
SECURITY PAPER
Preparation Date: 11 Dec 2016

Art of Anti Detection – 3

Shellcode Alchemy

Prepared by:

Ege BALCI

Penetration Tester

ege.balci<at>invictuseurope.com

INVICTUS

2

Security Paper

TABLE OF CONTENT
1. Abstract:...3

2. Terminology..3

3. Introduction.. 4

4. Basic Shellcoding...5

5. Solving The Addressing Problem... 5

6. Hash API...10

7. Encoder/Decoder Design... 11

8. Anti Exploit Mitigations..16

9. Bypassing EMET...17

10. References:...18

INVICTUS

3

Security Paper

1. Abstract:

This paper will deal with subjects such as basic shellcoding concepts, assembly level
encoder/decoder design and few methods for bypassing anti exploit solutions such as
Microsoft’s Enhanced Mitigation Experience Toolkit(EMET). In order to understand the
content of this paper readers needs to have at least intermediate x86 assembly
knowledge and decent understanding of basic file formats such as COFF and PE, also
reading other articles (Art of Anti Detection 1 – Introduction to AV & Detection
Techniques and Art of Anti Detection 2 – PE Backdoor Manufacturing) will help with
understanding the inner workings of basic detection techniques used by AV products
and terminology in this paper.

2. Terminology

Process Environment Block(PEB):
In computing the Process Environment Block (abbreviated PEB) is a data structure in the
Windows NT operating system family. It is an opaque data structure that is used by the
operating system internally, most of whose fields are not intended for use by anything
other than the operating system. Microsoft notes, in its MSDN Library documentation —
which documents only a few of the fields — that the structure "may be altered in future
versions of Windows". The PEB contains data structures that apply across a whole
process, including global context, startup parameters, data structures for the program
image loader, the program image base address, and synchronization objects used to
provide mutual exclusion for process-wide data structures.

Address Space Layout Randomization:
(ASLR) is a computer security technique involved in protection from buffer overflow
attacks. In order to prevent an attacker from reliably jumping to, for example, a
particular exploited function in memory, ASLR randomly arranges the address space
positions of key data areas of a process, including the base of the executable and the
positions of the stack, heap and libraries.

Import Address Table(IAT):
Address table is used as a lookup table when the application is calling a function in a
different module. It can be in the form of both import by ordinal and import by name.
Because a compiled program cannot know the memory location of the libraries it
depends upon, an indirect jump is required whenever an API call is made. As the dynamic
linker loads modules and joins them together, it writes actual addresses into the IAT
slots, so that they point to the memory locations of the corresponding library functions.

INVICTUS

4

Security Paper

Data Execution Prevention(DEP):
Data Execution Prevention (DEP) is a set of hardware and software technologies that
perform additional checks on memory to help prevent malicious code from running on a
system. In Microsoft Windows XP Service Pack 2 (SP2) and Microsoft Windows XP Tablet
PC Edition 2005, DEP is enforced by hardware and by software.The primary benefit of
DEP is to help prevent code execution from data pages. Typically, code is not executed
from the default heap and the stack. Hardware-enforced DEP detects code that is
running from these locations and raises an exception when execution occurs.
Software-enforced DEP can help prevent malicious code from taking advantage of
exception-handling mechanisms in Windows.

Address Layout Randomization(ASLR):
Address space layout randomization (ASLR) is a computer security technique involved in
protection from buffer overflow attacks. In order to prevent an attacker from reliably
jumping to, for example, a particular exploited function in memory, ASLR randomly
arranges the address space positions of key data areas of a process, including the base of
the executable and the positions of the stack, heap and libraries.

stdcall Calling Convention:
The stdcall calling convention is a variation on the Pascal calling convention in which the
callee is responsible for cleaning up the stack, but the parameters are pushed onto the
stack in right-to-left order, as in the _cdecl calling convention. Registers EAX, ECX, and
EDX are designated for use within the function. Return values are stored in the EAX
register. stdcall is the standard calling convention for the Microsoft Win32 API and for
Open Watcom C++.

