easy template system

version 3.05b

Franck Marcia
Copyright © 2002, 2003

Table of content

a1 (oo [§Tox 1 o] o IO SRRSO 3
[1o (U] o Tz 1To] o ISP PPP 3
(@ 10 [Tod T (= {=1 (=] o (o S 4
L0 1 (o (= FO RO UOPRRRRN 5
1. Yoz=1r= TRV Z= 1= o 1LY RO 5
2. (@] o 1T o 1< PR RUPPR PP 6
3. F N = TP P PP PUOPPPPPRPRP 7
4. @10 (ST (=] 1 0] o] F= L LSRRI 8
5. COoNSTANT BlIEMEBNTES ...t 9
T N (=11 g = (S = T [OO PP POV PP UPRN 10
7. [1o Y [T o g TST oL £ 11
8. YT TSXSY T T = 16T PR 12
9. Rilag] o1{=NeTe] aTe [l 1[0] g =111 o g =T o | £ SR 13
10. ChoOSE-Variable ElEMENTS........uvieiiii e e e e e e e e e s e bbb b e e e e e e e e s eabaeeeeas 14
11. Other CONAItIONAl EIEMEBNTS.......uvviiiieii i e e e e e b e e e e e e e s saaeeeens 15
i OF- 1| I 11T a1 o1 £SO 16
R T == Y o 0 = 1) SR 17
S o Lo o I (o= T A2 TSRS 19
Y (=1 (] ool = T PPPPPPPPPPPPPPRt 20
1. SIMPIE tAG EIEIMENT ... ittt et e e s aab e e e e e sbbe e e e e sbeeeasnreaeeaaes 20
2. AlterNate tag EIEMENTc.oi e 22
3. TEMPIALE EIEMENT ...ttt et bbb b e 24
4, XS ESYI=T 0 ST oL A PRPPRE 26
5. SET-VAIUE EIEIMENTt e e e e e e s et e e e e e e e s setabbraeeeeeeeseanababaeeeeesanntes 27
6. VTSI T T =1 =T 0 1= o SR 28
7. MISSING-VAIUE ElEIMENT ... e e s e e e s ee e e s aan e e e s anneeeesanteeesnneees 29
8. [e | [T o g 1= o | OSSR 30
9. (@fe Tl r= 1o | =11=] 0 0[] o] PSRRI 31
O TR | A= 1T 0 1 1< o) S RRRPOT 33
11, ChOOSE EIEMENT ... 34
12, When-test leMENT ... 35
13, EISE EIEMENT ... 36
14. Choose-variable element ... 37
15, When-value EIEMENT ... 38
T OF- 1| I 11Ty a1 o1 SO UPRTTRRRRPOT 39
R AN o 18] 1=] =1 = o U= o | SO 41
S T ST o 1= L A=Y (=T o g1 o SO 42
e T [o To (W T [N = 1T o =T | SOOI 43
b0 T [1YY o A= (ST 1= o | OO RPNt 44
b4 N V= I (=Y 1= o) OO RPNt 45
T | (=Y =1 1<) o T o) PSPPSRt 46
G T = = Yo [U [T =1 [=T o T o | OSSO O PSPPI 47
S ©To] 1 01011 o] SET PSSP URPPPPUPPRN 48
DA T O F-\ = WP 49
26. SYSLEM VANADIES ... bbb 50
A R == 1 o TR 51
b2 TR =1 1 (g 7= 1 [0 |11 T RSP SE 52
29. User-level temMPIates SLOTAQEovvi ettt e s e e e s e e e sra e e e e ssaee e e e nsaeeeeensneeeennees 53
11O TR @ T o TSI} £y 1= o o SRS 54
K T |V [Ty oY F= T =T 0 10 L RPNt 57
A= 65310 g T 1]] 5SS 58
o= o = SRR 62
(©F0] ¢ =T o (TSP U PP PPPPTUPPRN 66

ETS 3.05b page 2

Introduction

ETS is a template system written with PHP that enables you to transform a set of data to any type
of document.

For example, ETS can transform a list of product descriptions retrieved from a database to a HTML
page. It can also construct SQL statements, ASCIl data, XML documents...

ETS provides 2 functions to match a set of data with templates:
- sprintt which returns the built template as a string,
- printt which prints it out.

ETS supplies:

- array management,

- various conditional elements,

- access to any level in the data tree from any level in the template,
- data formatting,

- size reducing,

- integrated debug messages.

ETS works with 2 elements: the data tree and templates. The data tree contains every data that
will be available. Templates define the way the data tree will be presented. You can compare it
to a XML document transformed with a XSLT template: it’s exactly the same concept.

ETS can manage recursive templates, allows a complete reshuffle of the template with exactly
the same data tree, is extremely valuable when working with database because of the implicit
use of templates...

... It’s a powerful tool that will help you efficiently to build documents.

PHP functions

ETS provides 2 functions. Here are their prototypes:

void printt(mixed datatree, mixed containers [, string entry])
Output a built template

string sprintt(mixed datatree, mixed containers [, string entry])
Return a built template

datatree can be an object, an array of objects or a NULL value. The object must be organized
to store scalar values in object properties and lists in arrays. An object can contain children
objects. NULL value is used to build a template without any data.

containers can be an array or a string. If it's an array, each element will be considered as a
container name. If it's a string, it may contain one container name or a list of container names
separated by commas.

entry defines the main template defined in containers. It's "main" by default. It's useful when you
want to define several independent sets of templates in the same container.

ETS 3.05b page 3

Quick reference

The following table presents elements provided by ETS.

Element

Description

{name}

Places an outer template or the value of a variable

{variable:template}

Places an outer template with a different name

{mask:name} ... {/mask} Defines a template and, if inner, places it
{set:variable} ... {/set} Places a content when a variable is set (not missing)
{set:variable:value} ... {/set} |Placesa contentwhen a variable has a specific value
{mis:variable} ... {/mis} Places a content when a variable is missing
{mis:variable:value} ... {/mis} |Placesa contentwhen a variable has not a specific

value or is missing

{php} ... {/php}

Places a content which will be parsed as PHP code

{const:template}

Places an outer template

{if:test} ... {/if}

Places a content if a test is TRUE

{choose} ... {/choose} Provides multiple conditions in conjunction with when-
test and else elements
{when:test} ... {/when} Places a content if a test is TRUE so disables other

when-test or else siblings

{else} ... {/else}

Places a content if all when-test or when-value siblings
are FALSE

{choose:variable} ... {/choose} |Provides multiple conditionsin conjunction with when-
value and else elements

{when:value} ... {/when} Places a content if the variable of the choose parent
has the value of this element so disables other when-
value or else siblings

{call:template} ... {/call} Places an outer template with arguments

{arg:name} ... {/arg} Defines an argument of a call element

{repeat:n} ... {/repeat} Places a content several times

{include:container}

Includes outer templates of a container

{insert:container}

Places the content of a container as text

{eval:container}

Places the content of a container as a template part

{safe:container}

Places the content of a container as a template part
with restrictions

{reduce:value}

Defines a size reducing behaviour

{ .- *} Defines a comment section
{# ... #} Defines a section where the text is not parsed
ETS 3.05b page 4

Tutorial

You will discover in this tutorial many examples that gradually introduce you to essentials of ETS.

1. Scalar variables

Consider this data tree which contains general elements of a HTML page:

$page->title = "Home page”;
$page->lastmodified = "Thursday, January 23, 2003";

This template file, ets.tpl, contains the presentation of these data:

{mask:main}
<html>
<head>
<title>{title}</title>
</head>
<body>
<h1>{title}</h1>
<hr>
<div align="center”>Last modified: {lastmodified}</div>
</body>
</html>
{/mask}

If you run printt($page, “ets.tpl”); you wil get:

<html>
<head>
<title>Home page</title>
</head>
<body>
<hl>Home page</h1>
<hr>
<div align="center”>Last modified: Thursday, January 23, 2003</div>
</body>
</html>

What happened?

ETS found the main template defined between tags {mask:main} and {/mask},

ETS found the tag {title} twice and the tag {lastmodified} in main,

ETS replaced {title} with the value of $page->title and {lastmodified} with the value of
$page->lastmodified,

ETS printed out the result.

Why did it happen?

The first level of the data tree, the root, corresponds to the first level of the template tree, the
main template. In this example, the object $page corresponds to the template main.

Then, every property of $page can be placed in the template main. In this example, the property
title corresponds to the tag {title} and lastmodified to {lastmodified}.

ETS 3.05b page 5

2. Objects

We now add partner information to the previous data tree and group them in an object:

$page->title = "Home page";
$page->lastmodified = "Thursday, January 23, 2003";

$page->partner->name = "foobar.com";
$page->partner->id = 123;

The template file, ets.tpl, is modified to show these new data:

{mask:main}

<html>
<head>
<title>{title}</title>
</head>
<body>
<hl>{title}</hl1>
<hr>
<div align="center”>Last modified: {lastmodified}</div>
{mask:partner}<div>with our partner {name} ({id})</div>{/mask}
</body>
</html>
{/mask}

If you run printt($page, “ets.tpl”); again, you will get now:

<html>
<head>
<title>Home page</title>
</head>
<body>
<hl1>Home page</h1>
<hr>
<div align="center”>Last modified: Thursday, January 23, 2003</div>
<div>with our partner foobar.com (123)</div>
</body>
</html>

What happened?

ETS found the inner template partner between tags {mask:partner} and {/mask}.
ETS replaced {name} with the value of $page->partner->name and {id} with the value of
$page->partner->id.

Why did it happen?

When ETS detects a template in another one, it changes the current level then begins again the
process for the new level.

In this example, it changes from $page to $page->partner for data and from main to partner

for templates. Then, every property of $page->partner are placed in the template partner. In
this example, the property id corresponds to the tag {id} and name to {name}.

ETS 3.05b page 6

3. Arrays

We now want to add menu data to the previous data tree. If we apply the principle of our
previous example, we can add these data like this:

$page->menul->url = "download.php";
$page->menul->label = "Downloads";
$page->menu2->url = "links.php";
$page->menu2->label = "Links";

and so, create two new templates in the main template.
There’s a better way to do it.

Instead of two new objects, we create an array of objects:

$page->title = "Home page”;
$page->lastmodified = "Thursday, January 23, 2003";

$page->partner->name = "foobar.com®;
$page->partner->id = 123;

$page->menu[1]->url = "download.php";
$page->menu[1]->1abel = ""Downloads';

$page->menu[2]->url = "links.php";
$page->menu[2]->label = "Links";

Then we create one new template:

{mask:main}

<html>
<head><title>{title}</title></head>
<body>
<h1>{title}</hl1><hr>
{mask:menu}{label} {/mask}<hr>
<div align="center”>Last modified: {lastmodified}</div>
{mask:partner}<div>with our partner {name} ({id})</div>{/mask}
</body>
</html>
{/mask}

ETS will produce:

<html>
<head><title>Home page</title></head>
<body>
<hl>Home page</hl><hr>
Downloads Links <hr>
<div align="center”>Last modified: Thursday, January 23, 2003</div>
<div>with our partner foobar.com (123)</div>
</body>
</html>

What happened?

