
Template Documentation for AxDCMS 0.1.1

It is recommended you disable check spelling & grammar as you type while reading this.

Contents
Forward..1
Syntax.. 2
error.tpl...3
login.tpl.. 3
news.tpl.. 5
news_comments.tpl..6
news_admin.tpl.. 8
news_admin_add.tpl.. 9
user_regedit.tpl...13
user_admin.tpl..15
main.tpl.. 16
Config File... 17
faq.tpl... 18
faq_list.tpl.. 19
faq_form.tpl... 20

Forward
Well let’s see. The templating system runs on Smarty, and this will continue to be in
future versions (no guarantees, just my current stance at the moment).

This documentation will help you make your own theme. It’s not that complex; however
keep in mind this templating system will be deprecated in 0.1+, mainly because the
current one is not very good for either module writers or template writers, so I’m taking
the idea behind Post-Nuke’s and making it actually work. The theme you make however
should be able to be ported *fairly* easily.

Templates are stored in /templates/TEMPLATE_NAME/, where TEMPLATE_NAME is
the name of your template. There also must be a TEMPLATE_NAME.conf file. Each
template must be named with a .tpl, and they are listed below. Javascript(with
modifications), CSS (but no <style></style> in a .tpl, linked only), XHTML or HTML,
DHTML, Flash, and Images may all be used in the making of the template.

At the very least templates for 0.1.1+ will need modification, so if you write one, try to
keep up to date. This document will be kept up to date. Let’s get started.

Syntax
Syntax of the templating system is what smarty uses. If you are unfamiliar, here’s a quick
rundown. You should also read the entire document to get a better understanding.

Variables
Variables are declared within the program. You use them in smarty as {$VAR_NAME},
replacing VAR_NAME with the name of the variable.

Sections
Sections are used in the template when there are sets of variables that need to formatted
the same way, and it isn’t known what these are or how many there are before runtime.
A sample would be when you have a series of links, such as navigation. For simplicities
sake, we are going to just list them.

{section name=lid loop=$links}
·{$links[lid].text}·
{/section}

Let’s disect this. {section name=LOOP_N loop=$LOOP_N}

LOOP_N is used by smarty to decide which item it is using. All that this does is make it
so that whatever LOOP_N is, it’s what goes in the [] of the variable.

LOOP_NAME is the name of the list. A section loop is basically a big numbered list,
each list having items. These items are what you would use inside the {section …}
{/section} These will be listed in the section describing the template.

The next part is inside the section. In order to access a value from a section, we must call
it differently from a standard smarty variable. The syntax is
{$LOOP_NAME[LOOP_N].ITEM_NAME}. ITEM_NAME is the name of the item you
are trying to access. These will be listed with each LOOP_NAME.

The last part is the closing tag. This goes after all the html/xhtml code you wish to repeat.
It is and always will be {/section}

Look at our code sample again. As you see, the name of the loop is links. The
“LOOP_N” is lid, which is short for loop id. It is good programming practice to name
things in a uniform way. There are two items in our loop, href and text. If you
understood the above, the code will generate the following:

·Link 1·Link 2·Link 3·

Assuming the three item “text”s are Link 1, Link 2, Link 3, all with “href”s of #. If there
were more, they would automatically be tacked on. That’s the beauty of sections. Config
file syntax is covered on page 17.

http://localhost/test.html
http://localhost/test.html
http://localhost/test.html

error.tpl
This is displayed when AxDCMS needs a simple box, like a “Successfully logged in.” or
“News Item Does Not Exist.” There are two variables in this.

title
This variable stores the title of the message. This should probably put in a high priority
place. Let’s look at the image from my theme. In this case, “User Saved” is the title. It is
at the top of the box, clear, strong, and important.

message
This variable is the content. In the case of my template, it is the message “The user…
settings.

It’s simple enough. The error template does become the body variable the main template.

login.tpl
In this template, we are introduced to l_, u_, f_, and v_ prefixes that are standard in
AxDCMS themes.

l_login
This variable is the language for User Name. l_ stands for language, and is used to allow
for multiple languages in AxDCMS. In this case, it is used as both the title of the content
box, and the button. Below, I am just going to list the language variable and what it
refers to on the screen shot.

l_username “User Name”, colon is not included, you must provide it (or not) yourself.
l_password “Password”, once again no colon.
l_remember “Remember Me”, no colon.
l_register “Register” l_yes “Yes” l_no “No”
errors “Invalid Username or Password.” It will not be empty unless the user

supplied an invalid username or password.

Because login.tpl is a form, form fields must be used. The <form> tag is used. The
method(method=“”) is “post” in this form. This needs to go around all the form
elements. In the form tag action should be
action= "{$form_action}"

There will be sample code provied. You may notice that there are no options like class or
style. These are allowed, and so are all other options, but when using id(id=“”), make
sure it has the same content as name(name=“”).

The first form element is for the username. It is set up like this:
<input name="{$f_username}" value="{$v_username}">
f_username is the name of the username field. This needs to be smarty’d incase it
changes in a later version. v_username is the value of the field, used if the login is
invalid, so the field is automatically filled.

The next form element is the password field. It is similar to above, but it is of
type=“password”, and it has no value.
<input type=”password” name="{$f_password}" value="">

Next we come to the radio buttons. These are both named (name=“”) {$f_remember}
The Yes option has a value (value=“”) of {$v_remember_true} where as the No option’s
value is {$v_remember_false}
<input
 name="{$f_remember}"
 value="{$_remember_true}" type="radio">{$l_yes}
<input
 checked="checked"
 name="{$f_remember}" value="{$v_remember_false}"
 type="radio">{$l_no}

Next, we have a register link. The language var was listed above. In
addition to that, we have a u_ variable. u_ is a prefix for url, and
will be used most of the time in a link. For this register link, we
have u_register. In conjunction with the l_register variable, we have this:
{$l_register}

Links are also allowed to have options not listed in the samples.

login.tpl also has a hidden field used in redirection. It’s name(name=“”) is {$f_location}
and it’s value(value=“”) is {$v_location}

<input type="hidden" name="{$f_location}" value="{$v_location}">

If this is not in there, serious errors can occur.

Finally, we have the submit button. So long as it’s value(value=“”) is {$l_login} you can
do whatever you want with it as long as it’s there.

news.tpl

title The title of the news post, in this case, “Huzzay! News work!”
l_author “Author” variable (no colon included, add it if you want)
author The author of the news article, in this case, “Admin”
l_date “Date Posted” variable.
date The date the article was posted, “7/17/2005” in this case.
body The content of the news post, “Testing…template.” in this case.
u_comments The url of the comments page, usually used in a
l_comments “Comments” variable.

n_comments
The number of comments, “3” in this case. This does not include the () for the reason
that it should be up to the template designer. He/She/It can use [], or whatever, just
make sure that if you use { and }, they are written as
{literal}{{/literal}{$n_comments}{literal}}{/literal}
If you want, you can even switch the order so it looks like “3 Comments”, however “1
Comments” might look funny, but research smarty and you’ll find a fix.

{literal}…{/literal} are used when you want whatever is between them to be ignored by
smarty. This can fix problems such as when an error occurs “Unrecognized tag
{{$n_comments}}” will occur if you try to use { } around the number of comments.
You must wrap each bracket into a {literal}{/literal} set, like
{literal}{{/literal}{$n_comments}{literal}}{/liternal}.

This is the same when using with javascript or css, or whatever else uses { and }, smarty
delimiters.

news_comments.tpl

title The title of the news post, in this case, “Huzzay! News work!”
l_author “Author” variable (no colon included, add it if you want)
author The author of the news article, in this case, “Admin”
l_date “Date Posted” variable.
date The date the article was posted, “7/17/2005” in this case.
body The content of the news post, “Testing…template.” in this case.
l_comments “Comments” variable.
l_by “by”
l_add_comment “Add Comment” variable.
l_title “Title” variable.
l_message “Message” variable.
l_add “Post” variable, as show on the button.

nocomments
This variable is either 1 if there are comments, and 0 if there isn’t any. Why is this
useful? For one simple reason: the {if} tag. Using the {if} tag, we have more freedom
with our template. Let’s say we had no {if} tag. We could not have something like this:

<table><tr><th colspan="2">{$l_comments}</th></tr>
{section name=cid loop=$comments}
<tr><td bgcolor="#CCCCCC">
{$comments[cid].title} {$l_by} {$comments[cid].author}</td><td
align="right">{$l_date}
{$comments[cid].date}</td></tr>
<tr><td colspan="2">{$comments[cid].body}</td></tr>
{/section}
</table>

If there were no comments, then there would be a bulky empty table with “Comments”,
and nothing below it. This is not what we want. So we modify the code to only display
the table if there are comments.

{if $nocomments ne 1}
<table><tr><th colspan="2">{$l_comments}</th></tr>
{section name=cid loop=$comments}
<tr><td bgcolor="#CCCCCC">
{$comments[cid].title} {$l_by} {$comments[cid].author}</td><td
align="right">{$l_date}
{$comments[cid].date}</td></tr>
<tr><td colspan="2">{$comments[cid].body}</td></tr>
{/section}
</table>
{/if}

If you noticed, we have a new term, “ne”. This is short for “not equal to”. In AxDCMS,
if nocomments is equal to 1, then there are no comments (clever huh?). Equal to
anything else means there are comments. You don’t have to use this, but when I was
making my template, I needed it, so I added it.

comments
Comments is a section. We discussed this in the syntax chapter. Below are the list of
items. The sample is above, listed twice, so I won’t list it again. Below, until specified,
are only items in the comments section, not stand alone variables.

title The title of the comment. “Test Comment” in the above example.
author The author of the comment. “Admin” in the above example.
date The date the comment was posted. “7/17/2005” in the above example.
body The body of the article. “Your…Gordon.” in the above example. This is

indeed a famous quote from my favorite game.

That’s all of them. These must be used inside the section as
$comments[LOOP_N].ITEM, where LOOP_N is whatever name is, in the above code,
cid. ITEM is the item you are trying to access, in this case, title, author, date, body. See
the syntax chapter for more specific items.

You may have also noticed that this page has a form. The values (value=“”) are empty.
Submit can be named(name=“”) whatever you want. The field names are as follows:

f_message The name(name=“”) of the message field (It’s a textarea in the
above, but it doesn’t have to be a textarea)

f_title The name(name=“”) of the Title field.
form_action The action of the <form …>. Method(method=“”) is “post”

news_admin.tpl

l_news “News Items” variable.
l_by “by” variable.
l_date “Date Posted” variable
l_edit “Edit” variable
l_delete “Delete” variable

news
news is a section. We discussed this in the syntax chapter. Below are the list of items.
The sample is above, listed twice, so I won’t list it again. Below, until specified, are only
items in the comments section, not stand alone variables.

title The title of the post. “Test” and “Article Test” in the above image, second
news post.

author The author of the post. “Admin” in both items in the above example.
date The date the news was posted. “7/17/2005” in the above image.
body The body of the article. “Date…innacurate.” in the above image, top item.

You can set the maximum characters this is before it is trimmed in the
config file. If it is trimmed the extention (… for my template) can be set
in the config file.

That’s all of them. These must be used inside the section as
$comments[LOOP_N].ITEM, where LOOP_N is whatever name is. ITEM is the item
you are trying to access, in this case, title, author, date, body. See the syntax chapter for
more specific items.

news_admin_add.tpl

If you haven’t noticed by now, I have taken a lot of tips from other PHP programs,
phpBB being one of them.

I’m just going to list most of the variables for my sanity. These are basically a copy-
>paste find->replace from the source code. Some I’ve gone into more detail with.
Anyhow, on with the documentation.

smilies
smilies is a section. We discussed this in the syntax chapter. Below are the list of
items. The sample is above, listed twice, so I won’t list it again. Below, until specified,
are only items in the comments section, not stand alone variables.

code The smilie code. The one smilie that comes with AxDCMS is “:)”
text The smilie description. For example, “smile”
src The image name of the smilie. This has everything, just pop it into the

src(src=“”) attribute of an image tag.

That’s all of them. These must be used inside the section as $smilies[LOOP_N].ITEM,
where LOOP_N is whatever name is. ITEM is the item you are trying to access, in this
case: code, text, or src. See the syntax chapter for more specific items.

table_name “Add News Item” variable.

l_title "Title" variable.
l_message "Message" variable.
l_smilies "Emoticons" variable.
l_B "B" variable.
l_i "i" variable.
l_u "u" variable.
l_quote "Quote" variable.
l_code "Code" variable.
l_list "List" variable.
l_img "Img" variable.
l_url "URL" variable.
l_fontcolor "Font Color" variable.
l_default "Default" variable. This should be right before the font_c section,

as this is not included in that section.
font_c
font_c is a section. Sections are described in the syntax section, and are used in above
templates. font_c is used to loop the option tags in Font Color: dropdown. The following
variables are part of this section until otherwise specified.

v This is the lowercase one word version, the html color. e.g darkred or green.
t This is the text of the color option.

