
Aspen
Release 0.8

Chad W. L. Whitacre

December 23, 2007

Zeta Design & Development
http://www.zetadev.com/software/aspen/

Email: chad@zetaweb.com

http://www.zetadev.com/software/aspen/
mailto:chad@zetaweb.com

Abstract

Aspen is a web server for highly extensible Python-based publication, application, and hybrid websites.

CHAPTER

ONE

Introduction

Aspen is designed around the idea that there are basically two kinds of websites, publications and applications, differ-
entiated by their organization and interface models. A publication website organizes information into individual pages
within a hierarchical folder structure that one navigates by browsing. In an application website, on the other hand,
data is not organized into hierarchical pages but is dealt with via a non-browsing interface such as a search box.

The HTML version of this documentation is an example of a publication website: a number of hypertext documents
organized into sections. If we weren’t using LaTeX (or if I knew how to use it better), the sections would probably
be encoded in folders. Gmail is a pure application website, one which organizes and presents information non-
hierarchically. Most websites, however, are hybrids. That is, within an overall hierarchical organization you will find
both individual pages of information as well as applications such as a site search feature, or a threaded discussion
forum.

Publication websites are actually a subset of application websites, of course. An application site can use any inter-
face metaphor; a publication is an application that uses the familiar folder/page metaphor to organize and present its
information. Therefore, every website is fundamentally an application.

Aspen enables the full range of websites: publications, applications, and hybrids. It uses the filesystem for the hierar-
chical structure of publication and hybrid websites, and provides a mechanism for including applications within that
hierarchy.

An Aspen website is a collection of files, self-contained within a single directory, called the root of the website (cf.
Apache’s DocumentRoot directive). In general, URLs map directly to the filesystem. That is, given a root of:

/usr/local/www/example.com

A request for ‘/foo.html’ would serve a file at:

/usr/local/www/example.com/foo.html

If all you want to do is serve static files, then that’s most of what you need to know.

To extend an Aspen website, you use a UNIX-style userland located within a directory under the website root named
(that’s two underscores), also called the website’s magic directory. The existence and contents of this directory are

safe from prying eyes, because Aspen will respond to any requests mapping to the magic directory with a 404 Not
Found.

iii

http://mail.google.com/mail
http://httpd.apache.org/docs/1.3/mod/core.html##documentroot
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html##sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html##sec10.4.5

iv

CHAPTER

TWO

Installation

Aspen can be installed using either distutils or setuptools. That is, you can either download a tarball, unpack
it, and run:

$ python setup.py install

Or you can run:

$ easy_install aspen

v

vi

CHAPTER

THREE

Tutorial

Once you have installed Aspen, here are some quick walk-throughs to get your feet wet. They are written sequentially.

3.1 ”Greetings, program!”

In your home directory, make a new directory named ‘aspentut’. Create a file in ‘aspentut’ named ‘index.html’, with
the following contents:

Greetings, program!

At the command line in the ‘aspentut’ directory, type aspen. You should get output like this:

$ aspen
aspen starting on (’’, 8080)

Now open a web browser and hit http://localhost:8080/. You should see ”Greetings, program!” in your
browser. Congratulations!

3.2 Your First Handler

Aspen uses handlers to process files such as your ‘index.html’. Now we are going to write our own handler.

First, create a directory under ‘aspentut’ named ‘ ’ (that’s two underscores). This is ‘aspentut”s magic directory,
and it is where you configure and extend your website. Now create two directories under the magic directory: ‘etc’
and ‘lib’. Under ‘lib’, create a ‘python2.x’ directory, where ‘x’ corresponds to the minor version of Python you are
using. Your directory structure should now look like this:

aspentut
aspentut/__
aspentut/__/etc
aspentut/__/lib/python2.x

In ‘ /lib/python2.x’, create a file named ‘handy.py’ with the following contents:

def handle(environ, start_response):
start_response(’200 OK’, [(’Content-Type’, ’text/plain’)])
return [environ[’PATH_TRANSLATED’]]

vii

And in ‘ /etc’, create a file named ‘handlers.conf’ with these contents:

fnmatch aspen.rules:fnmatch

[handy:handle]
fnmatch *.asp

What we have done is we have defined a new handler, and wired it up to be used for any request for a file with the
extension ‘.asp’. So now let’s create such a file at ‘aspentut/handled.asp’ and give it the following contents:

Greetings, program?

Restart Aspen, then hit http://localhost:8080/handled.asp. You should see the filesystem pathname of
the file being served.

If you are familiar with the WSGI specification, you will recognize that handy.handle is a WSGI callable. Aspen
plugins all speak WSGI. Also notice that the rules for when a certain handler is invoked are themselves extensible.
The fnmatch rule comes with Aspen, but you can also write your own.

3.3 What You’ve Learned

In this brief tutorial we’ve introduced these key facts about Aspen:

• Aspen websites use the filesystem for site hierarchy.

• Aspen websites are configured and extended via a ”magic directory.”

• Aspen configuration happens through plain-text configuration files.

• Aspen extensions are WSGI callables.

Besides handlers, Aspen can be extended by wiring up arbitrary WSGI apps to certain paths, and maintaining a global
WSGI middleware stack. If this all fits your style of development, then check out the reference documentation that
follows for the full story.

CHAPTER

FOUR

User Interface (UI)

Users interface with Aspen through three mechanisms: the command line, configuration files, and the environment.
Where a program parameter is set in more than one of these contexts, they take precedence in the order given here.
For example, a mode option on the command line will override any mode setting in a config file or in the environment.

4.1 Command Line

Usage:

aspen [options] [command]

Aspen takes one optional positional argument, command, which must be one of: start, status, stop, restart,
or runfg. The default is runfg, which causes Aspen to run in the foreground, sending all messages to stdout.

start, status, stop, and restart control Aspen as a daemon, via a pidfile. If the website root has a directory
named ‘ ’ (that’s two underscores; the magic directory), then the pidfile is at ‘ /var/aspen.pid’. Otherwise, the
pidfile is created in ‘/tmp’. When run as a daemon, stdout and stderr are redirected to ‘ /var/aspen.log’ if ‘ ’ exists,
and to ‘/dev/null’ otherwise. The ‘ /var’ directory will be created if it does not exist. The permission mode of the
pidfile is set to 0600; likewise with the logfile, unless it is ‘/dev/null’.

The Aspen distribution includes a script in ‘etc/aspen bash completion’ that can be used to configure the bash shell
to autocomplete from among Aspen’s arguments. See the source for more information.

Aspen’s command-line options are as follows:

Option Description Default
-a/-–address=address The address to which Aspen should bind. If address begins with a dot or a forward slash, then it is interpreted as an AF UNIX socket. If it contains more than one colon, it is seen as an AF INET6 address. Otherwise, it is interpreted as AF INET. If address begins with a colon, the IP address defaults to 0.0.0.0. 0.0.0.0:8080
-m/-–mode=mode One of debugging, development, staging, or production. In debugging and development modes, Aspen will restart itself any time configuration files or module source files change on the filesystem. development
-r/-–root=root The directory containing the website for Aspen to serve. .

4.2 Configuration Files

Aspen obeys several configuration files, all located in ‘ /etc’. The comment character for these files is #, and
comments can be included in-line. Blank lines are ignored, as is initial and trailing whitespace per-line. Where
section names are called for, they are given in brackets.

Where a configuration file calls for a Python object to be specified, this is done in a notation derived from setuptools’
entry points feature: a dotted module name, followed by a colon and a dotted identifier naming an object within

ix

the module. This is referred to below as colon notation. The following example would import the bar object from
example.package.foo, and use its baz attribute:

example.package.foo:bar.baz

4.2.1 apps.conf

In Aspen, an application or app refers to a WSGI application that is connected to a particular directory. Apps are set
up in ‘ /etc/apps.conf’.

The ‘ /etc/apps.conf’ file contains a newline-separated list of white-space-separated path name/object name pairs.
The path names refer to URL-space, and are translated literally to the filesystem. If the trailing slash is given, then
requests for that directory will first be redirected to the trailing slash before being handed off to the application. If no
trailing slash is given, the application will also get requests without the slash. When choosing an application to service
a request, the most specific pathname matches first.

Object names are in colon notation, and they name WSGI callables. Aspen updates the SCRIPT NAME and
PATH INFO settings in environ before handing off to the relevant callable. SCRIPT NAME will never end with a
slash, and if PATH INFO is not empty, it will always begin with a slash.

Aspen will (over)write a file called ‘README.aspen’ in each directory mentioned in ‘apps.conf’, containing the
relevant line from ‘apps.conf’. If the directory does not exist, it is created. Aspen will also remove any obsolete
‘README.aspen’ files within your site tree.

Example apps.conf

/foo example.apps:foo # will get both /foo and /foo/
/bar/ example.apps:bar # /bar will redirect to /bar/
/bar/baz example.apps:baz # will ’steal’ some of /bar’s requests

4.2.2 aspen.conf

Aspen’s general configuration file is at ‘ /etc/aspen.conf’. It is in ‘.ini’-style format per the ConfigParsermodule.
Aspen responds to the following settings in the main section. You may define additional settings and sections that are
meaningful to your application, which you may access using the aspen.conf object described below in the ”API”
chapter.

Option Description Default
address The address to which Aspen should bind. If address begins with a dot or a forward slash, then it is interpreted as an AF UNIX socket. If it contains more than one colon, it is seen as an AF INET6 address. Otherwise, it is interpreted as AF INET. If address begins with a colon, the IP address defaults to 0.0.0.0. 0.0.0.0:8080
defaults A comma-separated list of names to look for when a directory is requested. Any default resource is located immediately before dispatching to a handler. index.html, index.htm
http version The version of HTTP to speak, either 1.0 or 1.1. 1.1
mode One of debugging, development, staging, or production. In debugging and development modes, Aspen will restart itself any time configuration files or module source files change on the filesystem. development
threads The number of threads to maintain in the request-servicing thread pool. 10

Example

Here is an example ‘aspen.conf’ configuration file:

[main]
address = :8000

[myapp]
knob = true

4.2.3 handlers.conf

Aspen handlers are WSGI applications that are associated with files and directories on the filesystem according to
arbitrary rules. This provides a flexible infrastructure for many different development patterns.

The ‘ /etc/handlers.conf’ file begins with an anonymous ”rules” section, which is a newline-separated list of white-
space-separated rule name/object name pairs. Rule names can be any string without whitespace. Each object name
(in colon notation) specifies a rule, a callable taking a filesystem path name and an arbitrary predicate string, and
returning True or False. The path argument is absolute and is guaranteed to exist; it is PATH TRANSLATED
from the WSGI environment, with any default resource already located.

Following the rule specification are sections specifying handlers, which as mentioned above are WSGI callables.

The name of each section specifies a handler (a WSGI callable) in colon notation. The body of each section is a
newline-separated list of conditions under which this handler is to be called. Fundamentally, these conditions are
made up of a rule name as defined at the beginning of the file, and an arbitrary predicate string (which can include
whitespace) that is meaningful to the matching rule callable. If no predicate is given, then the rule callable will receive
None for its predicate argument. Rules must be explicitly specified at the beginning of the file before being available
within handler sections. After the first condition in a handler section, additional condition lines must begin with one
of AND, OR, or NOT. These case-insensitive tokens specify how conditions are to be combined in evaluating whether
to use this handler.

On each request, handlers are considered in the order given, and the first matching handler is used. Only one handler
is used for any given request.

Note that if the file ‘ /etc/handlers.conf’ exists at all, the defaults (see the example below) disappear, and you must
respecify any of the default rules in your own file if you want them.

Example handlers.conf

This is Aspen’s default handler configuration:

catch_all aspen.rules:catch_all

[aspen.handlers.static:wsgi]
catch_all

Here is a more full-featured example:

catch_all aspen.rules:catch_all
isfile aspen.rules:isfile
fnmatch aspen.rules:fnmatch

Set up scripts.
===============

[aspen.handlers.simplates:stdlib]
isfile

AND fnmatch *.html

Everything else is served statically.
=====================================

[aspen.handlers.static:wsgi]
catch_all

4.2.4 middleware.conf

Aspen allows for a full WSGI middleware stack, configured via the ‘ /etc/middleware.conf’ file. This is simply a
newline-separated list of middleware factories in colon notation. Each factory (which may be a class constructor or
other callable) is called with exactly one positional argument, the next middleware on the stack. The first-mentioned
middleware will therefore be the outer-most in the stack (i.e., closest to the browser).

Example middleware.conf

example.foo:bar # closest to browser
example.baz:buz # closest to your apps/handlers

4.3 The Environment

Aspen incorporates a mode module, which uses the PYTHONMODE environment variable to model the application
life-cycle through four deployment modes: debugging, development, staging, and production. This
module is available to your applications at aspen.mode, and its API is documented in the ”API” chapter, below.

Aspen itself adapts to the current PYTHONMODE. In debugging and development modes, Aspen will restart itself
any time a configuration file or module source file changes on the filesystem.

CHAPTER

FIVE

Application Programming Interface (API)

The aspen library exposes a number of objects. Here we document those that are probably most useful.

5.1 Applications

Aspen applications are WSGI callables that are intended to be associated with a single directory via the ‘apps.conf’
file. Aspen comes bundled with the following applications, in the aspen.apps subpackage.

5.1.1 django

Aspen includes glue code for the Django web framework. In order to use this feature, you must install Django for your
site:

• Put django on your PYTHONPATH (e.g., in ‘ /lib/python’).

• Put your Django project on your PYTHONPATH (e.g., in ‘ /lib/python’).

• Add a [django] section to ‘aspen.conf’, with a settings module setting that points to your settings mod-
ule.

• Configure your Django project’s ‘settings’ module.

The aspen.apps.django module defines one function:

wsgi(environ, start response)
This is Django’s WSGIHandler callable.

5.1.2 static

The aspen.apps.static module defines one function:

wsgi(environ, start response)
This application translates the request path to the filesystem, locates any default resource for directories (per the
value of defaults in ‘aspen.conf’), and hands off to aspen.handlers.static.wsgi.

5.2 Configuration

Aspen parses and harmonizes all command-line, configuration file, and environment settings before it loads your
plugins. This information is then available to your modules via several objects which are dynamically placed in

xiii

the global aspen namespace before your plugins are loaded—conf, configuration, and paths—and via the
mode module.

5.2.1 conf

The aspen.conf object is an instance of aspen. configuration.ConfFile, which subclasses the standard
library’s ConfigParser.RawConfigParser class to represent the ‘ /etc/aspen.conf’ file. In addition to the
RawConfigParser API, the object supports both attribute and key read-only access; either returns a dictionary
corresponding to a section of the ‘aspen.conf’ file. If the named section does not exist, an empty dictionary is returned.

Your application is free and encouraged to use the ‘aspen.conf’ file for it’s own configuration, and to access that
information via this object.

To illustrate, here is a minimal ‘aspen.conf’ file:

[my_settings]
foo = bar

Such a file could support code like this:

import aspen

def wsgi_app(environ, start_response):
my_setting = aspen.conf.my_settings.get(’foo’, ’default’)
start_response(’200 OK’, [])
return ["My setting is %s" % my_setting]

See Also:

RawConfigParser
In addition to the API above, aspen.conf also exposes the RawConfigParser API.

5.2.2 configuration

The aspen.configuration object provides raw access to the parser objects used to configure your server, and a
number of basic settings.

Parsers

The various parsers and raw settings are exposed as these members:

args
An argument list as returned by optparse.OptionParser.parse args.

conf
An instance of aspen. configuration.ConfFile; see above.

optparser
An optparse.OptionParser instance.

opts
An optparse.Values instance per optparse.OptionParser.parse args.

http://docs.python.org/lib/RawConfigParser-objects.html

paths
An instance of aspen. configuration.Paths; see below.

Settings

Furthermore, aspen.configuration exposes specific configuration settings as these members:

address
A (hostname, port) tuple (for AF INET and AF INET6 address) or string (for AF UNIX) giving the address
to which Aspen is bound.

command
A string giving the command line argument (start, stop, etc.).

daemon
A boolean indicating whether Aspen is acting as a daemon.

defaults
A tuple listing the default resource names to look for in a directory.

http version
A string indicating the HTTP version to speak, either 1.0 or 1.1.

sockfam
One of socket.AF INET, socket.AF INET6, and socket.AF UNIX.

threads
A non-zero positive integer; the number of threads in the server’s request-handling thread pool.

All members are intended to be read-only.

See Also:

ConfigParser
The naming is not PEP 8, but the documentation is fine.

optparse
On the other hand, the documentation for optparse is rather, um, convoluted. Good luck!

5.2.3 mode

It is often valuable to maintain a distinction between various phases of an application’s lifecycle. The mode module
calls these phases modes, and identifies four of them, given here in conceptual life-cycle order:

Mode Description
debugging The application is being actively debugged; exceptions may trigger an interactive debugger.
development The application is being actively developed; however, exceptions should not trigger interactive debugging.
staging The application is deployed in a mock-production environment.
production The application is in live use by its end users.

The expectation is that various aspects of the application—logging, exception handling, data sourcing—will adapt
to the current mode. The mode is set in the PYTHONMODE environment variable. This module provides API for
interacting with this variable. If PYTHONMODE is unset, it will be set to development when this module is
imported.

http://docs.python.org/lib/module-ConfigParser.html
http://docs.python.org/lib/module-optparse.html

Members

The module defines the following functions:

get()
Return the current PYTHONMODE setting as a lowercase string; will raise EnvironmentError if the (case-
insensitive) setting is not one of debugging, development, staging, or production.

set(mode)
Given a mode, set the PYTHONMODE environment variable and refresh the module’s boolean members. If
given a bad mode, ValueError is raised.

setAPI()
Refresh the module’s boolean members. Call this if you ever change PYTHONPATH directly in the
os.environ mapping.

The module also defines a number of boolean attributes reflecting the current mode setting, including abbreviations
and combinations. Uppercase versions of each of the following are also defined (e.g., DEBUGGING).

debugging, deb
True if PYTHONMODE is set to debugging.

development, dev
True if PYTHONMODE is set to development.

staging, st
True if PYTHONMODE is set to staging.

production, prod
True if PYTHONMODE is set to production.

debugging or development, debdev, devdeb
True if PYTHONMODE is set to debugging or development.

staging or production, stprod
True if PYTHONMODE is set to staging or production.

Example

Example usage:

>>> import mode
>>> mode.set(’development’) # can set the mode at runtime
>>> mode.get() # and access the current mode
’development’
>>> mode.development # module defines boolean constants
True
>>> mode.PRODUCTION # uppercase versions are also defined
False
>>> mode.dev # as are abbreviations
True
>>> mode.DEBDEV, mode.stprod # and combinations
(True, False)

5.2.4 paths

The aspen.paths object is an instance of aspen. configuration.Paths; it is simply a container for vari-
ous paths, all normalized and absolute:

root
the website’s filesystem root

the magic directory

lib
the site’s local Python library. First we look for ‘ /lib/python’, then for ‘ /lib/pythonx.y’, using only the first
found

pkg
‘site-packages’ under the site’s local Python library, ‘ /lib/pythonx.y/site-packages’

plat
the local platform-specific Python library, ‘ /lib/plat-x’

If there is no magic directory, then , lib, pkg and plat are all None. If there is, then lib, pkg and plat are
added to sys.path.

5.3 Handlers

Aspen handlers are WSGI callables that are intended to be associated with multiple files or directories via the
‘handlers.conf’ file. Aspen comes bundled with the following handlers, in the aspen.handlers subpackage.

5.3.1 autoindex

The aspen.handlers.autoindex module defines one function:

wsgi(environ, start response)
This handler displays an HTML listing of the files in the directory at environ[’PATH TRANSLATED’]. If
it is associated with a non-directory, it will raise AssertionError. The listing will not include the magic
directory, nor files named ‘README.aspen’, nor hidden files (those whose name begins with ’‘.”).

The static handler can be configured to automatically call the autoindex handler for all directories. See below for
details.

5.3.2 http

The aspen.handlers.http module provides three handlers:

HTTP400(environ, start response)
Responds to every request with 400 Bad Request.

HTTP403(environ, start response)
Responds to every request with 403 Forbidden.

HTTP404(environ, start response)
Responds to every request with 404 Not Found.

HTTP500(environ, start response)
Responds to every request with 500 Internal Server Error.

5.3.3 simplates

Aspen comes bundled with a handler called simplates. In basic terms, a simplate is a single-file web template with
an initial pure-Python section that populates the context for the template. Simplates are a way to keep logic and
presentation as close together as possible without actually mixing them.

In more detail, a simplate is a template with two optional Python components at the head of the file, delimited by ASCII
form feeds (this character is also called a page break, FF, ¡ctrl¿-L, 0xc, 12). If there are two initial Python sections,
then the first is exec’d when the simplate is first loaded, and the namespace it populates is saved for all subsequent
invocations of this simplate. This is the place to do imports and set constants; it is referred to as the simplate’s import
section (be sure the objects defined here are thread-safe). The second Python section, or the first if there is only one,
is exec’d within the simplate namespace each time the simplate is invoked; it is called the run-time Python section.
The third section is parsed according to one of the various web templating languages. The namespace for the template
section is a copy of the import section’s namespace, further modified by the run-time Python section. If a simplate has
no Python sections at all, then the template section is rendered with an empty context. SyntaxError is raised when
parsing a simplate that has more than two form feeds.

In debugging and development modes, simplates are loaded for each invocation of the resource. In staging and pro-
duction modes, simplates are loaded and cached until the filesystem modification time of the underlying file changes.
If parsing the file into a simplate raises an Exception, then that is cached as well, and will be raised on further calls
until the entry expires as usual.

Simplates obey an encoding key in a [simplates] section of ‘aspen.conf’: this is the character encoding used
when reading simplates off the filesystem, and it defaults to ’UTF-8’.

For all simplates, the full filesystem path of the simplate is placed in its namespace as file before the import
section is executed.

NB: Simplates are never used in the abstract. Rather, one always uses a particular flavor of simplate that obeys the
above general rules but which provides slightly different semantics corresponding to the web framework upon which
each flavor is based.

The Aspen distribution currently bundles two flavors of simplate: Django-flavored and stdlib-flavored. The WSGI
callables for each are defined in the aspen.handlers.simplates module:

django(environ, start response)
Serve environ[’PATH TRANSLATED’] as a Django-flavored simplate.

stdlib(environ, start response)
Serve environ[’PATH TRANSLATED’] as a stdlib-flavored simplate.

Django-flavored

In addition to the aspen.apps.django app, which serves Django in usual monolithic fashion, we also provide
a handler that integrates the Django web framework with the simplate pattern. As mentioned, this callable is available
as django in the aspen.handlers.simplates module.

Installation To use Django simplates, first install the Django framework in your site:

• Put django on your PYTHONPATH (e.g., in ‘ /lib/python’).

• Put your Django project on your PYTHONPATH (e.g., in ‘ /lib/python’).

• Add a [django] section to ‘aspen.conf’, with a settings module key that points to your settings module.

• Configure any database settings, etc., in your Django project’s ‘settings’ module.

Then tell Aspen to use the django simplate handler for various files via the ‘ /etc/handlers.conf’ file. For example, the
following ‘handlers.conf’ would serve files ending in ‘.html’ as Django simplates, and would serve all other resources
statically:

fnmatch aspen.rules:fnmatch
catch_all aspen.rules:catch_all

[aspen.handlers.simplates:django]
fnmatch *.html

[aspen.handlers.static:wsgi]
catch_all

Lastly, close the loop by telling Django about simplates via the ‘urls.py’ file in your Django project package, like so:

from django.conf.urls.defaults import *

urlpatterns = patterns(’’,
(r’ˆ’, include(’aspen.handlers.simplates.django_’))

)

Admittedly, that is a fair amount of wiring. The main benefits to using Django via Aspen simplates are first, that your
view code and template code are together in the same file (without being mixed); and second, that you get filesystem-
rather than regex-based URL layouts.

Distinctives Django-flavored simplates have these distinctives:

• The simplate namespace is a Django RequestContext.

• The template section is compiled as a Django template.

• If the run-time Python section raises SystemExit with a Django HttpResponse object as its argument,
and no other response object is defined in the section, then the SystemExit response is sent back and the
templating section is skipped entirely.

• If the run-time Python section raises SystemExit without a Django HttpResponse object as its argument,
and no other response object is defined in the section, then processing of the run-time section ends and processing
proceeds to rendering the template.

• If the run-time Python section defines a response object, then (whether or not the run-time section is terminated
with SystemExit) this object is assumed to be a Django HttpResponse object, and the template is rendered
to it.

Standard Library-flavored

Aspen includes a simplate flavor that has no dependencies outside the standard library, effectively giving you a raw
WSGI interface. The handler for this is named stdlib and is defined in the aspen.handlers.simplatesmodule.
Here are its distinctives:

• The run-time Python section has two additional names in its namespace, environ and start response, corre-
sponding to the parameters of the handler as specified above.

• If the run-time Python section raises SystemExit, this is silently ignored.

http://www.djangobook.com/en/beta/chapter10/##cn62
http://www.djangobook.com/en/beta/chapter04/##cn116

• If the run-time Python section defines a response object, this is assumed to be an iterable per the WSGI specifi-
cation and is returned as such. The template section is skipped.

• The template section is rendered using mapping-based string interpolation.

5.3.4 static

The aspen.handlers.static module defines one function:

wsgi(environ, start response)
This handler serves environ[’PATH TRANSLATED’] as a static resource. The Content-Type is set
using the standard library’s mimetypes.guess type function, defaulting to text/plain. In staging and
production mode, we obey any If-Modified-Since header.

This handler adapts to the autoindex setting in the [static] section of ‘aspen.conf’. If set to yes (the
default), then the aspen.handlers.autoindex.wsgi handler will be used to serve requests for directo-
ries. If set to no, the aspen.handlers.http.HTTP403 handler is used instead. The autoindex value is
case-insensitive, but if other than yes or no is given, ConfigError is raised at start-up.

5.4 Rules

An Aspen rule is a callable that takes a filesystem path and a predicate string, and returns True or False. Rules are
part of Aspen’s handler infrastructure; see the documentation for ‘handlers.conf’ for how to use them.

catch all(path, predicate)
Always return True.

fnmatch(path, predicate)
Match if path matches the pattern predicate per the standard library’s fnmatch.fnmatchcase.

hashbang(path, predicate)
Match if the file at path starts with ’#!’.

isdir(path, predicate)
Match if path points to a directory.

isfile(path, predicate)
Match if path points to a file.

isexecutable(path, predicate)
Match if the file at path is executable.

mimetype(path, predicate)
Match if the mimetype of the file at path is predicate.

rematch(path, predicate)
Match if path matches the regular expression predicate.

CHAPTER

SIX

Additional Programs

Aspen comes with two helper programs.

6.1 aspen.mod wsgi

You can serve an Aspen website using the mod wsgi extension module for Apache via the aspen.mod wsgi script.
Since the same Aspen website can be served by the main aspen program as by mod wsgi, this gives you a compelling
development/deployment scenario.

To use mod wsgi with Aspen, add the following two directives to your ‘httpd.conf’:

WSGIScriptAlias / "\path\to\aspen.mod_wsgi"
SetEnv aspen.root "\path\to\website-root"

See Also:

mod wsgi
The mod wsgi Apache extension module

6.2 aspen.monitord

Aspen includes a daemon called aspen.monitord that launches the main aspen daemon, and restarts it if it ever
goes down. It takes one command-line argument, the root filesystem path of the website to be monitored. It uses the
‘ /var/aspen.pid’ file to keep track of the main aspen process, and it stores its own pid in ‘ /var/aspen.monitord.pid’.
aspen.monitord logs via the USER syslog facility with an ident of aspen.monitord.

xxi

http://code.google.com/p/modwsgi/

xxii

CHAPTER

SEVEN

Credits and Legalese

All original work is copyright (c) 2006-2007 Chad Whitacre and contributors, all rights reserved, and is released under
the MIT license:

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

7.1 aspen bash completion

The ‘aspen bash completion’ script is based on a similar script from Django. The original is copyright (c) 2005 by
the Lawrence Journal-World, all rights reserved, and is used in modified form under the BSD license:

xxiii

http://opensource.org/licenses/mit-license.php

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of Django nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

7.2 daemon.py

The ‘daemon.py’ module is copyright 2006 by LivingLogic AG, Bayreuth/Germany and Walter Drwald. It is used
without change under the following license:

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appears in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of LivingLogic AG or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior
permission.

LIVINGLOGIC AG AND THE AUTHOR DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL LIVINGLOGIC AG OR THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

7.3 wsgiserver.py

The ‘wsgiserver.py’ module is copyright (c) 2004-2006 by the CherryPy Team (team@cherrypy.org), all rights re-
served, and is used without change under this BSD license:

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of the CherryPy Team nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