ETS found the inner template menu between tags {mask:menu} and {/mask}.
For each element of the array menu, ETS replaced {ur 1} with the value of the property url and
{1abel} with label.

Why did it happen?
When ETS detects that a template corresponds to an array instead of an object, it does the same
than for an object but for each element of this array then concatenates built templates.

ETS 3.05b page 7

4. Outer templates

We want now to print information about our partner at the bottom and at the top of the page.
We don’t add new data but just rearrange the template file like this:

{mask:main}

<html>
<head>
<title>{title}</title>
</head>
<body>
<hi>{title}</h1>
<hr>
{partner}
<hr>
{mask:menu}{label} {/mask}
<hr>
<div align="center”>Last modified: {lastmodified}</div>
{partner}
</body>
</html>
{/mask}

{mask:partner}
<div>with our partner {name} ({id})</div>
{/mask}

ETS will produce:

<html>
<head>
<title>Home page</title>
</head>
<body>
<hl>Home page</h1>
<hr>
<div>with our partner foobar.com (123)</div>
<hr>
Downloads Links
<hr>
<div align="center”>Last modified: Thursday, January 23, 2003</div>
<div>with our partner foobar.com (123)</div>
</body>
</html>

What happened?

ETS found the tag {partner} twice.

ETS replaced {name} with the value of $page->partner->name and {id} with the value of
$page->partner->id in the outer template partner.

ETS replaced {partner} by the built template partner.

Why did it happen?

When ETS detects that a tag corresponds to an object instead of a scalar variable, it looks for an
outer template with the same name then does placements for each property of the object
exactly like a inner template.

It works the same way when the corresponding variable is an array but the template is
duplicated for each element of the array.

ETS 3.05b page 8

5. Constant elements

We want now to change the basic <hr> tag with a wonderful image we found on the web. We
don’t add new data but just rearrange again the template file like this:

{mask:main}

<html>
<head>
<title>{title}</title>
</head>
<body>
<hl>{title}</h1>
{const:separator}
{partner}
{const:separator}
{mask:menu}{label} {/mask}
{const:separator}
<div align="center”>Last modified: {lastmodified}</div>
{partner}
</body>
</html>
{/mask}

{mask:partner}
<div>with our partner {name} ({id})</div>
{/mask}

{mask:separator}

{/mask}

ETS will produce:

<html>
<head>
<title>Home page</title>
</head>
<body>
<hl>Home page</hl>

<div>with our partner foobar.com (123)</div>

Downloads Links

<div align="center”>Last modified: Thursday, January 23, 2003</div>
<div>with our partner foobar.com (123)</div>
</body>
</html>

What happened?

ETS found the tag {const:separator} three times.
ETS replaced each {const:separator} with the content of the outer template separator.

Why did it happen?

When ETS detects a constant element, it looks for an outer template with this name then replaces
the constant element with the content of the template.

If the outer template contains tags, they are parsed at the same level and not at the next one. In
this example, {title} would be replaced by ""Home page" like others {title} tags of the
template main.

ETS 3.05b page 9

6. Alternate tags

We want now to get two different templates with partner’s data.

The template file is now:

{mask:main}

<html>
<head><title>{title}</title></head>
<body>
<hl1>{title}</h1>
<hr>
{partner:partnerl}
<hr>
{mask:menu}{label} {/mask}
<hr>
<div align="center”>Last modified: {lastmodified}</div>
{partner:partner2}
</body>
</html>
{/mask}

{mask:partnerl}
<p>with our partner {name}</p>
{/mask}

{mask:partner2}

<div>with our partner {name} ({id})</div>
{/mask}

ETS will produce:

<html>
<head><title>Home page</title></head>
<body>
<hl>Home page</h1>
<hr>
<p>with our partner foobar.com</p>
<hr>
Downloads Links
<hr>
<div align="center”>Last modified: Thursday, January 23, 2003</div>
<div>with our partner foobar.com (123)</div>
</body>
</html>

What happened?

ETS found the alternate tag {partner:partnerl}.
ETS replaced {name} with the value of $page->partner->name in the template partnerl.
ETS replaced {partner:partnerl} with the built template partnerl.

Why did it happen?

When ETS finds an alternate tag (two names separated by a colon), it changes the active level
using the first name then uses the outer template defined by the second name. Next, every
property of the new level are placed. In this example, the property name corresponds to the tag
{name}.

ETS 3.05b page 10

7. PHP elements

Imagine now that we want in the second template of partner, the name to be in capitals.

Here is our new again template file:

{mask:main}

<html>
<head><title>{title}</title></head>
<body>
<hl1>{title}</h1>
<hr>
{partner:partnerl}
<hr>
{mask:menu}{label} {/mask}
<hr>
<div align="center”>Last modified: {lastmodified}</div>
{partner:partner2}
</body>
</html>
{/mask}

{mask:partnerl}
<p>with our partner {php}strtoupper({name}){/php}</p>
{/mask}

{mask:partner2}

<div>with our partner {name} ({id})</div>
{/mask}

ETS will produce:

<html>
<head><title>Home page</title></head>
<body>
<hl>Home page</h1>
<hr>
<p>with our partner FOOBAR.COM</p>
<hr>
Downloads Links
<hr>
<div align="center”>Last modified: Thursday, January 23, 2003</div>
<div>with our partner foobar.com (123)</div>
</body>
</html>

What happened?

ETS found the PHP element defined between tags {php} and {/php}.
After placements in it, ETS places the result of the PHP code contained in the element.

Why did it happen?

When ETS finds a PHP element, it calls PHP to parse its content and places the result. The PHP
code must be written to stand for a scalar value. It is not recommended to use PHP elements to
do something else than formatting data to preserve the separation logic.

ETS 3.05b page 11

8. Missing values

We want the template to be valid even if, for some specific contexts, there is no partner
information to print out.

Here is the data tree, without partner’s data.

$page->title = "Home page”;
$page->lastmodified = "Thursday, January 23, 2003";

$page->menu[1]->url = "download.php";
$page->menu[1]->label = "Downloads";

$page->menu[2]->url = "links.php";
$page->menu[2]->label = "Links";

We don’t modify the template file:

{mask:main}

<html>
<head><title>{title}</title></head>
<body>
<h1l>{title}</hl1>
<hr>
{partner:partnerl}
<hr>
{mask:menu}{label} {/mask}
<hr>
<div align="center”>Last modified: {lastmodified}</div>
{partner:partner2}
</body>
</html>
{/mask}

{mask:partnerl}
<p>with our partner {php}strtoupper({name}){/php}</p>
{/mask}

{mask:partner2}

<div>with our partner {name} ({id})</div>
{/mask}

ETS will produce:

<html>
<head><title>Home page</title></head>
<body>
<hl>Home page</h1>
<hr>
<hr>
Downloads Links
<hr>
<div align="center”>Last modified: Thursday, January 23, 2003</div>
</body>
</html>

What happened?

ETS found the tag {partner:partnerl}.
ETS didn’t find partner in the data tree to match with the template so deleted the tag.

Why did it happen?
When ETS finds a simple tag, an alternate tag or an inner template which doesn’t match with
any data of the data tree, it deletes the element.

ETS 3.05b page 12

9. Simple conditional elements

We want now to print out a message when partner is missing.

We keep the same data tree, but modify the template file:

{mask:main}

<html>
<head><title>{title}</title></head>
<body>
<hl1>{title}</h1>
<hr>
{partner:partnerl}{mis:partner}No partner{/mis}
<hr>
{mask:menu}{label} {/mask}
<hr>
<div align="center”>Last modified: {lastmodified}</div>
{partner:partner2}
</body>
</html>
{/mask}

{mask:partnerl}
<p>with our partner {php}strtoupper({name}){/php}</p>
{/mask}

{mask:partner2}

<div>with our partner {name} ({id})</div>
{/mask}

ETS will print out:

<html>
<head><title>Home page</title></head>
<body>
<hl>Home page</h1>
<hr>
No partner
<hr>
Downloads Links
<hr>
<div align="center”>Last modified: Thursday, January 23, 2003</div>
</body>
</html>

What happened?

ETS found the template partner between tags {mis:partner} and {/mis}.
ETS didn’t find partner in the current level of the data tree so placed the content of this
element.

Why did it happen?

When ETS finds a missing element, it places it if the corresponding data is not set, is null or doesn’t
exist.

The set element {set:partner} ... {/set} would be placed if partner was not missing.

ETS also provides {mis:variable:value} ... {/mis} which is placed when variable is different
to value or variable is missing and {set:variable:value} ... {/set} which is placed when
variable has a value of value.

ETS 3.05b page 13

10. Choose-variable elements

We want now to specify a style for each known partner.

Partner’s data are back:

$page->title = "Home page";
$page->lastmodified = "Thursday, January 23, 2003";

$page->partner->name = "foobar.com";
$page->partner->id = 123;

Here is the new template file:

{mask:main}
<html>
<head><title>{title}</title></head>
<style>
{mask:partner}
{choose:id}
{when:120} body { color:red; } {/when}
{when:123} body { color:blue; } {/when}
{else} body { color:black; } {/else}

{/choose}
{/mask}
</style>
<body>
<h1>{title}</h1>
<hr>
{mask:partner}<p>with our partner {name}</p>{/mask}
<hr>
<div align="center”>Last modified: {lastmodified}</div>
</body>
</html>
{/mask}

ETS will produce:

<html>
<head><title>Home page</title></head>
<style>
body { color:blue; }
</style>
<body>
<hl>Home page</h1>
<hr>
<p>with our partner foobar.com</p>
<hr>
<div align="center”>Last modified: Thursday, January 23, 2003</div>
</body>
</html>

What happened?

ETS found the choose-variable element between tags {choose: id} and {/choose}.
ETS placed the content of the when-value element between tags {when:123} and {/when}.

Why did it happen?

When ETS finds a choose-variable element, it places the content of the when-value element
which corresponds to the value of the variable. If no when-value element corresponds, ETS
places the else element.

ETS 3.05b page 14

11. Other conditional elements

ETS provides two other conditional elements.
If element

The if element {if:test} ... {/if} is used when you want to do more complex conditions. The
part test of the tag {if:test} contains any valid PHP condition using simple tags.