That’s all of them. To assist understanding, a sample is included below from xDeep.

{section name=c loop=$font_c}
<option style="color:{$font_c[c].v}; background-color: #FAFAFA"
value="{$font_c[c].v}" class="content_body">{$font_c[c].t}</option>

{/section}

l_fontsize "Font Size" variable.

font_s
font_s is a section. Sections are described in the syntax section, and are used in above
templates. font_s is used to loop the option tags in Font Size: dropdown. The following
variables are part of this section until otherwise specified.

v This is the size, in px, of the font.
t This is the text of the size option.

That’s all of them. To assist understanding, a sample is included below. This is from the
xDeep template.

{section name=s loop=$font_s}
<option value="{$font_s[s].v}"
class="content_body">{$font_s[s].t}</option> {/section}
l_closetags "Close Tags" variable.

l_options "Options" variable
l_mustMessage "You must enter a message when posting." variable.
l_mustTitle "You must enter a title when posting." variable.
v_helpline "Tip: Styles can be applied quickly to selected text." variable.

f_frontpage, v_frontpage, c_frontpage, l_frontpage
These make up the checkbox & “Add to front page” part of the form. An exerpt from the
default template “xDeep” is included below.
<td><input type="checkbox" name="{$f_frontpage}" value="{$v_frontpage}"
{$c_frontpage} /></td>
<td>{$l_frontpage}</td>

l_preview
This field is important. This MUST be the value(value=“”) of the preview button, or it
will not work. I don’t know how to remove this dependency, so until someone better
with php and forms does, stay with me on this.

l_submit
Important like the above, only it has to be the value(value=“”) of the Post button.

f_message
The name of the Message text area. It doesn’t have to be a text area, but it has to be
named message. This is for the field that the body of the news item will be entered into.

v_message
This is the value of the message field, used in previewing and editing.

f_title
The name of the title field, in the picture, it’s the one to the right of “Title”

v_title
This is the value of the title field, used in previewing and editing.

f_submit
This one is important. It is the name(name=“”) value for both the Preview button and the
Post button.

f_poster
This template has one hidden field for it’s form, the poster field. f_poster is the
name(name=“”) attribute, v_poster is the value(value=“”) attribute.

v_errors
A list of errors. This is shown as bright red text next to “Add News Item”, and it fits on
one line to give you a picture of size. I don’t suggest the bright red text, unless it
matches. You can put this where ever you think it looks best.

form_action
This is the action(action=“”) of the <form …> tag in your template. The
method(method=“”) is “post”.

The above is complicated, long, and was a real pain to make, so below, I have a list of
variables you will need if you want make it simple, e.g. a title box, a message box, a
preview button, and a submit button.

l_title l_message l_preview
l_submit f_message v_message
f_title v_title f_submit
f_poster v_poster v_errors
form_action table_name

Barebones will make it much easier. 0.0-2 will make it much, much easier, for the if the
script is included, it will be placed into the language dir, and the link code will be called
via a {$javascript_link} or what not. I may also put things like the font drop downs into
a section to make it easier. And of coarse, the “Options” row will reappear with an “Is
Article” option, making it so that it doesn’t appear on the front page.

user_regedit.tpl

If you notice I am getting vaguer and vaguer as this gets longer and longer. If you were
clever, you wouldn’t wonder this because you would see that the images are taller than
the one’s at the beginning. That and you should know this by now. Anyhow.

e_show
Remember the {if} from a while back? It’s used here again. The following is an example.

{if $e_show eq 1}
<table width="549px" cellspacing="1" cellpadding="6" border="0">
 <tr>

<td class="error">
 {$e_body}
</td>

 </tr>
</table>

{/if}

Let’s look at the code. “eq” is much like “ne”, only “eq” stands for “equal to”, the
opposite of “ne” So if e_show is equal to 1 we’ll show the error table. If not, do nothing.

e_body
The errors generated by a bad registration. These can add up and become big, so putting
the in the title of the content box is a bad idea. I put them in a nicely padded box up top.
You can do what you like. What these are separated by is set in the template config file.
l_registrationinfo “Registration Info” variable.
m_starred “Items marked…otherwise.” variable.
l_username “Username” variable, no colon or star. The star will be controlled

server side after the big template coding change (yes, yes indeed).
l_email “E-mail Address” variable, no colon or star.
l_newpass “Password” variable, no colon or star.
m_newpass “The password…log in” variable.
f_newpass This is the name(name=“”) attribute of the new password field.
form_action The action(action=“”) attribute of the <form …> tag. Form is post.

s_admin
This is an important variable, used in an {if}. If it equals 1, then the template is being
called from an admin page. This requires a slight change of fields. If it does equal 1, you
want to add a radio option to set the user to admin status or not. This is set to change to a
rank drop down in a future version, when ranks are implimented. If it doesn’t equal 1,
you want a password verification field. Let’s look at some sample code.

{if $s_admin eq 1}
<tr>
<td>{$l_isadmin}:</td>
<td>
<input type="radio" name="{$f_isadmin}" value="1" {$v_isadmin_y} />
{$l_yes}
<input type="radio" name="{$f_isadmin}" value="0" {$v_isadmin_n} />
{$l_no}
</td>
</tr>
{else}
<tr>
<td>{$l_confpass}: *
{$m_confpass}</td>
<td><input type="password" name="{$f_confpass}" value="" /></td>
</tr>
{/if}

As you can see, it ended up working out perfectly. In admin, isadmin is at the bottom. In
register, confirm password is at the bottom, below new password. Back to the variables.

f_isadmin This is the name(name=“”) attribute of the isadmin radio buttons.
v_isadmin_y This one is curious. If the database says that the users that is being edited

is an admin, this will equal to “checked=‘checked’”, otherwise it will be
blank, and v_isadmin_n will be equal to “checked=‘checked’”. These
aren’t required, but sure are helpful.

l_confpass “Confirm Password” variable, no colon or star.
m_confpass “You…typos” variable.
f_confpass The Confirm Password field name(name=“”)
l_yes “Yes” variable. l_no “No” variable.
l_submit “Submit” variable l_reset “Reset” variable.
f_username This is the name(name=“”) attribute of the Username field.
v_username This is the value(value=“”) attribute of the Username field.
f_email This is the name(name=“”) attribute of the Email field.
v_email This is the value(value=“”) attribute of the Email field.

user_admin.tpl

l_delete “Delete” variable.
l_edit “Edit” variable.
l_users “Users” variable.

user
user is a section. We discussed this in the syntax chapter. Below are the list of
items. The sample is above, listed twice, so I won’t list it again. Below, until specified,
are only items in the comments section, not stand alone variables.

i This is 1 or 2, useful in alternating row colors as I did.
<td class="row{$user[uid].i}"

rank This is 1 for admin, 0 for normal. I used an {if} to change the text class for
admins to the tealish color.

name The name of the user, eg “T0x1c” or “bisbebri”
email The user’s email. I used it in hyperlinks as mailto:{$user[uid].email}

combos.
u_edit The url of the user edit form. I used it in an <a> around {$l_edit}
u_delete The url of the user delete form. I used it in an <a> around {$l_delete}

That’s all of them. These must be used inside the section as $user[LOOP_N].ITEM,
where LOOP_N is whatever name is. ITEM is the item you are trying to access, in this
case: code, text, or src. See the syntax chapter for more specific items.

main.tpl

Ah, main.tpl. It’s on every page loaded. All the other templates we have covered are just
a variable in this, literally.

body This should be placed in the place where you want the other templates to
fit into, in my case, the white space below the navigation bar, but above
the footer and copyright.

site_title This is the title of the site, what goes between the <title></title> tags in a
standard web page.

footer This is the footer of the site. At the moment, it says the app name (AxNet
Developers CMS) followed by the version (v0.1.1). The footer is pretty
much required, the users of your template won’t be too happy when I deny
them support because support is only offered to the people who keep the
footer. Thanks for the idea phpBB!

nav_main nav_main is a section. The variables are listed below.
 href The complete url, should be href=“{$nav_main[LOOP_N].href}”
 text The text of the link. Example “Home” from my nav bar.

Config File
New in version 0.1.1, template configuration files. These are simple pieces of code that
do things that the templates can’t do, like change the suffix to a trimmed news post for
news_admin, or set the breadcrumb separator (breadcrumbs are on the roadmap for
0.1.2). They also give information about your template, like the name, the author, and a
description. These are named TEMPLATE_NAME.conf in your template dir. Let’s look
at xDeep’s template config, /templates/xDeep/xDeep.conf

// This is a template config file
// Syntax is simple, variable=value
// This is used to set configuration values for the template

name=xDeep
description=xDeep is the default template, written for AxDCMS 0.1.1.
It is pretty, but is probably over the top and will be changed by 0.2.
author=T0x1c

news_admin_trim=256
news_truncate_tail=...
error_separator=

Any line that begins with // is ignored by AxDCMS. You can use as many of these as
you want, they will all be ignored. Blank lines are also ignored, as long as they are blank
and don’t have a space, tab or anything but nothing.

There are six variables in 0.1.1: name, description, author, news_admin_trim,
news_truncate_tail, and error_separator.

The name of the variable cannot have spaces, and there should be no spaces on either side
of the equal sign, however the value of the variable can. These are written
VARIABLE_NAME=VARIABLE_VALUE. There can be no newlines (enters, return
carriages) Because of this strict syntax, it is recommended that you simply modify
xDeep’s config file.

name This is the name of your template. It should be short, but can have spaces.
description Briefly describe your template here. This should be on one line, to make

sure disable word wrap in your editor. Spaces are allowed.
author This should be your name or username. Spaces are allowed.

There are also some configuration variables.
news_admin_trim This is the maximum characters to allow the body in news_admin.
news_truncate_tail This is what appears after the body if it is larger than the

news_admin_trim in news_admin.
error_separator This is what separates multiple registration errors during register.

faq.tpl

l_faq “Frequently Asked Questions” variable.

list
list is a section. We discussed this in the syntax chapter. Below are the list of items. The
sample is above, listed twice, so I won’t list it again. Below, until specified, are only
items in the comments section, not stand alone variables.

href Link for the question, goes in a href(href=“”) value.
text The text for the question, “Who are you?!” is one example here.

That’s all of them. These must be used inside the section as $list[LOOP_N].ITEM,
where LOOP_N is whatever name is, in the above code, cid. ITEM is the item you are
trying to access, in this case: href and text. See the syntax chapter for more specific
items.

qna
qna is a section. We discussed this in the syntax chapter. Below are the list of items.
The sample is above, listed twice, so I won’t list it again. Below, until specified, are only
items in the comments section, not stand alone variables.

aname The name of the anchor that the question is assigned.
question The question, “Why did you pwn me?” in the above example.
answer The answer. “Because I can.” in the above example.

That’s all of them. These must be used inside the section as $qna[LOOP_N].ITEM,
where LOOP_N is whatever name is, in the above code, cid. ITEM is the item you are
trying to access, in this case: aname, question, and answer. See the syntax chapter for
more specific items. See xDeep/faq.tpl for a complete example.

faq_list.tpl

l_faq “Frequently Asked Questions” variable.
l_edit “Edit” variable.
l_delete “Delete” variable.

faq
faq is a section. We discussed this in the syntax chapter. Below are the list of items.
The sample is above, listed twice, so I won’t list it again. Below, until specified, are only
items in the comments section, not stand alone variables.

i This alternates 1 and 2, useful if you want to alternate row styles like me.
question The question, “Why did you pwn me?” is one in the above image.
u_edit The url for editing, this is the href(href=“”) for the Edit anchor above.
u_delete The url for deleting, this is the href(href=“”) for the Delete anchor above.

That’s all of them. These must be used inside the section as $faq[LOOP_N].ITEM,
where LOOP_N is whatever name is, in the above code, cid. ITEM is the item you are
trying to access, in this case: aname, question, and answer. See the syntax chapter for
more specific items. See xDeep/faq.tpl for a complete example.

faq_form.tpl

l_add_faq “Add FAQ” variable.
l_question “Question” variable.
l_answer “Answer” variable.
l_submit “Submit” variable (the button’s value(value=“”))

faq_form is, as the name applies, a form. It has no hidden fields.

form_action The action(action=“”) of the <form> tag. The method is post.

f_question The name(name=“”) of the Question field.
v_question The value(value=“”) of the Question field.

f_answer The name(name=“”) of the Answer field.
v_answer The value(value=“”) of the Answer field. If this is a textarea, like in the

above example, it goes between the <textarea …></textarea> tags.

That’s it, you have now made an AxDCMS 0.1.1 template. Stay updated as the variables
and pages will most likely change in upcoming 0.1.* versions.

	Template Documentation for AxDCMS 0.1.1
	Contents
	Forward
	Syntax
	error.tpl
	login.tpl
	news.tpl
	news_comments.tpl
	news_admin.tpl
	news_admin_add.tpl
	user_regedit.tpl
	user_admin.tpl
	Config File
	faq.tpl
	faq_list.tpl
	faq_form.tpl