3. Introduction

Shellcodes plays a very important role in cyber security field, they are widely used in a
lot of malware and exploits. So, what is shellcode? Shellcode is basically a series of bytes
that will be interpreted as instructions on CPU, the main purpose of writing shellcodes is
exploiting vulnerabilities that allows executing arbitrary bytes on the system such as
overflow vulnerabilities also, because of shellcodes can run directly inside memory wast
amount of malware takes advantage of it, the reason behind the name shellcode is
usually shellcodes returns a command shell when executed but in time the meaning has
evolved, today almost all compiler generated programs can be converted to shellcode,
because of writing shellcode involves an in-depth understanding of assembly language
for the target architecture and operating system, this paper will assume reader knows
how to write programs in assembly on both Windows and Linux environments. There are
a lot of open source shellcodes on the internet but for exploiting new and different
vulnerabilities every cyber security researcher should be able to write his/her own
sophisticated shellcode,

INVICTUS

5

Security Paper

also writing your own shellcodes will help a lot for understanding the key concepts of
operating systems, the aim of this paper is explaining basic shellcoding concepts,
showing effective methods for decreasing the detection rate on shellcodes and
bypassing some anti exploit mitigation.

4. Basic Shellcoding

Writing shellcodes for different operating systems requires different approaches, unlike
Windows, UNIX based operating systems provides a direct way to communicate with the
kernel through the int 0x80 interface, all syscalls inside the UNIX based operating
systems has a unique number, with calling the 0x80’th interrupt code(int 0x80), kernel
executes the syscall with given number and parameters, but here is the problem,
Windows does not have a direct kernel interface, this means there has to be exact
pointers(memory addresses) to functions in order to call them and unfortunately hard
coding the function addresses does not fully solve the problem, every function address
inside windows changes in every service pack,version and even configuration, using hard
coded addresses makes the shellcode highly version dependent, writing version
independent shellcodes on windows is possible throughout solving the addressing
problem, this can be achieved with finding the function addresses dynamically on
runtime.

5. Solving The Addressing Problem

Throughout the time shellcode writers found clever ways to find the addresses of
Windows API functions on runtime, in this paper we will focus on a specific method
called PEB parsing, this method uses the Process Environment Block(PEB) data structure
to locate the base addresses of loaded DLLs and finding their function addresses with
parsing the Export Address Table(EAT), almost all version independent windows
shellcodes inside metasploit framework uses this technique to find the addresses of
Windows API functions,

Shellcodes witch is using this method takes advantage of “FS”segment register, in
windows this register points out the Thread Environment Block(TEB) address, TEB block
contains a lot of useful data including PEB structure we are looking for, when shellcode
is executed inside memory we need to go 48 bytes forward from the beginning of the
TEB block,

xor eax, eax
mov edx, [fs:eax+48]

INVICTUS

6

Security Paper

now we have a pointer to EB structure,

After getting the PEB structure pointer, now we will move 12 bytes forward from the
beginning of the PEB block in order to get the address for “Ldr” data structure pointer
inside PEB block,

mov edx, [edx+12]

INVICTUS

7

Security Paper

Ldr structure contains information about the loaded modules for the process, if we move
20 byte further inside Ldr structure we will reach the first module from the
“InMemoryOrderModuleList”,

mov edx, [edx+20]

Now our pointer is pointing to InMemoryOrderModuleList witch is a LIST_ENTRY
structure, Windows defines this structure as a “head of a doubly-linked list that contains
the loaded modules for the process.” each item in the list is a pointer to an
LDR_DATA_TABLE_ENTRY structure, this structure is our main target, it contains full
name and base address of loaded DLLs(modules), since the order of the loaded modules
can change, we should check the full name in order to choose the right DLL that is
containing the function we are looking for, this can be easily done with moving 40 bytes
forward from the start of the LDR_DATA_TABLE_ENTRY if the DLL name matches the
one that we are looking for, we can proceed,

INVICTUS

8

Security Paper

with moving 16 byte forward inside LDR_DATA_TABLE_ENTRY we now finally have the
base address of the loaded DLL,

mov edx, [edx+16]

The first step of getting the function addresses is complete, now we have the base
address of the DLL that is containing the required function, we have to parse the DLL’s
export address table in order to find the required function address, export address table
is located inside the PE optional header, with moving 60 bytes forward from the base
address we now have a pointer to DLL’s PE header on memory,

INVICTUS

9

Security Paper

finally we need to calculate the address of the export address table with (Module Base
Address + PE header address + 120 byte) formula, this will give the address of the export
address table(EAT), after getting the EAT address we now have access to all functions
that is exported by the DLL, Microsoft describes the IMAGE_EXPORT_DIRECTORY with
below figure,

This structure contains the addresses, names, and number of the exported functions,
with using the same size calculation traversing techniques desired function addresses
can be obtained inside this structure, of course the order of the exported functions may
change in every windows version, because of this before obtaining the function
addresses, name of the function should be checked, after being sure of the function
name, the function address is now in our reach,

INVICTUS

10

Security Paper

as you can understand this method is all about calculating the size of several Windows
data structures and traversing inside the memory, the real challenge here is building a
reliable name comparing mechanism for selecting the right DLL and functions, if PEB
parsing technique seems too hard to implement do not worry, there are easier way to do
this.