Here is a valid if element:

{if: {id} > 99 and {name} !'= "foobar.com"} ... {/if}

Simple choose element

The simple choose element {choose} ... {choose} is used when you’ve got to construct a
condition sequence if-elseif-else.

Here is a valid simple choose element:

{choose}
{when: {id} < 100} ... {/when}
{when: {id} == 100} ... {/when}
{else} ... {/else}

{/choose}

Note: these two element types are very useful in complex situations but there are twice slower
than others conditional elements. So they should be used if simpler ones can’t.

ETS 3.05b page 15

12. Call elements

Here is the extraction of a template file:

éi& width="{const:a_width}">{aa}</td>
<td width="{const:b_width}'">{ab}</td>
<td width="{const:c_width}''>{ac}</td>

{/maskf-

We want to use the same template with different data because the template is heavily used and
supposed to often change.

And here is the new one, once the template is modified to used a template:

%éélI:td}{arg:ta}{const:a_width}{/arg}{arg:tb}a{/arg}{arg:tc}{aa}{/arg}{/calI}
{call:td}{arg:ta}{const:b_width}{/arg}{arg:tb}b{/arg}{arg:tc}{ab}{/arg}{/call}
{call:td}{arg:ta}{const:c_width}{/arg}{arg:tb}c{/arg}{arg: tc}{ac}{/arg}{/call}
{/maskf-
{mask:td} i

<td width="{ta}"">{tc}</td>
{/mask}

The two constructs will produce the same output. For example:

;ié width=""30">0ne</td>
<td width="40">Two</td>
<td width="30">Three</td>

{/maskf-

What happened?

ETS found the call element between tags {call:td} and {/call}.
ETS built the outer template td using built arguments of the call element.
ETS replaced the call element by the built template td.

Why did it happen?

When ETS detects a call element, it places the called outer template then places argument
elements of the call element.

If the call element hasn’t any argument, you can use a constant element instead.

ETS 3.05b page 16

13. Path (part 1)

Menu data are now back and we want to trace the active partner when a visitor clicks our links.

Here is the data:

$page->title = "Home page";
$page->lastmodified = "Thursday, January 23, 2003";

$page->partner->name = "foobar.com";
$page->partner->id = 123;

$page->menu[1]->url = "download.php™;
$page->menu[1l]->label = "Downloads";

$page->menu[2]->url = "links.php";
$page->menu[2]->label = "Links";

Here is the new template file:

{mask:main}

<html>
<head><title>{title}</title></head>
<body>
<h1>{title}</hl1><hr>
{menu}<hr>
<div align="center”>Last modified: {lastmodified}</div>
</body>
</html>
{/mask}

{mask:menu}
{label}
{/mask}

ETS will produce:

<html>
<head><title>Home page</title></head>
<body>
<hl>Home page</hl><hr>
Downloads Links<hr>
<div align="center”>Last modified: Thursday, January 23, 2003</div>
</body>
</html>

What happened?

ETS found the tag {//partner/id} in the outer template menu.
ETS replaced it with the value of $page->partner->id.

Why did it happen?

When ETS finds an absolute path (a path that begins with and double slash) in a valid element, it
starts again from the root of the data tree to find the corresponding property. In this example, ETS
looks for $page->partner->id.

ETS also manages relative paths. In part 10, you could use {choose:partner/id} ...

{/choose} instead of {mask:partner}{choose:{id} ... {/choose}{/mask} in the main
template to jump to the property id of the level partner of the current level.

ETS 3.05b page 17

Absolute and relative paths accepts also index to specify a particular element of an array. For
example, {//nameA[3]/nameB} places nameB property of the fourth element of nameA.

You can also use system indexes _First and _last which represent first and last elements of the
array.

Relative and absolutes paths are available for simple tags, alternate tags, template and simple
conditional elements, but also for the test part of complex conditional elements.

ETS 3.05b page 18

14. Path (part 2)

Imagine finally you want to display label’s partners based on an indexed array...

Here is the data:

$page->title = "Path using ..";

$page->mypartners[0]->id = O;
$page->mypartners[1l]->id = 3;
$page->partners[1]->id = 1;

$page->partners[1]->label = "foobar.com";
$page->partners[2]->id = 2;
$page->partners[2]->label = "foo.bar";
$page->partners[3]->id = 3;
$page->partners[3]->label = "foobar 1°;

Here is the new template file:

{mask:main}
<html>
<head><title>{title}</title></head>
<body>
<h1>{title}</hl1><hr>
{mask:mypartners}
{mask://partners}
{if: {id} == {..7/..71d} }<p>{label}</p>{/if}
{/mask}
{/mask}
</body>
</html>
{/mask}

ETS will produce:

<html>
<head><title>Path using ..</title></head>
<body>
<hl>Path using ..</hl1><hr>
<p>foobar.com</p>
<p>foobar 1</p>
</body>
</html>

What happened?

ETS found the tag {. -7/. - /id} in the test part of the if element.
ETS replaced the tag with the value of the variable id of the current element of the array
mypartners.

Why did it happen?

When ETS finds a parent element in a path, it goes back to the parent of the current template
and retrieved associated level to define the new active level.
To bypass a template starting with 7/, you must use . . twice.

ETS creates numbers of elements when working with arrays: you can use _start, previous,

_next and _end to access respectively to the first, the previous, the next or the last element of
the array which the current element belongs to. There’s also _parent which is a alias for . .

ETS 3.05b page 19

Reference

You will found here the complete description of each element of ETS.

1. Simple tag element
Places an outer template or the value of a variable.

Syntax

{name}

Template tree

Number of occurrences Unlimited

Parent elements Test of if and when-test elements
Any element aside from call, choose and choose-variable elements

Child elements None

Rules

if the parent element is a test of a conditional element
if the variable name is a string
place the escaped string between double quotes
else if the variable name is boolean
place TRUE or FALSE
else if the variable name is numeric
place the value
else if the variable is missing
place NULL
else
disappear
else
if the outer template name exists
if the variable name is scalar
place the content of the template
else if the variable name is an object
place the content of the template
change the current level to name
else if the variable name is an array
for each element of the array
place the content of the template
change the current level to name
else
disappear
else
if the variable name is scalar
place the value of this variable
else
disappear

ETS 3.05b page 20

Remarks

FALSE values and empty strings stand for scalar value in a test of a conditional element, PHP
element and evaluated elements and for missing elsewhere. NULL values, non-existing variables,
empty arrays and empty objects are always missing.

Strings are placed with double quotes and are escaped to accept carriage returns and
tabulations in PHP elements and evaluated part of elements. There are not otherwise.

This element accepts absolute and relative paths for name.

Examples with scalar variables

Template PHP code Result
{mask:main}{a}{/mask} $ets->a = 4; 4
{mask:main}{b}{/mask} $ets->b = NULL; (none)
Examples with outer templates
Template PHP code Result
{mask:main} $ets->c = 1; c with 2
{c} $ets->d = 2;
{/mask}
{mask:c}c with {d}{/mask}
{mask:main} $ets->e->F = 2; e with 2
{e}
{/mask}
{mask:e}e with {f}{/mask}
{mask:main} $ets->a = 1; (none)
{e}
{/mask}
{mask:e}Content of e{/mask}
Examples in tests
Template PHP code Result
{if: {a} == 4 }a == 4{/if} $ets->a = 4; a == 4
{if: {a} }a is TRUE{/if} $ets->a = TRUE; a is TRUE
{if: {a} == "ets" }ETS{/if} $ets->a = "ets”; ETS
{if: {&a} == 1 }a == 1{/if} $ets->not_a = 1; (none)
{if: {a[1]1/b} == 2}b == 2{/if} $ets->a[0]->b = 1; b ==2
$ets->a[1]->b = 2;
Examples in evaluated part of elements
Template PHP code Result

{repeat: {a} / 10}*{/repeat}

$ets->a = 30;

EE

{mask:main}
{b:{c}}
{/mask}

{mask:d}-{e}-{/mask}

$ets->b->e = "|";

$ets->c = "d";

ETS 3.05b

page 21

2. Alternate tag element
Places an outer template with a different name.

Syntax

{variable:template}

Template tree

Number of occurrences |Unlimited
Parent elements Any element aside from call, choose, choose-variable and PHP
elements
Child elements In template, PHP code, simple tags
Rules

place simple tags in template
if template is a valid PHP code that stands for a string value
if the outer template template exists
if the variable variable is scalar
place the content of the template
else if the variable variable is an object
place the content of the template
change the current level to variable
else if the variable name is an array
for each element of the array
place the content of the template
change the current level to name
else
disappear
else variable is scalar
place the value of this variable
else
disappear
else if template produces a fatal error
halt the script
else
disappear

Remarks

FALSE values, empty strings, NULL values, non-existing variables, empty arrays and empty objects
stand for missing in variable.

This element accepts absolute and relative paths for variable.
About simple tags in template:
- FALSE values and empty strings stand for scalar value,

- strings are placed with double quotes and are escaped to accept carriage returns and
tabulations.

ETS 3.05b page 22

Warning: as indicated in rules, when the evaluated code produces a fatal error, the script halts.
This means that you will get an empty result. It happens generally when you’re calling a missing

function.

Examples

Template

PHP code

Result

{mask:main}
{a:b}
{/mask}
{mask:b}b with {a}{/mask}

$ets->a = 1;

b with 1

{mask:main}
{c:d}
{/mask}
{mask:d}c with {e}{/mask}

$ets->c->e = 1;

c with 1

{mask:main}
T = {f:xx}
{/mask}

$ets->F = 1;

ETS 3.05b

page 23

3. Template element
Defines a template and, if inner, places it.

Syntax

{mask:name} ... {/mask}

Template tree

Number of occurrences |Unique name if outer
Unlimited if inner

Parent elements Any element aside from call, choose, choose-variable and PHP
elements if inner
None if outer

Child elements Text, comment, cdata and any element aside from argument,
when-value, when-test and else elements

Rules

if the variable name is scalar
place the content of the template
else if the variable name is an object
place the content of the template
change the current level to name
else if the variable name is an array
for each element of the array
place the content of the template
change the current level to name
else
disappear

Remarks

This element accepts absolute and relative paths for name for inner templates. They don’t in outer
templates.

Examples
Template PHP code Result
{mask:main} $ets->a = 1; Content of a
{mask:a}Content of a{/mask}
{/mask}
{mask:main} $ets->b->a = 1; Content of b
{mask:b}Content of b{/mask}
{/mask}
{mask:main} $ets->c[0]->a = 1; Content of c
{mask:c}Content of c{/mask} $ets->c[1]->a = 1; Content of c
{/mask} $ets->c[2]->a = 1; Content of c
{mask:main} $ets->d = *7; (none)
{mask:d}Content of d{/mask}
{/mask}
{mask:main} $ets->e[0][0]->a = 1; Content of e
{mask:e}Content of e{/mask} $ets->e[0][1]->a = 1; Content of e
{/mask} $ets->e[1][0]->a = 1; Content of e
$ets->e[1][1]->a = 1; Content of e

ETS 3.05b page 24

Template PHP code Result
{mask:main} $ets->F[0]->a = 1; ist f
{mask:f} 2nd f
1st f
{mask://f}2nd F{/mask}
{/mask}
{/mask}
ETS 3.05b page 25

4. Set element

Places a content when a variable is set (not missing).

Syntax

{set:variable} ... {/set}

Template tree

Number of occurrences Unlimited

Parent elements

elements

Any element aside from call, choose, choose-variable and PHP

Child elements

Text, comment, cdata and any element aside from argument,
when-value, when-test and else elements

Rules

if variable is not missing

place the content of the element

else

disappear

Remarks

FALSE values, empty strings, NULL values, non-existing variables, empty arrays and empty objects

stand for missing.

This element accepts absolute and relative paths for variable.

Examples

Template PHP code Result

{set:a}a is not missing{/set} $ets->a = TRUE; a is not missing
{set:b}b is not missing{/set} $ets->b = NULL; (none)

{set:c}c is not missing{/set} $ets->c = FALSE; (none)

{set:d}d is not missing{/set} $ets->d = *7; (none)

{set:e}e is not missing{/set} $ets->e->a = 1; e is not missing

$ets->e->b = 2;
ETS 3.05b page 26

5. Set-value element

Places a content when a variable has a specific value.

Syntax

{set:variable:value} ... {/set}

Template tree

Number of occurrences

Unlimited

Parent elements

Any element aside from call, choose, choose-variable and PHP

elements

Child elements

Text, comment, cdata and any element aside from argument,

when-value, when-test and else elements

Rules

if variable has a value of value
place the content of the element

else
disappear

Remarks

{set:variable:NULL} or {set:variable:} don’t work. Use {mis:variable} instead.

This element accepts absolute and relative paths for variable.

value accepts simple strings without spaces, single and double quotes strings.

Examples

Template PHP code Result
{set:a:3}a == 3{/set} $ets->a = 3; a==3
{set:b:value}b == “value"{/set} $ets->b = "value”; b == “value*
{set:c:"val ue"}c == "val ue"{/set} $ets->c = "value~; (none)
{set:d:4}d == 4{/set} $ets->d = NULL; (none)

ETS 3.05b

page 27

6. Missing element
Places a content when a variable is missing.

Syntax
{mis:variable} ... {/mis}

Template tree

Number of occurrences Unlimited

Parent elements Any element aside from call, choose, choose-variable and PHP
elements
Child elements Text, comment, cdata and any element aside from argument,

when-value, when-test and else elements

Rules
if oo is missing

place the content of the element
else

disappear

Remarks

FALSE values, empty strings, NULL values, non-existing variables, empty arrays and empty objects
stand for missing.

This element accepts absolute and relative paths for variable.

Examples
Template PHP code Result
{mis:a}a is missing{/mis} $ets->a = TRUE; (none)
{mis:b}b is missing{/mis} $ets->b = NULL; b s missing
{mis:c}c is missing{/mis} $ets->c = FALSE; c is missing
{mis:d}d is missing{/mis} $ets->d = *7; d is missing

ETS 3.05b page 28

7. Missing-value element

Places a content when a variable has not a specific value or is missing.

Syntax

{mis:variable:value} ... {/mis}

Template tree

Number of occurrences

Unlimited

Parent elements

Any element aside from call, choose, choose-variable and PHP

elements

Child elements

Text, comment, cdata and any element aside from argument,

when-value, when-test and else elements

Rules

if variable has not a value of value or is missing
place the content of the element

else
disappear

Remarks

{mis:variable:NULL} or {mis:variable:} don’t work. Use {set:variable} instead.

This element accepts absolute and relative paths for variable.

value accepts simple strings without spaces, single and double quotes strings.

Examples

Template PHP code Result
{mis:a:3}a = 3{/mis} $ets->a = 3; (none)
{mis:b:value}b = “value*{/mis} $ets->b = "value”; (none)
{mis:c:"val ue"}c 1= "val ue"{/mis} $ets->c = "value~; c 1= "val ue"
{mis:d:4}d '= 4{/mis} $ets->d = NULL; d =4

ETS 3.05b

page 29

8. PHP element
Places a content which will be parsed as PHP code.

Syntax
{php} ... {/php}

Template tree

Number of occurrences |Unlimited
Parent elements Any element aside from call, choose, choose-variable and PHP
elements
Child elements Simple tags, PHP code
Rules

if the content is a valid PHP code and stands for a scalar value
place the representation of this value

else if the content is produces a fatal error
halt the script

else
disappear

Remarks
PHP element should be used to format values only.

About simple tags in a PHP element:
- FALSE values and empty strings stand for scalar value,
- strings are placed with double quotes and are escaped to accept carriage returns and
tabulations.

Warning: as indicated in rules, when the evaluated code produces a fatal error, the script halts.
This means that you will get an empty result. It happens generally when you’re calling a missing
function. When the code produces a parse error or something else, the script doesn’t halt but
the PHP element disappears.

Examples
Template PHP code Result
{php}sprintf("%.2F>, {price}){/php} $ets->price = 4.3; 4.30
{php}date("Y", {date}){/php} $ets->date = time(); 2003
{php}strtolower({string}){/php} $ets->string = "LOWER"; lower
{php}sprintf("%.2F>, {price}){/php} $ets->price = NULL; (none)
Before $ets->label = "abc”; (none)
{php}missing_function({label}){/php}
After

ETS 3.05b page 30

9. Constant element
Places an outer template.

Syntax

{const:template}

Template tree

Number of occurrences |Unlimited
Parent elements Any element aside from call, choose, choose-variable and PHP
elements
Child elements In template, PHP code, simple tags
Rules

place simple tags in template
if template is a valid PHP code that stands for a string value
if the outer template template exists
place its content
else
disappear
else if template produces a fatal error
halt the script
else
disappear

Remarks
This element doesn’t change the current level.
This element is independent from the data tree.
About simple tags in template:
- FALSE values and empty strings stand for scalar value,
- strings are placed with double quotes and are escaped to accept carriage returns and
tabulations.
Warning: as indicated in rules, when the evaluated code produces a fatal error, the script halts.

This means that you will get an empty result. It happens generally when you’re calling a missing
function.

Examples
Template PHP code Result
{mask:main} $ets->not_a = 1; Content of a
{const:a}
{/mask}

{mask:a}Content of a{/mask}

1]
w

{mask:main} $ets->price (none)
{const:b}

{/mask}

{mask:not_b}Content{/mask}

ETS 3.05b page 31

Template

PHP code

Result

{mask:main}
{const:c}
{/mask}

{mask:c}c with {d}{/mask}

$ets->d = 1;

c with 1

ETS 3.05b

page 32

10. If element
Places a content if a test is TRUE.

Syntax
{if:test} ... {/if}

Template tree

Number of occurrences Unlimited

Parent elements Any element aside from call, choose, choose-variable and PHP
elements
Child elements In test, PHP code, simple tags

In content, text, comment, cdata and any element aside from
argument, when-value, when-test and else elements

Rules

place simple tags in test

if test is a valid PHP code that stands for the boolean value TRUE
place its content

else if test produces a fatal error
halt the script

else
disappear

Remarks

About simple tags in an if element:
- FALSE values and empty strings stand for scalar value,
- strings are placed with double quotes and are escaped to accept carriage returns and
tabulations.

Warning: as indicated in rules, when the evaluated code produces a fatal error, the script halts.
This means that you will get an empty result. It happens generally when you’re calling a missing
function.

Examples

Template PHP code Result

{if: {a} == 4 }a == 4{/if} $ets->a = 4; a == 4

{if: {a} }a is TRUE{/if} $ets->a = TRUE; a is TRUE

{if: {a} == "ets" }ETS{/if} $ets->a = "ets”; ETS

{if: {&a} == 1 }a == 1{/if} $ets->not_a = 1; (none)

{if: {a[1]1/b} == 2}b == 2{/if} $ets->a[0]->b = 1; b == 2
$ets->a[1]->b = 2;

ETS 3.05b page 33

11. Choose element
Provides multiple conditions in conjunction with when-test and else elements.

Syntax

{choose} ... {/choose}

Template tree

Number of occurrences Unlimited
Parent elements Any element aside from call, choose, choose-variable and PHP
elements
Child elements when-test element, else element and comment
Rules

for each when-test chiild
place simple tags in test
if testis a valid PHP code that stands for the boolean value TRUE
place its content
exit
else if test produces a fatal error
halt the script
if an else child exists
place its content
exit
else
disappear

Remarks

Choose element defines a container to organize a sequence of multiple tests parsed like
if/elseif/.../else.

When-test children are evaluated in order from the top to the bottom until a test is TRUE.

Else element must be unique in each choose element but can be defined anywhere in the
choose element.

Warning: as indicated in rules, when the evaluated code produces a fatal error, the script halts.
This means that you will get an empty result. It happens generally when you’re calling a missing
function.

Examples
Template PHP code Result
{choose} $ets->a = 2; plural

{when:{a} < 2}singular{/when}
{else}plural{/else}
{/choose}

{choose} $ets->a = 2; a<?9
{when:{a} < O}negative{/when}
{when:{a} < 9}a < 9{/when}
{else}a >= 9{/else}

{/choose}

ETS 3.05b page 34

12. When-test element
Places a content if a test is TRUE so disables other when-test or else siblings.

Syntax

{when:test} ... {/when}

Template tree

Number of occurrences Unlimited

Parent elements Choose element

Child elements In test, PHP code, simple tags
In content, text, comment, cdata and any element aside from
argument, when-value, when-test and else elements

Rules

See choose element.

Remarks

About simple tags in an when-test element:

- FALSE values and empty strings stand for scalar value,
- strings are placed with double quotes and are escaped to accept carriage returns and

tabulations.
Examples
Template PHP code Result
{choose} $ets->a = 2; a<?9

{when:{a} < O}negative{/when}
{when:{a} < 9}a < 9{/when}
{when:{a} < 99}9 < a < 99{/when}
{else}a >= 99{/else}

{/choose}

1
N

{choose} $ets->a positive
{when:{a} < O}negative{/when}
{else}nul{/else}

{when:{a} > O}positive{/when}

{/choose}

ETS 3.05b page 35

13. Else element

Places a content if all when-test or when-value siblings are FALSE.

Syntax

{else} ... {/else}

Template tree

Number of occurrences

One per choose or choose-variable element

Parent elements

Choose or choose-variable element

Child elements

Text, comment, cdata and any element aside from argument,

when-value, when-test and else elements

Rules

See choose and choose-variable elements.

Remarks

Else element provides a default content for choose and choose-variable elements.

Examples
Template PHP code Result
{choose} $ets->a = 2; a<?9

{else}a >= 99{/else}
{/choose}

{when:{a} < O}negative{/when}
{when:{a} < 9}a < 9{/when}
{when:{a} < 99}9 < a < 99{/when}

{choose} $ets->a = 1; useless tags
{else}useless tags{/else}

{/choose}

ETS 3.05b page 36

14. Choose-variable element
Provides multiple conditions in conjunction with when-value and else elements.

Syntax

{choose:variable} ... {/choose}

Template tree

Number of occurrences Unlimited
Parent elements Any element aside from call, choose, choose-variable and PHP
elements
Child elements when-value element, else element and comment
Rules

if the variable variable is scalar
for each when-value child
if the variable variable has the value of this element
place its content
exit
if there an else child exists
place its content
exit
else
disappear
else
disappear

Remarks

Choose-variable element defines a container to organize a sequence of multiple tests parsed
like switch/case/default.

When-value children are evaluated in order from the top to the bottom until a test is TRUE.

Else element must be unique in each choose-variable element but can be defined anywhere in
the choose element.

This element accepts absolute and relative paths for variable.

Examples
Template PHP code Result
{choose:partner/id} $ets->partner->id = 2; partner #2

{when:1}partner #1{/when}

{when:2}partner #2{/when}

{when:3}partner #3{/when}

{else}no partner{/else}
{/choose}

{choose: label} $ets->label = "the dog”; 2
{when: "the fox"}1{/when}
{when: "the dog"}2{/when}
{else}0{/else}

{/choose}

ETS 3.05b page 37

15. When-value element

Places a content if the variable of the choose parent has the value of this element so disables

other when-value or else siblings.

Syntax

{when:value} ... {/when}

Template tree

Number of occurrences Unlimited

Parent elements

Choose-variable element

Child elements

Text, comment, cdata and any element aside from argument,
when-value, when-test and else elements

Rules

See choose-variable element.

Remarks

{when:NULL} or {when:} don’t work. Use {mis:variable} out of choose-variable parent

instead.

This element accepts absolute and relative paths for variable.

value accepts simple strings without spaces, single and double quotes strings.

Examples

Template

PHP code

Result

{choose:partner/id}

{else}no partner{/else}
{/choose}

{when:1}partner #1{/when}
{when:2}partner #2{/when}
{when:3}partner #3{/when}

$ets->partner->id = 2;

partner #2

{choose: label}
{when: "the fox"}1{/when}
{when: "the dog"}2{/when}
{else}0{/else}

{/choose}

$ets->label = “the dog~;

ETS 3.05b

page 38

16. Call element
Places an outer template with arguments.

Syntax

{call:template} ... {/call}

Template tree

Number of occurrences Unlimited

Parent elements Any element aside from call, choose, choose-variable and PHP
elements
Child elements In template, PHP code, simple tags

In content, argument element, comment

Rules

place simple tags in template
if template is a valid PHP code that stands for a string value
if the outer template template exists
place its content
for each argument child of the call element
add the built argument to the data tree
else
disappear
else if template produces a fatal error
halt the script
else
disappear

Remarks

Call element is parsed like a function call and works like constant element plus defines a
container where to define arguments.

Call element doesn’t change the current level.

Be careful when choosing the name of an argument to not overwrite existing data. Choose for
example a prefix like a_.

About simple tags in template:
- FALSE values and empty strings stand for scalar value,
- strings are placed with double quotes and are escaped to accept carriage returns and
tabulations.

Warning: as indicated in rules, when the evaluated code produces a fatal error, the script halts.

This means that you will get an empty result. It happens generally when you’re calling a missing
function.

ETS 3.05b page 39

Example

{call:color}{arg:a_id}2{/arg}{/call}
{const:color}

{/maék}

{mask:color}
{set:a_id:1}red{/set}
{set:a_id:2}blue{/set}

{mis:a_id}black{/mis}
{/mask}

Template PHP code Result
e $ets->a = 1; red
{call:color}{arg:a_id}1{/arg}{/call} blue

ETS 3.05b

page 40

17. Argument element

Defines an argument of a call element.

Syntax

{arg:name} ... {/arg}

Template tree

Number of occurrences

Unlimited

Parent elements

Call element

Child elements

Text, comment, cdata and any element aside from argument,
when-value, when-test and else elements

Rules

See call element.

Remarks

Argument element is built then used as a scalar variable in the called outer template.

Argument element doesn’t change the current level.

{arg:name}{/arg} wil produce the same result than if it is not defined because it defines a
empty string which stands for a missing variable.

Example

See call element.

ETS 3.05b

page 41

18. Repeat element
Places a content several times.

Syntax
{repeat:n} ... {/repeat}

Template tree

Number of occurrences Unlimited

Parent elements Any element aside from call, choose, choose-variable and PHP
elements
Child elements Text, comment, cdata and any element aside from argument,

when-value, when-test and else elements

Rules

if nis a valid PHP code that stands for an integer value
loop n times
place the content
else if n produces a fatal error
halt the script
else
disappear

Remarks
When possible, ETS creates a system variable, count, which contains the current loop.

If the number of loops is negative or zero, repeat element disappears.

Warning: as indicated in rules, when the evaluated code produces a fatal error, the script halts.
This means that you will get an empty result. It happens generally when you’re calling a missing

function.

Example
Template PHP code Result
{mask:graph} $ets->graph[0]->val = 300; faiaiad
{repeat:{val} / 100}*{/repeat} $ets->graph[1]->val = 100; *
{/mask} $ets->graph[2]->val = 600; falalalaiaiel

$ets->graph[3]->val = 150; *

{repeat: {pages} } $ets->pages = 4; 1, 2, 3, 4
{ _count}{if: { count} < {pages} }, {/if}
{/repeat}

ETS 3.05b page 42

19. Include element
Includes outer templates from a container.

Syntax

{include:container}

Template tree

Number of occurrences Unlimited

Parent elements Any element aside from call, choose, choose-variable and PHP
elements if inner
None if outer

Child elements In container, PHP code, simple tags

Rules

place simple tags in container

if container is a valid PHP code that stands for a string value
include the content of container

else if container produces a fatal error
halt the script

else
disappear

Remarks

If inner, the content of the container is parsed only when needed; if outer, it’s parsed
immediately.

Include element doesn’t place the content of the container where it’s declared. It adds outer
templates defined in the container to available outer templates list. Thus, it’s an alternative
management of container names as argument of printt or sprintt.

If the container is a file name, a relative path starts from the location of the PHP script that calls
ETS.

Warning: as indicated in rules, when the evaluated code produces a fatal error, the script halts.
This means that you will get an empty result. It happens generally when you’re calling a missing
function.

Example
Template PHP code Result
{include:library.tpl} $ets->page = "search”; I
<hl>Search</h1>
{mask:main}

{set:page:search} 5 results
{include:search.tpl} found

{/set} -
{body}
{/mask}

ETS 3.05b page 43

20. Insert element
Places the content of a container as text.

Syntax

{insert:container}

Template tree

Number of occurrences |Unlimited
Parent elements Any element aside from call, choose, choose-variable and PHP
elements
Child elements In container, PHP code, simple tags
Rules

place simple tags in container

if container is a valid PHP code that stands for a string value
insert the content of container as text

else if container produces a fatal error
halt the script

else
disappear

Remarks
Insert element inserts the content of a container only when needed and where it’s declared.

If the container is a file name, a relative path starts from the location of the PHP script that calls
ETS.

Warning: as indicated in rules, when the evaluated code produces a fatal error, the script halts.
This means that you will get an empty result. It happens generally when you’re calling a missing
function.

Examples
Template PHP code Result
{set:intro} $ets->intro = FALSE; (none)
{insert:"file.txt"}
{/set}
{set:license} $ets->license = TRUE; GNU LESSER GENERAL
{insert:"Igpl.txt"} PUBLIC LICENSE
{/set} Version 2.1, February

1999

Copyright (C) 1991,
1999 Free Software
Foundation, Inc.

ETS 3.05b page 44

21. Eval element
Places the content of a container as a template part.

Syntax

{eval :container}

Template tree

Number of occurrences |Unlimited
Parent elements Any element aside from call, choose, choose-variable and PHP
elements
Child elements In container, PHP code, simple tags
Rules

place simple tags in container

if container is a valid PHP code that stands for a string value
insert the content of container as template part

else if container produces a fatal error
halt the script

else
disappear

Remarks

Eval element works like include element because its content is parsed and works ke insert
element because its content is placed where it’s declared.

Eval element inserts the content of a container only when needed.

If the container is a file name, a relative path starts from the location of the PHP script that calls
ETS.

Warning: as indicated in rules, when the evaluated code produces a fatal error, the script halts.
This means that you will get an empty result. It happens generally when you’re calling a missing
function.

Examples
Template PHP code Result
{set:intro} $ets->intro = FALSE; (none)
{eval:"file.ets"}
{/set}
{set:license} $ets->license = TRUE; ETS
{eval:"Igpl.ets"} $ets->title = “ETS"; |
{/set} GNU LESSER GENERAL PUBLIC LICENSE
Igpl.ets Version 2.1, February 1999
{title} Copyright (C) 1991, 1999 Free
-------------------- Software Foundation, Inc.
GNU LESSER GENERAL PUBLIC -
LICENSE
Version 2.1, February

ETS 3.05b page 45

22. Safe element
Places the content of a container as a template part with restrictions.

Syntax

{safe:container}

Template tree

Number of occurrences Unlimited

Parent elements Any element aside from call, choose, choose-variable and PHP
elements
Child elements Text, comment, cdata, simple tags, set, set-value, missing, missing-

value and template elements

Rules

place simple tags in container

if container is a valid PHP code that stands for a string value
insert the content of container as template part

else if container produces a fatal error
halt the script

else
disappear

Remarks

Safe element works like eval element but only accepts, in the called container, elements which
haven’t a part that can be PHP code.

It can be used when a site contains public and private containers or when you can’t make sure
that some containers are well-formed.

ETS produces a notice message when safed containers contains unauthorized elements.
Warning: as indicated in rules, when the evaluated code produces a fatal error, the script halts.

This means that you will get an empty result. It happens generally when you’re calling a missing
function.

ETS 3.05b page 46

23. Reduce element
Defines a size reducing behaviour.

Syntax

{reduce:value}

Template tree

Number of occurrences One

Parent elements None
Child elements None
Rules

if value is OFF or NOTHING
don’t change the built document
else if value is SPACE or SPACES
remove whitespaces from the beginning and end of each line of the built document
else if value is CRLF or ON or ALL
remove whitespaces from the beginning and end of each line of the built document
remove carriage returns of the built document
Remarks

This directive must be placed out of any template. If more than one reduce directive is specified,
the last one will be used.

The default behaviour for size reducing is to do nothing.

Whitespaces stand for spaces and tabulations.

You can also use comments to suppress specific white spaces.
Whitespaces and carriage returns of cdata sections are not affected.

Examples

Template Result

{reduce:nothing} X
{mask:main}{* y
*}X

y
{/mask}

{reduce:spaces} X
{mask:main} y
X

y
{/mask}

{reduce:all} Xy
{mask:main}
X

y
{/mask}

ETS 3.05b page 47

24. Comment

Defines a comment section.

Syntax
... *}

Template tree

Number of occurrences

Unlimited

Parent elements

Any element aside from PHP element

Child elements

Ignored

Remarks

Comments are not part of the built template.

Comments can also be specified between outer templates: these parts of containers are

ignored by ETS.

Comments can be nested.

Apart from a debug process, don’t leave useless big comments in a container; it slows down ETS
because all comments are read.

Examples

Template

Result

The root template:
{mask:main}

{/mask}

Another template:
{mask:ets}

ABC
{/mask}

{const:ets} {* the main template {* nested but works too! *} *}

ABC

Active:

{mask:main}
A

{/mask}

Backup:

*

{mask:main}
B

{/mask}
*}

ETS 3.05b

page 48

25. Cdata

Defines a section where the text is not parsed.

Syntax

... #}

Template tree

Number of occurrences

Unlimited

Parent elements

Any element aside from call, choose, choose-variable and PHP
elements

Child elements

Anything becomes text

Remarks

In some situations, for example, in a CSS section or a javascript section of a HTML document, you
can safely use characters { and } if these sections are written between {# and #}. These
characters define a cdata section. In other words, these sections will be considered by ETS as

text.

Cdata can be nested.

To avoid parsing, you can also add a space, tab or carriage return after { . In this case, ETS
doesn’t generate an error and considers this content as text.

Spaces, tabs and end of lines are not affected by reduce directive in cdata.

Examples

Template

Result

{# div{color:blue;} #}

div{color:blue;}

div { color:blue; }

div { color:blue; }

div{color:blue;}

(parse error)

ETS 3.05b

page 49

26. System variables

When a level is an element of an array, ETS creates system variables for this level which can be
used as other ones.

These variables are:

Name Data type Description
_key Mixed Actual key of the element
_index Integer Numbers the element from 0
_rank Integer Numbers the element from 1
_odd Boolean TRUE if _rank is odd
_even Boolean TRUE if _rank is even
_First Boolean TRUE if the element is the first of the array
_last Boolean TRUE if the element is the last of the array
_middle Boolean TRUE if _firstis FALSE and _last is FALSE
_nhot_first | Boolean TRUE if _Firstis FALSE
_not_middle | Boolean TRUE if _middle is FALSE
_not_last Boolean TRUE if _last is FALSE
_hot_even Boolean TRUE if _even is FALSE
_not_odd Boolean TRUE if _odd is FALSE
Examples

This example shows how to alternate color of lines in a table and use a different color for the first
line.

{mask:main}

{set:line}
<table>
{mask:line}
<tr>
<td bgcolor="{const:color}">{id}</td>
<td bgcolor="{const:color}'">{label}</td>
</tr>
{/mask}
</table>
{/set}

{mis:line}No data{/mis}
{/mask}
{mask:color}{choose}
{when:{ First}}#00FF00{/when}
{when:{ odd} }#FFFFFF{/when}

{when:{ _even} }#COCOCO{/when}
{/choose}{/mask}

This example shows how to calculate the number of elements in an array and add a “s” if there is
more than 1 element.

{mask:main}
{mask:array}{set: last}{ rank} element{const:s} in array{/set}{/mask}
{/mask}

{mask:s}H{if: { rank} > 1}s{/if}{/mask}

ETS 3.05b page 50

27. Path

In a path, ETS accepts different operators and names shown in the following table:

Name Description
/ Child level in the data tree
// Root level of the data tree
-- Level of the data tree used in the parent template
_parent Alias of . .
_start First element of the current array in the data tree
_previous Previous element of the current array in the data tree
_hext Next element of the current array in the data tree
_end Last element of the current array in the data tree
Example
Template Data tree Result view
{mask:main} $ets->a = "a”;
<table border="1"> $ets->b[0]->c = 1;
{mask:b} $ets->b[1]->c = 2;
<tr> $ets->b[2]->c = 3;
<td>{ start/c}</td> $ets->b[3]->c = 4; 1 1/2(3|5|a
<td>{ previous/_previous/c}</td> |$ets->b[4]->c = 5; 1 11213l4|5/a
<td>{ previous/c}</td>
<td>{c}</td> 1|/1|2|3|4|5|5|a
<td>{_next/c}</td>
<td>{ next/_next/c}</td> 1]2|3|4|5| |5]a
<td>{_end/c}</td> 1131415 5|a

</tr>
{/mask}
{/mask}

<td>{. ./a}</td>

ETS 3.05b

page 51

28. Error handling

ETS checks PHP error level reporting before displaying a message.
ETS follows the 3 error levels of PHP.

Notice
ETS displays a message and continues to parse containers or match data and templates.

Notice messages are:

- container not found

- duplicated reduce element

- invalid value for reduce element

- datatree is not an array, an object or null (given as argument)
- wrong element in safe container

Warning
ETS displays a message and stops to parse the outer template which causes the message.

Warning message are:

- wrong element in another or at root

- unexpected closing tag

- unexpected character or space in tag
- end of comment or cdata not found

- closing tag not found

- duplicated templates

- else element duplicated

Error
ETS displays a message and halts the script
Error message are:

- entry mask not found
- containers are not array or string (given as argument)

ETS 3.05b page 52

29. User-level templates storage

If you don’t want to use the standard way to retrieve template contents provided by ETS, you
can set your own.

In this case, you must define a function named ets_source_read_handler which needs one
argument, the id of the template container, and returns the content of the container or FALSE
on error.

For example, if you store template containers in a MySQL database, this function could be:

function ets_source_read_handler($id)

{
$content = FALSE;

mysqgl_connect("myhost®, “"myuser®, “mypassword®);
mysql_select_db("mydatabase®);
$id = mysql_escape_string($id);
$h = mysql_query(*'select content from ets_source where id = "$id"");
if ($0 = mysqgl_fetch_object($h)) {

$content = $o->content;

3
mysql_free_result($h);
return $content;

}

When this function is defined, ETS uses it each time it needs to retrieve the content of a container;
those given as argument of print and sprintt and those used by include or insert elements as
well.

ETS 3.05b page 53

30. Cache system

In complement to the user-level templates storage, you can optionally store and re-use
compiled template containers so ETS will not have to parse containers each time it uses them
before playing with a data tree.

To define a complete cache system, you must define 2 functions in addition to
ets _source_read_handler: ets_cache_read_handler and ets_cache_write_handler.

ets_cache_read_handler needs one argument, the id of the container, and returns the
compiled container or FALSE when the compiled container is obsolete or on error.

ets _cache_write_handler needs two arguments, the id of the template container and the
compiled content of the container, and doesn’t return anything.

The cache system provided by ETS will automatically refresh compiled containers each time a
source container is modified.

ETS never compiles containers which are used by insert elements because there are not
template containers but only data containers.

Here is a complete set of functions which can be used to implement a file-based cache system:

// read a compiled container and check if it’s not obsolete
function ets_cache_read_handler($id)

$content = FALSE;
it (@filemtime(ets/$id.ets™) > @filemtime("tpl/$id_html™)) {
if ($handle = @fopen(ets/$id.ets”, "rb")) {
$size = @Filesize(ets/$id.ets™);
$content = @fread($handle, $size);
fclose($handle);
3

return $content;

}

// write a compiled container
function ets_cache_write_handler($id, $content)

if ($handle = @fopen(ets/$id.ets", "wb")) {
@fwrite($handle, $content);
fclose($handle);
3
3

// read a source container
function ets_source_read_handler($id)

$content = FALSE;

if ($handle = @fopen(tpl/$id.html™, "rb")) {
$size = @filesize('tpl/$id.html™);
$content = @fread($handle, $size);
fclose($handle);

return $content;

}

In this example, source templates containers are stored in the directory tpl and compiled ones
in ets.

Before using this cache system, you must fill the directory tpl with original templates files.

ETS 3.05b page 54

Here is a MySQL-based cache system:

// read a compiled container and check if it’s not obsolete
function ets_cache_read_handler($id)
{
$content = FALSE;
mysqgl_connect("myhost®, "myuser®, "mypassword®);
mysqgl_select_db("mydatabase®);
$id = mysql_escape_string($id);
$h = mysqgl_query(*“'select c.content from ets_cache c inner join " .
""ets_source s on c.id = s.id and s.date < c.date where c.id = "$id"");
if ($0 = mysqgl_fetch_object($h)) {
$content = $o->content;
s

mysql_free_result($h);
return $content;

}

// write a compiled container
function ets_cache_write_handler($id, $content)

{
mysqgl_connect("myhost®, “"myuser®, "mypassword®);
mysql_select_db("mydatabase®);
$id = mysql_escape_string($id);
$content = mysql_escape_string($content);
$h = mysqgl_query(*'select id from ets_cache where id = *$id"");
$0 = mysql_fetch_object($h);
mysql_free_result($h);
if ($0) {
mysql_query(“'update ets_cache set content = "$content® where id = "$id""");
} else {
mysql_query(*insert into ets_cache (id, content) values ("$id", “"$content®)");
3

// read a source container
function ets_source_read_handler($id)
{
$content = FALSE;
mysql_connect("myhost®, “"myuser®, "mypassword®);
mysql_select_db("mydatabase®);
$id = mysql_escape_string($id);
$h = mysgl_query(*'select content from ets_source where id = *"$id"");
if ($o0 = mysqgl_fetch_object($h)) {
$content = $o->content;

3
mysql_free_result($h);
return $content;

¥

In this example, the table ets_source contains source containers and ets_cache compiled
ones and have this structure:

CREATE TABLE ets_cache (
id varchar(100) NOT NULL default **,
date timestamp(14) NOT NULL,
content text NOT NULL,
PRIMARY KEY (id)
) TYPE=MyISAM;

CREATE TABLE ets_source (
id varchar(100) NOT NULL default **,
date timestamp(14) NOT NULL,
content text NOT NULL,
PRIMARY KEY (id)
) TYPE=MyISAM;

Before using this cache system, you must fill the table ets_source with original templates
containers.

ETS 3.05b page 55

Here is a Turck-MMCache-based cache system.
According to Turck MMCache site (http://www.turcksoft.com/en/e_mmc.htm):

“Turck MMCache is a free open source PHP accelerator, optimizer, encoder and dynamic
content cache for PHP.”

“[Turck MMCache] has been tested under PHP 4.1.0-4.3.2 under Linux and Windows with Apache
1.3 and 2.0”

To use MMCache, you must install and configure it as explained on its site.

// read a compiled container and check if it’s not obsolete
function ets_cache_read_handler($id)

{
$content = FALSE;
if (nmmcache_get("T_s$id") > @Filemtime("tpl/$id._html™)) {
$content = mmcache_get(*'C_$id");
return $content;
3

// write a compiled container
function ets_cache_write_handler($id, $content)
{
mmcache_put("'T_$id", time());
mmcache_put(*'C_$id", $content);
¥

// read a source container
function ets_source_read_handler($id)

$content = FALSE;

if ($handle = @fopen('tpl/$id.html™, “rb*)) {
$size = @Filesize(C tpl/$id._html™);
$content = @fread($handle, $size);
fclose($handle);

return $content;

}

In this example, source templates containers are stored in the directory tpl and compiled ones
in memory.

ETS 3.05b page 56

31. Miscellaneous

Simplified closing tags
Every closing tag can be simplified with {/}:

{/mask} is equivalent to {/%},
{/set}is equivalent to {/},
{/when}is equivalent to {/},
and so on.

External presentation logic

In some situations, the presentation logic can be stored outside templates containers. In this
case, ETS provides several ways to exploit it:

- you can use variable template names in alternate tag, constant and call elements,
- you can use variable container names in include, insert and eval elements.

This example shows a way to use the template name stored in the variable tpl to present the
level data:

{data:{tpl}}
This example shows a way to use a directory and a file defined in the data tree to include a file:
{include: {//directory} . “/° . {filename} }

Functions mis and set

To check if data are missing or not, you can use two functions provided by ETS which mimic the
behaviour of missing and set elements: mis(value) and set(value).

These two examples are equivalents:
{mis:varl}{mis:var2}varl and var2 are missing{/mis}{/mis}

{if: mis({varl}) && mis({var2})}varl and var2 are missing{/if}

These functions are useful to check the state of two or more variables with the | | operator of
PHP. This example is harder to define with only mis elements:

{if: mis({varl}) or mis({var2})}varl or var2 is missing{/if}
Escapes
For a value of set-value, mis-value or when-value:
- in a no-quote string, use \} to escape }
- in a single-quoted string, use * to espace "

- in a double-quoted string, use \'* to escape "

In the evaluated part of any element, use \} to escape }.

ETS 3.05b page 57

Version history

Version 3.05b (2003-12-12)

Spaces, tabs and ends of line are not affected by reduce directive in cdata sections.

Version 3.05a (2003-08-08)

Fixes and clean up

Version 3.05 (2003-07-23)

Accept empty containers (0 byte or without template)

Accept null containers (which can be several)

Check PHP error level before displaying an error

Go on parsing when a notice or a warning is found

Accept empty string as container name

Introduce safe element which works like eval but with restrictions (basically, no PHP code is evaluated in
templates)

Version 3.04a (2003-04-25)

Fix a tiny bug (display of a notice message)

Version 3.04 (2003-03-31)

Modify alternate tag, const and call elements to accept string expressions in template name
Modify include, insert, eval to accept string expressions in container name

fix a warning message for stored reduce directive

introduce eval element which works like include but for mask parts

fix text stored in choose and call elements when using simplified closing tag

Version 3.03 (2003-03-12)

introduce complete but optional cache of parsed templates with user-level handler functions

introduce user-level handler function used to delegate reads of templates

introduce _start, _next, _previous, _end and _parent (../id is the same than _parent/id)

fix behaviour of parent element of a path (..)

introduce mis(variable) and set(variable) which works like respectively missing and set element and can be
used in if elements

Version 3.02a (2003-03-03)

fix: blank page when no reduce directive

Version 3.02 (2003-02-28)

update documentation

introduce {insert:file_name} wich places a file content but doesn’t parse it
introduce {include:file_name} which adds outer templates of included file
fix colon character in value

introduce {repeat:n} which repeats its content n times

introduce simplified closing tag {/}

fix line number of error messages when there’s more than 1 file

error message when more than 1 use of reduce element

error message when a file is missing

more strict syntax when parsing templates (so more error messages)
great cleaning of code

ETS 3.05b page 58

Version 3.01 (2003-02-19)

Introduce access to data of the parent template with .. in path

Introduce management of missing outer templates with alternate tags to avoid calls to a template with the
same name (i.e. {variable:template} places the value of variable if template doesn’t exist)

Suppress infinite loops of const elements detection because it’s not conclusive in some contexts.

Version 3.00 (2003-02-01)

Introduce {call:foo} ... {/call} which works like {const:foo} with arguments

introduce {choose} ... {{choose} which works like if/elseif/.../else (cf. doc)

introduce {choose:foo} ... {/{choose} which works like switch/case/default (cf. doc)

introduce {if: test } ... {/if} where test may contain tags (with simple, relative or absolute paths)

enhance debugging information on parsing error

introduce cdata blocks {# ... #} to avoid their parsing (can be nested too)

accept now nested comments

{var:foo} and {var:foo:bar} don’t work any more, use {set:foo} and {set:foo:bar} instead

{val:foo} doesn’t work any more, use {foo} instead

remove the ability to propagate the value of a variable (scope) (it's a construct limit) but ntroduce access
to a specific element from the root (ex. {//foo/bar})

accept now outer template from variable (depending on the type of the variable)

introduce access to a specific element of an array (ex. {set:foo/bar[3]/foobar}) then introduce system
index [_first] and [_last]

introduce call to an outer template with a different name than the corresponding data {variable:template}

really detect infinite loop in circular const

MASK and STRING properties of a data level doesn't work any more (this concept doesn't allow several inner
templates corresponding to the same level in the datatree and puts presentation logic in the data tree)

introduce reduce directive but remove reduce parameter of printt (reduce behavior belongs to
presentation logic)

introduce new system variable _middle, _not_first, not_middle, not_last

accept now non printable characters (spaces, tabs, carriage returns...) before } of every tag

accept now single or double quoted strings in the value part of elements like {set:foo:...} {mis:foo:...} and
{when:foo}

accept now relative and absolute path (every data can be accessed from everywhere)

accept now multiple definition of inner templates matching with the same level in the datatree

Closing tags are simplified ({/mask} instead of {{mask:main})

ETS becomes "template driven” instead of "data driven" (ETS was completely rewritten)

ETS 3.05b page 59

Version 2.04a (2002-11-28)

fix: manage values which contain preg special character '/*

Version 2.04 (2002-11-25)

introduce mask for specific missing values of a variable

introduce mask for specific values of a variable

introduce scope of variables

introduce new system tags for arrays : _first and _last

accept now NULL as data tree

introduce new system tag for arrays : _key

change license (LGPL instead of GPL)

fix: when you reuse the same data tree with several templates, ETS kept old masks
introduce size reducing parameter

accept now variables in constant masks

reintroduce nested constant masks

introduce the prefix 'const:' for constant tags then remove verbose flag for all functions
clear out left tags because they correspond to missing variables

clear out missing level tags when the level is not missing

accept now constant mask nested in variable masks

accept now nested variable masks

Version 2.03 (private release only)

introduce system tags for arrays : _index, _odd, _even and _rank
php stuff at level step

Version 2.02 (2002-06-17)

introduce mask of missing variable {mis:varname} ... {/mis:varname}

introduce php mask {php} ... {/php}

introduce comment {* ... *}

store unfound masks (faster)

introduce mask of variable {var.varname} ... {/{var.varname}

use single quote instead of double in preg expressions

the second parameter of printt can now be an array instead of a list in a string
change conditions to be format like "constant-operator-variable" (e.g. if (FALSE === $test))
prevent infinite loops in constant masks process

modify error handler to produce errors according to PHP error settings

modify error handler output to be HTML'd

Version 2.01 (private release only)

add error handler
cache of masks becomes a global variable instead of a static variable of the function _ets_mask

Version 2.00 (2002-06-04)

masks and variables names follow the same rules than PHP variables

constant masks

use implicit masks assuming they had the same name than the corresponding object or array
main mask name is 'main’

sprintt now has only two parameters: the data tree and an optional comma separated files list
tags can't contain spaces

give up array notation, give up file masks

blocks become masks

ETS 3.05b page 60

Version 1.28 (private release only)

rearrange examples (cosmetic)

modify example templates to use new block tags

rearrange documentation

modify block tags because olders could produce non-well-formed templates (i.e, <ets:foo> becomes
{block:foo})

complete header printt function

Version 1.27 (2002-05-17)

modify header

modify prefix of private functions

fix detection of nested blocks

fix unused placeholder deletion

add test.php and test.html in package

Version 1.26 (2002-05-01)

authorize non-printable characters before the closing character (>) of ets tags

ETS 3.05b page 61

License

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not
allowed.

[This is the first released version of the Lesser GPL. It also
counts as the successor of the GNU ibrary Public License,
version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away
your freedom to share and change it. By contrast, the
GNU General Public Licenses are intended to guarantee
your freedom to share and change free software--to make
sure the software is free for all its users.

This license, the Lesser General Public License, applies to
some specially designated software packages--typically
libraries--of the Free Software Foundation and other
authors who decide to use it. You can use it too, but we
suggest you first think carefully about whether this license
or the ordinary General Public License is the better strategy
to use in any particular case, based on the explanations
below.

When we speak of free software, we are referring to
freedom of use, not price. Our General Public Licenses are
designed to make sure that you have the freedom to
distribute copies of free software (and charge for this
service if you wish); that you receive source code or can
get it if you want it; that you can change the software and
use pieces of it in new free programs; and that you are
informed that you can do these things.

To protect your rights, we need to make restrictions that
forbid distributors to deny you these rights or to ask you to
surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library
or if you modify it.

For example, if you distribute copies of the library, whether
gratis or for a fee, you must give the recipients all the rights
that we gave you. You must make sure that they, too,
receive or can get the source code. If you link other code
with the library, you must provide complete object files to
the recipients, so that they can relink them with the library
after making changes to the library and recompiling it.
And you must show them these terms so they know their
rights.

We protect your rights with a two-step method: (1) we
copyright the library, and (2) we offer you this license,
which gives you legal permission to copy, distribute and/or
modify the library.

To protect each distributor, we want to make it very clear
that there is no warranty for the free library. Also, if the
library is modified by someone else and passed on, the
recipients should know that what they have is not the
original version, so that the original author's reputation will
not be affected by problems that might be introduced by
others.

ETS 3.05b

Finally, software patents pose a constant threat to the
existence of any free program. We wish to make sure that
a company cannot effectively restrict the users of a free
program by obtaining a restrictive license from a patent
holder. Therefore, we insist that any patent license
obtained for a version of the library must be consistent with
the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by
the ordinary GNU General Public License. This license, the
GNU Lesser General Public License, applies to certain
designated libraries, and is quite different from the ordinary
General Public License. We use this license for certain
libraries in order to permit linking those libraries into non-
free programs.

When a program is linked with a library, whether statically
or using a shared library, the combination of the two is
legally speaking a combined work, a derivative of the
original library. The ordinary General Public License
therefore permits such linking only if the entire combination
fits its criteria of freedom. The Lesser General Public
License permits more lax criteria for linking other code with
the library.

We calll this license the "Lesser" General Public License
because it does Less to protect the user's freedom than the
ordinary General Public License. It also provides other free
software developers Less of an advantage over
competing non-free programs. These disadvantages are
the reason we use the ordinary General Public License for
many libraries. However, the Lesser license provides
advantages in certain special circumstances.

For example, on rare occasions, there may be a special
need to encourage the widest possible use of a certain
library, so that it becomes a de-facto standard. To
achieve this, non-free programs must be allowed to use
the library. A more frequent case is that a free library does
the same job as widely used non-free libraries. In this case,
there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-
free programs enables a greater number of people to use
a large body of free software. For example, permission to
use the GNU C Library in non-free programs enables many
more people to use the whole GNU operating system, as
well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less
protective of the users' freedom, it does ensure that the
user of a program that is linked with the Library has the
freedom and the wherewithal to run that program using a
modified version of the Library.

The precise terms and conditions for copying, distribution
and modification follow. Pay close attention to the
difference between a "work based on the library" and a
"work that uses the library". The former contains code
derived from the library, whereas the latter must be
combined with the library in order to run.

page 62

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or
other program which contains a notice placed by the
copyright holder or other authorized party saying it may be
distributed under the terms of this Lesser General Public
License (also called "this License"). Each licensee is
addressed as "you".

A "library" means a collection of software functions and/or
data prepared so as to be conveniently linked with
application programs (which use some of those functions
and data) to form executables.

The "Library", below, refers to any such software library or
work which has been distributed under these terms. A
"work based on the Library" means either the Library or any
derivative work under copyright law: that is to say, a work
containing the Library or a portion of it, either verbatim or
with modifications and/or translated straightforwardly into
another language. (Hereinafter, translation is included
without limitation in the term "modification".)

"Source code" for a work means the preferred form of the
work for making modifications to it. For a library, complete
source code means all the source code for all modules it
contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of
the library.

Activities other than copying, distribution and modification
are not covered by this License; they are outside its scope.
The act of running a program using the Library is not
restricted, and output from such a program is covered only
if its contents constitute a work based on the Library
(independent of the use of the Library in a tool for writing
it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the
Library's complete source code as you receive it, in any
medium, provided that you conspicuously and
appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence
of any warranty; and distribute a copy of this License along
with the Library.

You may charge a fee for the physical act of transferring a
copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Library or
any portion of it, thus forming a work based on the Library,
and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet
all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent
notices stating that you changed the files and the date of
any change.

c) You must cause the whole of the work to be licensed at
no charge to all third parties under the terms of this

License.

d) If a facility in the modified Library refers to a function or
a table of data to be supplied by an application program

ETS 3.05b

that uses the facility, other than as an argument passed
when the facility is invoked, then you must make a good
faith effort to ensure that, in the event an application does
not supply such function or table, the facility still operates,
and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square
roots has a purpose that is entirely well-defined
independent of the application. Therefore, Subsection 2d
requires that any application-supplied function or table
used by this function must be optional: if the application
does not supply it, the square root function must still
compute square roots.)

These requirements apply to the modified work as a whole.
If identifiable sections of that work are not derived from the
Library, and can be reasonably considered independent
and separate works in themselves, then this License, and its
terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the
Library, the distribution of the whole must be on the terms
of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every
part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or
contest your rights to work written entirely by you; rather,
the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based
on the Library with the Library (or with a work based on the
Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this
License.

3. You may opt to apply the terms of the ordinary GNU
General Public License instead of this License to a given
copy of the Library. To do this, you must alter all the
notices that refer to this License, so that they refer to the
ordinary GNU General Public License, version 2, instead of
to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then
you can specify that version instead if you wish.) Do not
make any other change in these notices.

Once this change is made in a given copy, it is ireversible
for that copy, so the ordinary GNU General Public License
applies to all subsequent copies and derivative works
made from that copy.

This option is useful when you wish to copy part of the
code of the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2
above provided that you accompany it with the complete
corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software
interchange.

If distribution of object code is made by offering access
to copy from a designated place, then offering equivalent
access to copy the source code from the same place

page 63

satisfies the requirement to distribute the source code,
even though third parties are not compelled to copy the
source along with the object code.

5. A program that contains no derivative of any portion of
the Library, but is designed to work with the Library by
being compiled or linked with it, is called a "work that uses
the Library". Such a work, in isolation, is not a derivative
work of the Library, and therefore falls outside the scope of
this License.

However, linking a "work that uses the Library" with the
Library creates an executable that is a derivative of the
Library (because it contains portions of the Library), rather
than a "work that uses the library". The executable is
therefore covered by this License. Section 6 states terms for
distribution of such executables.

When a "work that uses the Library" uses material from a
header file that is part of the Library, the object code for
the work may be a derivative work of the Library even
though the source code is not. Whether this is true is
especially significant if the work can be linked without the
Library, or if the work is itself a library. The threshold for this
to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and
small inline functions (ten lines or less in length), then the
use of the object file is unrestricted, regardless of whether it
is legally a derivative work. (Executables containing this
object code plus portions of the Library will still fall under
Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of
Section 6.

Any executables containing that work also fall under
Section 6, whether or not they are linked directly with the
Library itself.

6. As an exception to the Sections above, you may also
combine or link a "work that uses the Library" with the
Library to produce a work containing portions of the
Library, and distribute that work under terms of your
choice, provided that the terms permit modification of the
work for the customer's own use and reverse engineering
for debugging such modifications.

You must give prominent notice with each copy of the
work that the Library is used in it and that the Library and its
use are covered by this License. You must supply a copy
of this License. If the work during execution displays
copyright notices, you must include the copyright notice
for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you
must do one of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including
whatever changes were used in the work (which must be
distributed under Sections 1 and 2 above); and, if the work
is an executable linked with the Library, with the complete
machine-readable "work that uses the Library", as object
code and/or source code, so that the user can modify the
Library and then relink to produce a modified executable
containing the modified Library. (Itis understood that the
user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the
application to use the modified definitions.)

ETS 3.05b

b) Use a suitable shared library mechanism for linking with
the Library. A suitable mechanism is one that (1) uses at
run time a copy of the library already present on the user's
computer system, rather than copying library functions into
the executable, and (2) will operate properly with a
modified version of the library, if the user installs one, as
long as the modified version is interface-compatible with
the version that the work was made with.

c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d) If distribution of the work is made by offering access to
copy from a designated place, offer equivalent access to
copy the above specified materials from the same place.

e) Verify that the user has already received a copy of
these materials or that you have already sent this user a
copy.

For an executable, the required form of the "work that uses
the Library" must include any data and utility programs
needed for reproducing the executable from it. However,
as a special exception, the materials to be distributed
need not include anything that is normally distributed (in
either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself
accompanies the executable.

It may happen that this requirement contradicts the
license restrictions of other proprietary libraries that do not
normally accompany the operating system. Such a
contradiction means you cannot use both them and the
Library together in an executable that you distribute.

7. You may place library facilities that are a work based on
the Library side-by-side in a single library together with
other library facilities not covered by this License, and
distribute such a combined library, provided that the
separate distribution of the work based on the Library and
of the other library facilities is otherwise permitted, and
provided that you do these two things:

a) Accompany the combined library with a copy of the
same work based on the Library, uncombined with any
other library facilities. This must be distributed under the
terms of the Sections above.

b) Give prominent notice with the combined library of the
fact that part of it is a work based on the Library, and
explaining where to find the accompanying uncombined
form of the same work.

8. You may not copy, modify, sublicense, link with, or
distribute the Library except as expressly provided under
this License. Any attempt otherwise to copy, modify,
sublicense, link with, or distribute the Library is void, and wiill
automatically terminate your rights under this License.
However, parties who have received copies, or rights, from
you under this License will not have their licenses
terminated so long as such parties remain in full
compliance.

9. You are not required to accept this License, since you
have not signed it. However, nothing else grants you
permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not
accept this License. Therefore, by modifying or distributing

page 64

the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms
and conditions for copying, distributing or modifying the
Library or works based on it.

10. Each time you redistribute the Library (or any work
based on the Library), the recipient automatically receives
a license from the original licensor to copy, distribute, link
with or modify the Library subject to these terms and
conditions. You may not impose any further restrictions on
the recipients' exercise of the rights granted herein. You
are not responsible for enforcing compliance by third
parties with this License.

11. If, as a consequence of a court judgment or allegation
of patent infringement or for any other reason (not limited
to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict
the conditions of this License, they do not excuse you from
the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a
consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free
redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain
entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable
under any particular circumstance, the balance of the
section is intended to apply, and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe
any patents or other property right claims or to contest
validity of any such claims; this section has the sole
purpose of protecting the

integrity of the free software distribution system which is
implemented by public license practices. Many people
have made generous contributions to the wide range of
software distributed through that system in reliance on
consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is
believed to be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the
Library under this License may add an explicit
geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License

incorporates the limitation as if written in the body of this
License.

13. The Free Software Foundation may publish revised
and/or new versions of the Lesser General Public License
from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the
Library specifies a version number of this License which
applies to it and "any later version", you have the option of
following the terms and conditions either of that version or
of any later version published by the Free Software
Foundation. If the Library does not specify a license version
number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other
free programs whose distribution conditions are
incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the
free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE
LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO
OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

ETS 3.05b

page 65

Contact

Web site: http://ets.sourceforge.net
Email: phpets at hotmail dot com (indicate ETS: at the beginning of the subject to not be filtered)

ETS 3.05b page 66

