'FitBV' left fit bounding box vertically and set given horizontal position

selectFont

selectFont(fontName [,encoding = ''] [, set = 1] [,subsetFont = false])

This selects a font to be used from this point in the document. Errors can occur if some of the other
functions are used if a font has not been selected, so it is wise to do this early on.

In all versions prior to 0.12 it was required to "convert" ttf fonts into either *.AFM or *.UFM for
unicode font files.
Since version >= 0.12.0 R&OS pdf class natively reads the information from the TTF font by using
TTF.php
It also supports font supbsetting (>= 0.11.8) by using TTFsubset.php. Thanks to Thanos Efraimidis
(4real.gr).

The experimental version 0.12 currently does not support Type 1 fonts

The encoding directive is still experimental and no guarantee its working at all in version >= 0.12. But
theoretical it allows the user to re-map character numbers from the 0->255 range to any named
character in the set (as most of the sets have more than 256 characters). It should be an array of
<number> => <name> pairs in an associative array. This is important to ensure that the right width for
the character is used within the presentation characters, it has been noticed that sometimes, although
the right character appears on the page, the incorrect width has been caluclated, using this function to
explicitly set that number to the named character should fix the problem.
Note that the encoding directive will be effective only the first time that a font is selected, and it
should not be used on symbolic fonts (such as Symbol or ZapfDingbats).

// use a Times-Roman font with MacExpertEncoding
$pdf->selectFont('Times-Roman','MacExpertEncoding');
// this next line should be equivalent
$pdf->selectFont('Times-Roman',array('encoding'=>'MacExpertEncoding'));

// setup the helvetica font for use with german characters
$diff=array(196=>'Adieresis',228=>'adieresis',
 214=>'Odieresis',246=>'odieresis',
 220=>'Udieresis',252=>'udieresis',
 223=>'germandbls');
$pdf->selectFont('Helvetica'
 ,array('encoding'=>'WinAnsiEncoding'
 ,'differences'=>$diff));

setFontFamily

setFontFamily(family,options)

This function defines the relationship between the various fonts that are in the system, so that when a
base font is selected the program then knows which to use when it is asked for the bold version or the i
talic version (not forgetting of course bold-italic).

It maintains a set of arrays which give the alternatives for the base fonts. The defaults that are in the
system to start with are:

25 of 30http://pdf-php.sf.net Version 0.12.22

'Helvetica'
 'b'=>'Helvetica-Bold'
 'i'=>'Helvetica-Oblique'
 'bi'=>'Helvetica-BoldOblique'
 'ib'=>'Helvetica-BoldOblique'

'Courier'
 'b'=>'Courier-Bold'
 'i'=>'Courier-Oblique'
 'bi'=>'Courier-BoldOblique'
 'ib'=>'Courier-BoldOblique'

'Times-Roman'
 'b'=>'Times-Bold'
 'i'=>'Times-Italic'
 'bi'=>'Times-BoldItalic'
 'ib'=>'Times-BoldItalic'

(where 'b' indicate bold, and 'i' indicates italic)

Which means that (for example) if you have selected the 'Courier' font, and then you use the italic
markers then the system will change to the 'Courier-Oblique' font.

Note that at the moment it is not possible to have any more fonts, so there is little use in calling this
function (except to change these settings, discussed below), but this is paving the way for when soon
we will be able to add other fonts (both .afm, and .ttf), which is also why the suffix must be specified
in the font name.

Note also that it is possible to have a different font when some text is bolded, then italicized, as
compared to when it is italicized, then bolded ('bi' vs 'ib'), though they have all been set to be the
same by default.

If you bold a font twice, then under the current system it would look for a 'bb' entry in the font
family, and since there are none in the default families the font will revert to the base font. As an
example here is the code that you would use to define a new font family for the Courier font which
(for some reason) changed to Times-Roman when a double bold is used:

$tmp = array(
 'b'=>'Courier-Bold'
 ,'i'=>'Courier-Oblique'
 ,'bi'=>'Courier-BoldOblique'
 ,'ib'=>'Courier-BoldOblique'
 ,'bb'=>'Times-Roman'
);
$pdf->setFontFamily('Courier',$tmp);

setEncryption

setEncryption([userPass=''],[ownerPass=''],[pc=array], [mode=1])

Calling this function sets up the document to be encrypted, this is the only way to mark the document
so that they user cannot use cut and paste, or printing.

Since version 0.11.2 a new parameter "$mode" has been added to this function to allow RC4 128bit

26 of 30http://pdf-php.sf.net Version 0.12.22

encryption (PDF 1.4 required)

Using the call without options, defaults to preventing the user from cut & paste or printing. There are
no passwords require to open the document.

$pdf->setEncryption();

Setting either off the passwords will mean that the user will have to enter a password to open the
document. If the owner password is entered when the document is opened then the user will be able to
print etc. If the two passwords are set to be the same (or the owner password is left blank) then there
is noo owner password, and the document cannot be opened in the accesible mode.

The pc array can be used to allow specific actions. The following example, sets an owner password, a
user password, and allows printing and cut & paste.

$pdf->setEncryption('trees','frogs',array('copy','print'));

addLink

addLink(url,x0,y0,x1,y1)

Creates a clickable rectangular area within the document, which takes the user to the URL when
clicked. The coordinates specify the area.

See the information in the inline codes chapter of the ezPdf section to see and easy way of adding
links to your code.

$pdf->addLink("http://www.ros.co.nz/pdf/",50,100,500,120);
$pdf->rectangle(50,100,450,20);

addInternalLink

addInternalLink(label,x0,y0,x1,y1)

Creates an internal link in the document, 'label' is the name of an target point, and the other settings
are the coordinates of the enclosing rectangle of the clickable area.

Note that the destination markers are created using the addDestination function described below.

See the information in the inline codes chapter of the ezPdf section to see and easy way of adding
links to your code.

addDestination

addDestination(label,style[,a][,b][,c])

This marks a point in the document as a potential destination for an internal link, the 'label' can be
any string, though should be unique for the document, else confusion may ensue. The remainer of the
options are identical to the openHere function.

27 of 30http://pdf-php.sf.net Version 0.12.22

http://www.ros.co.nz/pdf/

transaction

transaction(action)

One of the major problems with this class has been the inability to format things so that they fit
nicely, as you cannot know how large something is until you have it on the page, this function
attempts to produce a solution this.

Transaction support (terminology borrowed from databases) allows you to mark a point in the
development of your document, and if you do not like how things are going from there you can abort
and return to that place. This will allow tentatively trying a few different options for things, then
settling with the one that looks like what you like. The most obvious application immediatly is
support for stopping table cells being split over pages. If you start a row and on completion discover
that you are on a new page, then just abort the transaction, going back to the position before you
started making that row, and then make a new page there.

'action' can be set to one of 'start','commit','rewind','abort', which are fairly obvious in their usage.

'start' - mark a checkpoint, a position to return to upon 'abort'
'commit' - you are happy with this one, it releases the most recent 'start' though does not affect the
document.
'rewind' - you are not happy, but are planning to start again from the last checkpoint, this is the same
as an 'abort' and a 'start', but is much more efficient.
'abort' - you are not happy with you the document is looking, this will return you to the state at last
'start' point.

Notes:
- 'start' commands can be nested, and 'abort' or 'commit' will always affect the most recent start.
- though often it seems that you do not need to 'commit' if you are happy with your changes, it is
good practice, the 'start' command is effectively making an internal copy of the document, if you are
working on a large document you may run out of space. The 'commit' command frees up that space
once more.
- these commands, though they are part of the base class, save all the setting of the object in which
they are contained, this means most often that they will work fine with an ezPdf object, and will also
work with user class extensions.

Misc
Callback functions

Code has been included within class.pdf.php which allows the user to place a marker within the text,
when the interpreter places that piece of text on the page, then the named function will be called,
passing an array which has the details about the position.

The marker is either of the forms:
<c:func:paramater>aaa bbb ccc</c:func>
<C:func:paramater>

The first form (with the small 'c') is for when the situation requires both an opening and a closing tag,
and the second form for when only one specific point needs to be marked.

28 of 30http://pdf-php.sf.net Version 0.12.22

When this piece of text is placed, the class function 'func' will be called, and it must have been
defined with a single paramater. This paramater will be an array, which will have members:

x => x-position
y => y-position
status => <see below>
f => function name
height => font height
decender => font decender

Where the status can have one of the values 'start','end','sol','eol'. The start and end values are
obvious and indicate that this is either the start or the end of the marked range. The other two indicate
start-of-line and end-of-line, which are called if the start or end of a line is reached between matching
start and end markers.

Note that the function needs to be a function of the pdf class, so if you wish to use a custom function
then you need to extend the class and add your own functions. This is done within the script that
makes this document, to collect the information which makes the table of contents, and to add the dots
on each line within the table of contents display.

NOTE For various technical reasons if there are any spaces within the marker, then these will affect
the justification calculation, it is best to avoid having them. This is why the title names in the example
below were urlencoded when placed in the paramater section.

NOTE These functions should be used with care, it is possible to set up an infinite loop. If the
function called by the two-part form has an addText command within it, then if it is not set up very
carefully then an infinite loop is formed as the function is re-called at the start and end of the addText
command... and so on... and so on... and so on...

As an example, here is the code which extends the class for this document

include 'class.ezpdf.php';

class Creport extends Cezpdf {

// make a location to store the information that will be collected during
document formation
var $reportContents = array();

// it is neccesary to manually call the constructor of the extended class
function Creport($p,$o){
 $this->Cezpdf($p,$o);
}

/*
The function 'rf' records in an array the page number level number and
heading for each title as the document is constructed. This information is
used at the end to construct the table of contents. Each heading has had a
marker put next to it of the form:
<C:rf:1top%20heading>, which would be for a level 1 heading called 'top
heading'.
After the bulk of the document has been constructed, the array $pdf
>reportContents is selected, and the table of contents made.
 */
function rf($info){
 $tmp = $info['p'];
 $lvl = $tmp[0];
 $lbl = rawurldecode(substr($tmp,1));
 $num=$this->ezWhatPageNumber($this->ezGetCurrentPageNumber());
 $this->reportContents[] = array($lbl,$num,$lvl);

29 of 30http://pdf-php.sf.net Version 0.12.22

}

/*
The dots function is called by a marker of the form:
<C:dots:213>
Which would represent a heading being show for which the original document
was on page 13, and the heading was level 2. The marker is placed at the
end of the text being displayed within the table of contents, upon
activation it draws a dotted line across from that point to the right hand
side of the page, and puts the given label there (to be more accurate it
draws the line from the right, back to the left, so that all the dots line
up down the page).
*/
function dots($info){
 // draw a dotted line over to the right and put on a page number
 $tmp = $info['p'];
 $lvl = $tmp[0];
 $lbl = substr($tmp,1);
 $xpos = 520;

 switch($lvl){
 case '1':
 $size=16;
 $thick=1;
 break;
 case '2':
 $size=12;
 $thick=0.5;
 break;
 }
 $this->saveState();
 $this->setLineStyle($thick,'round','',array(0,10));
 $this->line($xpos,$info['y'],$info['x']+5,$info['y']);
 $this->restoreState();
 $this->addText($xpos+5,$info['y'],$size,$lbl);
}
}

Both of these functions use only the single point call to a callback function, for an example of the
more complicated two-part from, refer to the function 'alink' within class.ezpdf.php which uses
callback functions to implement the url links on marked document text.

Units

The units used for positioning within this class are the default pdf user units, in which each unit is
roughly equivalent to 1/72 of an inch.

and some additional user contributed notes are (thanks Andrew):

1/72" is 0.3528mm or 1 point
1 point was historically 0.0138 inches, a little under 1/72"
10mm is 28.35 points
A4 is 210 x 297 mm or 595.28 x 841.89 points

30 of 30http://pdf-php.sf.net Version 0.12.22