6. Hash API

Almost all shellcodes inside metasploit project uses a assembly block called Hash API, it
is a fine piece of code written by Stephen Fewer and it is used by majority of Windows
the shellcodes inside metasploit since 2009, this assembly block makes parsing the PEB
structure much easier, it uses the basic PEB parsing logic and some additional hashing
methods for quickly finding the required functions with calculating the ROR13 hash of
the function and module name, usage of this block is pretty easy, it uses the stdcall
calling convention only difference is after pushing the required function parameters it
needs the ROR13 hash of the function name and DLL name that is containing the
function, after pushing the required parameters and the function hash it parses the PEB
block as explained earlier and finds the module name, after finding the module name it
calculates the ROR13 hash and saves it to stack then it moves to the DLL’s export
address table and calculates the ROR13 hash of each function name, it takes the sum of
the each function name hash and module name hash, if the summatches the hash that
we are looking for, it means the wanted function is found, finally Hash API makes a jump
to the found function address with the passed parameters on the stack, it is a very
elegant piece of code but it is coming to its final days, because of it’s popularity and
wide usage, some AV products and anti exploit mitigations specifically targets the work
logic of this code block, even some AV products uses the ROR13 hash used by the Hash
API as signatures for identifying the malicious files, because of the recent advancements
on anti exploit solutions inside operating systems, Hash API has a short lifespan left, but
there are other ways to find the Windows API function addresses, also with using some
encoding mechanisms this method can still bypass the majority of AV products.

INVICTUS

11

Security Paper

7. Encoder/Decoder Design

Before starting to design, reader should acknowledge the fact that using this encoder
alone will not generate fully undetectable shellcodes, after executing the shellcode,
decoder will run directly and decode the entire shellcode to its original form, this can’t
bypass the dynamic analysis mechanisms of the AV products.

Decoder logic is pretty simple, it will use a randomly generated multi byte XOR key for
decoding the shellcode, after the decode operation it will execute it, before placing the
shellcode inside the decoder header it should be ciphered with a multi byte XOR key and
both shellcode and XOR key should be placed inside the “<Shellcode>”, “<Key>” labels,

Since the code is pretty much self explanatory, i will not waste time for explaining it
line by line, with using the JMP/CALL trick it gets the addresses of shellcode and key on
runtime then performs a logical XOR operation between each byte of shellcode and key,
every time the decipher key reaches to end it will reset the key with it’s start address,
after finishing the decode operation it will jump to shellcode, using longer XOR key
increase the randomness of the shellcode but also increases the entrophy of the code
block so avoid using too long decipher keys,

INVICTUS

12

Security Paper

there are hundreds of ways to encode shellcodes with using basic logical operations such
as XOR, NOT, ADD, SUB, ROR, ROL in every encoder routine there are infinite possible
shellcode output, the possibility of AV products detecting any sign of shellcode before
decoding sequence is very low, because of this AV products also develops heuristic
engines that is capable of detecting decryption and decoding loops inside code blocks,
there are few effective methods for bypassing the static approaches for detecting
decoder loops when writing shellcode encoders,

Uncommon Register Usage:

In x86 architecture all registers have a specific purpose, for example ECX stands for
Extended Counter Register and it is commonly used as a loop counter, when we write a
basic loop condition in any compiled language, the compiler will probably use the ECX
register as the loop counter variable, finding a consecutively increasing ECX register
inside a code block is strongly indicates a loop for the heuristic engines, solution to this
issue is simple, not using the ECX register for loop counter, this is just one example but it
is also very effective for all other stereotyped code fragments like function
epilogue/prologue etc.. a lot of code recognition mechanism depends on the register
usage, writing assembly code with unusual register usage will decrease the detection
rate.

Garbage Code Padding:
There may be hundreds of ways to identify decoders inside code blocks and almost every
AV product uses different approaches but eventually they have to generate a signature
for statically checking a code block for possible decoder or decryptor, using random NOP
instructions inside the decoder code is a nice way to bypass static signature analysis, it
doesn’t have to be specifically NOP instruction, it can be any instruction that maintains
the functionality of the original code, the aim is adding garbage instructions in order to
break apart the malicious signatures inside code block, another important thing about
writing shellcodes is the size, so avoid using too much garbage obfuscation code inside
the decoder or it will increase the overall size.

INVICTUS

13

Security Paper

After implementing this methods resulting code looks like this,

Only change is between EAX and ECX registers, now the register responsible for
counting the shellcode index is EAX, and there are few lines of NOP padding between
every XOR and MOV instructions, the shellcode used by this tutorial is Windows
meterpreter reverse TCP, after ciphering the shellcode with a 10 byte long random XOR
key, both placed inside the decoder, with using the nasm -f bin Decoder.asm command
assemble the decoder to binary format(Don’t forget the remove the line breaks on
shellcode or nasm will not asssemble it).

INVICTUS

14

Security Paper

Here is the AV scan result before encoding the raw shellcode,

INVICTUS

15

Security Paper

As you can see a lot of AV scanners recognizes the shellcode.

And this is the result for encoded shellcode,

INVICTUS

16

Security Paper

8. Anti Exploit Mitigations

When it comes to bypassing AV products there are a lot of ways to success but anti
exploit mitigations takes the situation to a whole new level, Microsoft announced
Enhanced Mitigation Experience Toolkit(EMET) in 2009, it is basically is a utility that
helps prevent vulnerabilities in software from being successfully exploited, it has
several protection mechanisms,

● Dynamic Data Execution Prevention (DEP)
● Structure Exception Handler Overwrite protection (SEHOP)
● NullPage Allocation
● HeapSpray Protection
● Export Address Table Address Filtering (EAF)
● Mandatory ASLR
● Export Address Table Access Filtering Plus (EAF+)
● ROP mitigations

■ Load library checks
■ Memory protection check
■ Caller checks
■ Simulate execution flow
■ Stack pivot

● Attack Surface Reduction (ASR)

Among these mitigations EAF, EAF+ and caller checks concerns us most, as explained
earlier almost all shellcodes inside metasploit framework uses the Stephen Fewer’s Hash
API and because of Hash API applies the PEB/EAT parsing techniques, EMET easily
detects and prevents the executions of shellcodes.

INVICTUS

17

Security Paper

9. Bypassing EMET

The caller checks inside the EMET inspects the Windows API calls made by processes, it
blocks the RET and JMP instructions inside Win API functions in order to prevent all
exploits that are using return oriented programming(ROP) approaches, in Hash API after
finding the required Win API function addresses JMP instruction is used for executing
the function, unfortunately this will trigger EMET caller checks, in order to bypass the
caller checks, usage of JMP and RET instructions pointing to Win API functions should be
avoided, with replacing the JMP instruction that is used for executing the Win API
function with CALL , Hash API should pass the caller checks, but when we look at the
EAF/EAF+ mitigation techniques, they prevents access to the Export Address Table (EAT)
for read/write access depending on the code being called and checks if the stack register
is within the permitted boundaries or not also it tries to detect read attempts on the
MZ/PE header of specific chapters and KERNELBASE, this is a very effective mitigation
method for preventing EAT parsing techniques, but EAT is not the only structure that
contains the required function addresses, import address table(IAT) also holds the Win
API function addresses used by the application, if the application is also using the
required functions, it is possible to gather the function addresses inside the IAT
structure, a cyber security researcher named Joshua Pitts recently developed a new
IAT parsing method, it finds the LoadLibraryA and GetProcAddress Windows API
functions inside the import address table, after obtaining these function addresses any
function from any library can be extracted, he also wrote a tool called fido for striping
Stephen Fewer’s Hash API and replacing with this IAT parsing code he wrote, if you want
to read more about this method check out here,

INVICTUS

18

Security Paper

10. References:

https://msdn.microsoft.com/en-us/library/ms809762.aspx
https://en.wikipedia.org/wiki/Process_Environment_Block
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-ex
ecution-prevention-dep-feature-in-windows-xp-service-pack-2,-windows-xp-tablet-pc-edi
tion-2005,-and-windows-server-2003
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/X86_calling_conventions
http://www.vividmachines.com/shellcode/shellcode.html
https://github.com/secretsquirrel/fido
https://github.com/rapid7/metasploit-framework/blob/master/external/source/shellco
de/windows/x86/src/block/block_api.asm
The Shellcoder's Handbook: Discovering and Exploiting Security Holes
Sockets, Shellcode, Porting, and Coding: Reverse Engineering Exploits and Tool Coding
for Security Professionals

	Abstract:
	Terminology
	Introduction
	Basic Shellcoding
	Solving The Addressing Problem
	Hash API
	Encoder/Decoder Design
	Anti Exploit Mitigations
	Bypassing EMET
	References:

