

Discovering and Plotting Hidden Networks created
with USB Devices

Francisco Ramírez Pablo González Carmen Torrano José María Alonso

 CDO, Telefónica
Madrid, Spain

{pablo, carmen.torrano, chema}@11paths.com
franciscojose.ramirezvicente@telefonica.com

Abstract- USB is still a dangerous vector of attack. Attacks such
as Stuxtnet make this evident. Sharing USB devices between
machines that are physically or logically isolated can stablish
connections between them, building what is called a Hidden
Network. Being aware of such links is essential for guarantying
the security of the network, machines connected and data within
them. This paper presents a tool able to detect these links
automatically, both remotely and locally. These links are
explicitly plotted in graphs, making them visible and allowing
taking security measures against threats. Furthermore, this tool
can be used for forensic purposes, for example in cases of data
exfiltration, since it can plot the trazability of a given USB device
within a network, besides showing which USB devices were
connected to a certain computer.

Index Terms- Hidden networks, USB devices, forensics, network
security, network connections.

Tipo de contribución: Investigación original (límite 8 páginas)

I. INTRODUCTION

Several security incidents reveal that USB should be paid
attention since it could be used for malicious intentions. Even
for air-gapped networks, USB represents an attack vector.
Then, having a computers network not connected through
Ethernet cable or Wi-Fi to other networks is not enough and
any type of external connection for computers may constitute
a threat.

In network analysis, usually attention is paid to
connections at link level, such as Ethernet, Wi-Fi connections,
etc. However, USB connections are often ignored.

USB connections also represent a mean to spread attacks,
infect with malware or steal important data. In fact, several
famous attacks have been performed through the connection
of USB devices. Next, a review of the most important
incidents is presented.

Firstly, Stuxnet [1] is mentioned, given its importance and
repercussion. This malware is designed to target supervisory
control and data acquisition (SCADA) systems that monitor
and control industrial processes. In fact, in 2010 it was able to
infect a Nuclear Power Plant in Iran. The worm took control
of a thousand of machines involved in nuclear material
production and gave them instructions that leave them
inoperable. Stuxnet could access the network via an infected

USB device. Then it scanned the network and propagated
though it, reprogramming the software that controls certain
machines involved in the nuclear process. The consequence
was that thousands of those machines were left out of service.

Other popular malware is Brutal Kangaroo. This is one of
the tools developed by CIA and included in Vault 7. This
malware has been specially designed to infect air-gapped
computers, i.e., isolated computers that are not connected to
Internet. The term air-gapped makes reference to the space
between the system and Internet. The first step of the
operation of this malware is infecting a computer connected to
Internet inside the target network and installing the malware.
From there, the infection to air-gapped computers is done by
means of a USB device infected with some malware.

There are other threats related to USB, such the so called
“USB killer” [2], that damages the computer it is connected to
by accumulating part of the electric energy of the computer
and lately sending that energy brusquely against it. Rubber
Ducky is a keyboard included in a USB device that types in a
computer as soon as it is connected. As a keyboard, it can
type malicious code or launch programs located either in the
victim device or in the USB itself.

All these facts denote that attention should be paid to the
connection of USB devices, since they represent a potential
threat. These USB connections can create what is called a
Hidden Network, i.e., networks created through the use of
USB devices that allow communication between physically or
logically isolated computers. This is the case of Brutal
Kangaroo, where all computers infected are part of a hidden
network where elements within it can communicate and
exchange data. This takes major importance considering the
value of data in a computer and also circulating between the
nodes of a network, in both the corporative and personal
spheres.

In order to help in the automation of the discovery of
hidden networks, in this paper we present a tool that makes
explicit those hidden links created by the connection of USB
devices. Our tool can be used to collect this information
remotely and locally. Furthermore, since the connection with
the computers in the network can be done by using different
protocols, we have developed software that covers different
scenarios. Our solution collects the information of the
computers within the domain in a file and it even plots the
hidden USB links in a graph shape. It makes possible to be
aware of such links, what is very important for protecting and

securing the network and devices connected to it. The
discovery of such links can be useful for example in cases of
data exfiltration, to help in the forensic analysis by revealing
which USB devices where connected to a computer and
tracing the USB within the network. This capacity is not
exclusive for USB memories but also for devices connected
through USB, such an external disk.

By mapping a network, a greater level of understanding
regarding the network and the threats inside it can be
achieved. This is important from the security point of view in
order to adequately protect and secure all elements of the
architecture, having more insights of the borders inside the
network to mitigate intrusions, detecting attacks, or
preventively carry out the implementation of safety measures.

The rest of this paper is structured as follows: Section II
gives insights about hidden links, showing an example that
presents their potential risks. Section III describes the registry
and the particular branch where information about USB
devices connected to a computer can be collected. Section IV
explains the structure of our solution, that works in different
modes: remotely and locally. Section V shows the
implementation details of our software for discovering hidden
networks, concretely of our tool and Powershell scripts.
Section VI presents details about graph plotting. Section VII
covers the experimental stage where we have tested our
software in different environments. Section VIII treats
possible limitations of the tool. Mitigation measures against
hidden networks are explained in section IX and finally, the
conclusions drawn as result of this study and future work are
summarized in section X.

II. NETWORK ISOLATION AND THE CONNECTION OF

USB DEVICES

In order to bring clarity in the understanding of hazards in
Hidden Networks created from USB devices, a simple
example is presented hereafter. In this example it is assumed
that an organization has a network formed by three VLANs.
The first VLAN contains a computer called A and another one
called B. The second VLAN contains computers C, D and E.
And the last VLAN contains the computer F. Every computer
in a VLAN has connectivity with other computers in the same
VLAN. However, computers in different VLANs cannot
communicate. The network outline of the network architecture
defined in this example is represented in Fig. 1a. In that figure
it can be seen that computers are isolated through different
VLANs.

Assuming employees of this organization exchange data
by means of USB devices, there is a high probability that this
information passes from one VLAN’s computer to another.
This scenario is represented in Fig. 1b, where users of
computers F and E are assumed to exchange information
through a USB device and a hidden network is created
between both computers. This information can be represented
with two nodes, E and F, and an edge is projected between the
computer where the USB device was introduced first and the
second computer.

This would represent a serious threat to security since
VLANs purpose is creating independent logic networks within
a network, providing fragmentation and isolation in a physical
network. This link would allow a communication between
those computers that did not exist before. This implies that a

new communication channel is created through the connection
of the USB device in different moments to both computers,
that are supposed not be able to communicate.

Therefore, adding the USB device is itself a source of
threats, since a hidden network can be created inside the
organization.

Fig. 1a: Network outline with computers connected to different VLANs. Fig.

1b: Hidden link created in the previous network outline.

III. REGISTRY OF USB DEVICE CONNECTIONS

When a user connects a USB device in a Windows system,
a series of entries are created in the Windows registry.

According to the Microsoft Computer Dictionary [3], the
registry is a hierarchical database where Windows systems
store information necessary to configure the system for one or
more users, applications and hardware devices. It contains
information like applications installed on the computer, ports
used or hardware existing on the system.

Since the registry controls the peripheral devices, when a
USB device is connected, certain information is stored there.
In particular, the USBStor key created in the Windows system
registry saves information regarding all different devices
inserted in the computer. Each USB connected to the
computer generates a new item in the registry. Specifically,

the branch of the registry where this information is stored is
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Enum\USBSTOR [4].

The following information can be collected from this
branch regarding USB devices connected to one computer:

• Device name.
• Class.
• ClassGUID.
• HardwareID.
• Service provided by the device, e.g. a hard disk.
• Driver.

An example of these fields of an USB device connected

and stored in the USBStor key is shown in Fig. 2.

Fig. 2: Registry visualization of the USB devices inserted.

From this information stored in the registry it is possible to
know who is sharing a USB device and with whom, what is
very useful to discover hidden links of a hidden network. As
mentioned, this provides useful information in forensic
investigation.

IV. SOLUTION DESCRIPTION

In this paper, we present a tool that is able to

automatically discover hidden networks, what could be
applied in forensic analysis. The tool can be used in two
different modes: remote or local.

 Remote. In this case the software collects the
information of the registry regarding connections
of USB devices to computers in a given domain.
It is possible to specify the set of computers of
which the information will be collected. This

option is designed to be used by system
administrators and it is also useful in security
audits.

 Local. The software collects the information of the
registry of the local computer where it is run.

In the local case, it is not necessary to connect to any

computer and only the information from the registry of the
computer running the tool is collected. Contrarily, in the first
case, the first step of the hidden network discovery process is
connecting to the computers of the network that are selected
to be analysed. The idea is that a central node with Active
Directory runs the software and collects the information in the
registry of all computers selected of the domain. The software
then receives and stores information collected from the nodes.
We have chosen the use of Active Directory for convenience
and simplicity, since it facilitates the administration of
computers in the domain. If Active Directory is not used, the
administrator credentials of each computer would be needed.

There are different methods and protocols that can be used
for stablishing the connection with nodes, depending on the
architecture and technologies of the network. For this
purpose, we have selected different technologies:

 WS-Management Protocol [5] and WMI [6]. Using
the Windows Remote Management (Win RM)
implementation [7]. We include WMI also in this
section.

 SMB-PSExec [8-9].

Next, we give a brief description of these technologies.

A. WS-Management Protocol and WMI

This protocol is an open standard of the Distributed
Management Task Force (DMTF) for accessing and
exchanging management information with computers that
implement this protocol. It is based on the Simple Object
Access Protocol (SOAP) [10]. Windows Remote
Management (Win RM) is the Windows implementation of
this protocol. It allows to remotely run management scripts.
One of the advantages of this protocol is that hardware and
operating systems from different vendors can interoperate.

Related to Win RM Windows also provides an
infrastructure for management of data and operations called
Windows Management Instrumentation (WMI). It provides
scripting languages to manage computers both locally and
remotely. Additionally, it can supply management data to
other components, such as Win RM.

B. SMB-PSExec

SMB stands for Sever Message Block (SMB). This is an
application layer protocol with request-response nature used
for sharing files, printers, serial ports and communication
abstractions between nodes connected to the same network.

PsExec was born as an alternative to telnet, easier to
configure and avoiding the need to install software on the
remote computers to be accessed. It allows executing
processes on other systems and launching interactive
command-prompts or enabling tools on remote systems.

SMB-PsExec implements remote process execution, being
possible to run programs on remote computers. It can send a
program to a remote computer, run it and read the result. It
uses a configuration file for setting certain parameters.

Our solution covers all these scenarios. Since networks

may use different technologies, we have implemented this
variety of protocols so that our solution can be used in
scenarios with different network architectures or
configurations.

In particular, we provide a tool programmed in Python for
covering the WMI and local cases. Additionally, we have
programmed several scripts in Powershell for the SMB-
PsExec and Win RM cases.

When it is necessary to connect remotely, all our solutions
provide a file in CSV format with the information collected
from the selected computers regarding the USB devices that
have been connected to those machines. Additionally, the tool
also provides JSON format. Furthermore, our tool is able to
plot this information in a graph shape. Computers are plotted
as and edges represent the hidden links between connected
machines. In this way, the subtle connections are made
explicit, what is very helpful for improving the security of
organizations.

In the next section, we give more details about the
implementation.

V. IMPLEMENTATION

As mentioned, since the connection mode and protocols to
connect with the computers in the network may vary, we have
implemented different software to cover all cases. Next, we
explain the details about how our software works. On the one
hand the WMI and local cases are covered by our tool
developed in Python. On the other hand, we explain the
architecture of the Win RM and SMB-PsExec cases,
implemented with scripts that use Powershell 3.0 commands.
Powershell is an object-oriented command line from
Microsoft, which has a simple and powerful interaction with
any structure inside a Microsoft operative system.

A. WMI and local

We have developed a tool programmed in Python for
covering these two cases. The architecture of this
implementation can be seen in Fig. 3.

Fig. 3: Tool execution diagram for WMI and local cases.

The tool has a friendly interface that allows the user to
interact with it a simple and easy way. The user interface can
be seen in Fig. 4. This interface makes possible to specify the
path of the project and a file .hn is created, that includes the
project name and paths of the resulting file in a CSV or JSON
format.

Fig. 4: User interface of the tool for the WMI and local cases

An example of CSV file is shown next:

 computer_name,computer_ip,usbdevice_name,usbdevice_id
PC001,10.1.1.16,USB DISK 2.0 USB Device,{8bbfc3d9-
29d6-58c5-be2f-dc9da53a401c}
PC001,10.1.1.16,Kingston DataTraveler G3 USB
Device,{2057d6e6-7725-52d5-8d5e-3fdab3357470}
PC001,10.1.1.16,SanDisk Cruzer Blade USB
Device,{1df90487-d45c-5a58-8509-dff4fae7bca6}
SRV0001,192.168.1.14,Kingston DataTraveler G3 USB
Device,{2057d6e6-7725-52d5-8d5e-3fdab3357470}
SRV0001,192.168.1.14,SanDisk Cruzer Blade USB
Device,{1df90487-d45c-5a58-8509-dff4fae7bca6}
SRV0001,192.168.1.14,TOSHIBA TransMemory USB
Device,{53bcd3ca-866c-562f-b50b-c4f9081fa2e9}
PC002,10.1.1.15,USB DISK 2.0 USB Device,{8bbfc3d9-
29d6-58c5-be2f-dc9da53a401c}
PC002,10.1.1.15,Kingston DataTraveler G3 USB
Device,{2057d6e6-7725-52d5-8d5e-3fdab3357470}
PC002,10.1.1.15,SanDisk Cruzer Blade USB
Device,{1df90487-d45c-5a58-8509-dff4fae7bca6}
PC002,10.1.1.15,TOSHIBA TransMemory USB
Device,{53bcd3ca-866c-562f-b50b-c4f9081fa2e9}
PC005,192.168.1.30,TOSHIBA TransMemory USB
Device,{53bcd3ca-866c-562f-b50b-c4f9081fa2e9}

About the values of the CSV file, fields “usbdevice_name”

and “usbdevice_id” are collected from the registry as
explained in Sec. III. Fields “computer_name” and
“computer_ip”, that correspond to the computer name and its
IP address, are obtained using the “socket” library in Python.

When a CSV file is opened, the tool automatically
converts it to JSON format.

In the WMI mode, the tool connects with those remote
computers selected, that are specified in a plain text file. An

example of such file is shown next, where the IP address or
FQDN of the selected devices are written down.

192.168.1.14
192.168.1.29
PC004
PC005.testdomain.com
SRV001
SRV002.testdomain.com
192.168.23.12

After introducing credentials for the domain administrator,

the information from key in the registry is read and stored.
Differently, in the local mode the key is not downloaded but it
is directly read from the registry, what supplies more depth in
the exploration of the registry.

Results are shown in the white rectangle on the bottom
right of Fig. 4. As can be seen in the graphical interface, the
local analysis is located on the left and the network case
appears on the right side.

If the user has information about USB connections,
instead of creating a new project and collecting the
information, the tool can also be used to plot such
information.

For representing hidden networks, the tool draws a graph
per USB device. The user can choose to either visualize all
graphs or choose a specific USB.

Furthermore, our hidden networks tool offers the
possibility to plot directed graphs. It indicates the order, from
the oldest date to the newest one, when the USB was
connected. The date the USB was inserted can be found in the
file C:\Windows\inf\setupapi.dev.log [4]. An example is
depicted in Fig. 5, where broader line represents an arrow.

Fig. 5: Example of directed graph.

From the security point of view, it is important to mention

that although our tool access the cited branch of the registry, it
does not access to other files or data stored in the computer.

For interested readers, the code of our tool can be
downloaded here:
https://github.com/ElevenPaths/HiddenNetworks-Python

B. WS-Management Protocol

This solution and the SMB-PSExec one are based on the
following process:

 Connection to computers. Sending the script that
collects information from the registry regarding
USB connections of the computers connected.

 Receiving and storing information from the nodes.

Every computer selected in the network executes the

scripts received and returns the output data to the central
node, that collects the information reported by the different
nodes of the network. Fig. 6 represents the architecture of the
script execution in an Active Directory.

Fig. 6: Tool execution diagram for WS-Management Protocol and SMB-
PsExec, using Powershell scripts.

The script WinRM version requires the activation of the

Windows Remote Management (WinRM) service in each of
the network computers to be audited.

Domain administrator credentials are required when
executing the script to approve execution on remote
computers in the local network.

The script implementation is composed of two steps:

 A Launch program that connects to remote
computers.

 A Recollect program that collect information from
USB devices. It is passed as parameter of the
previous program to be executed by every
computer selected to do it.

The execution of the “Launch” program is based on the

PowerShell command “Invoke-Command”. It allows to
connect with a computer in the network passing the FQDN,
computer name or IP address as parameters, besides executing
the PoweShell script.

The outcome of the program is a CSV file called
“USBDATA.csv” containing the following fields: Name of
the computer, IP (on IPv4 format), USB name, ID (unique
identifier). An example of this file is shown next:

PC001,192.168.1.16,Kingston DataTraveler G3 USB
Device,{2057d6e6-7725-52d5-8d5e-3fdab3357470}

PC001,192.168.1.16,SanDisk Cruzer Blade USB

Device,{1df90487-d45c-5a58-8509-dff4fae7bca6}

PC002,192.168.1.15,Kingston DataTraveler G3 USB

Device,{2057d6e6-7725-52d5-8d5e-3fdab3357470}

PC002,192.168.1.15,SanDisk Cruzer Blade USB

Device,{1df90487-d45c-5a58-8509-dff4fae7bca6}

This script Recollect is responsible for gathering all

information referring to the USB devices connected to the
computer and it runs locally in the computers to be audited.

C. SMB-PsExec

In order to run the script through SMB, it is necessary to
have PSTools previously installed, specifically to execute the
PSExec command in the computers to be checked.

The operating philosophy will be practically the same of
the WinRM version. It will be connected from the server to
the remote computer and the script should be run from the
server with domain administrator account, then the USB data
collection script will be executed. The computers selected to
run the scripts are specified in a file called servers.txt. This
could be done by specifying the FQDN name or IP address of
the computer.

Since the connection protocol is different, the “Launch”
script has a few modifications to fit with this new type of
connection. Instead of using the "Invoke-Command”
command, a shell from Powershell is opened and the script
runs from it. The script is downloaded from the network
location, preferably from a web server that would execute
download through some HTTP protocol. In this way,
subsequent problems with execution policy and permits, that
might be found when accessing the local shared resource, are
avoided.

Similar to the previous version of WinRM, results are
stored in a CSV file. To avoid synchronization problems and
allow time enough for the program to run on the remote
computer, some delays have been included in the code. It
should also be taken into consideration that the duration of the
delay may vary depending on the environment where the
script is run.

It is important to properly configure the location paths for
each of the files before running the script, specifically, the
path of the Recollect script, path of the servers.txt file and the
path of the CSV file recollecting the information.

The script Recollect is almost the same than in the
previous case. The generated USBData.CSV file will be
exactly the same as the one previously shown.

For the implementation we have focused on Windows
systems so far. It is also possible to collect information
regarding USB connections in other operating systems. For
example, computer systems running Mac OS X or macOS
have a file with a PLIST extension, which store this
information over the USB devices connected to the computer.
The file is named com.apple.finder.plist.

VI. GRAPH REPRESENTATION

The information contained in the CSV and JSON files are
plotted by the tool in a graph representation. Our tool offers
the possibility to visualize the graphs independently for each
USB connected, that is, for the sake of clarity the
representation of the hidden links associated to each USB
device are represented in separate windows.

Figure 7 shows an example of representation of the graph
corresponding to the USB called “Kingston Data Traveler
G3”. In the figure, computers are represented as nodes and
edges are represented as links between computers when the
same USB have been connected to both of them, thus, edges
represent the hidden links. In Fig. 7 it can be seen that the
Kingston USB device was connected to four different
computers (IP: 192.168.1.14, 192.168.1.16, 192.168.1.28,
192.168.1.29) that are located on the same network.

Fig. 7: Example of graph corresponding to USB “Kingston Data

Traveler G3”.

Graphs have been plotted using python, concretely, the

NetworkX library [11] has been employed.

VII. EXPERIMENTATION

In order to test our tool, its functionalities have been tested

in different environments.
In a first approach, the auditing implementations have

been tested on a single-Domain network with an Active
Directory (AD) to automate the information collection as
much as possible. The scenario has six virtual machines, in
particular five computers and a server connected to the same
network. Regarding operating systems, the computers were
running Windows 7 and Windows 2008 server. In this
scenario, the Powershell scripts were run. As result, the server
was able to connect with the computers and collect from the
registry the USB information of the computers selected for
that. The result obtained is shown in Fig. 8.

Fig. 8: USB devices connected to computers in the network.

Fig. 9 shows the result of plotting this information with our
tool. There is one figure representing each USB device.
PC003 is not appearing in the figures since it has no USB
data.

Fig. 9: Hidden networks discovered with Powershell scripts.

One remarkable aspect is the existence of connections

between machines in different VLANs, that were connected
via USB. This means the creation of a hidden network that
connects machines that were otherwise isolated. This tool
makes visible these links and helps in auditing networks and
protecting them. This functionality is also very helpful in the
incident response field.

Moreover, we also run other experiments with our tool and
the WMI protocol. The first experiment was performed with
four machines in the same network: three computers with
Windows 7 and one with Windows 2008 server. The result
plotted by the tool can be seen in Fig. 10.

Fig. 10: Hidden networks discovered with our tool for computers in the same

network. Graph corresponding to the USB “Toshiba TransMemory”

Another experiment was carried out with our tool. In this
case we used four machines: two computers with Windows 7,

one computer with Windows 10 and a server with Windows
2008 server. The difference with the previous experiment is
that, in this case computers belonged to different subnetworks.
The application is run from a machine that has visibility to
both subnets. The result plotted by the tool for different USB
devices can be seen in Fig. 11.

Fig. 11: Hidden networks discovered with our tool for computers in different
subnetworks. Graph corresponding to the USB “Toshiba TransMemory” and

“SanDisk Cruzer Blade”

As can be seen in the figure, PC001 and PC002 belong to

a subnetwork and SRV001 and PC005 belong to a different
one. Even though, the graphic shows that it is possible to
communicate computers in different subnetworks via USB.
Without our tool these connections could go unnoticed, since
those computers were apparently not connected.

VIII. LIMITATIONS

Our tool relies on the information stored on the registry. In
case that for any reason (malware, an error, etc.) the registry
would have been altered and it does not contain the real
information, this would not be detected by our tool, since it
has been designed for forensic purposes and not for detection
ones. In any case, the probabilities of this event are not high,

for example not any malware could make this effect, but only
those that are able to get administrator privileges.

IX. MITIGATION

One way to prevent hidden networks is to control the use
of USB devices in computers. Mitigation or prevention can be
done through the forced use due to Active Directory policies,
which restrict connection in a user computer to devices only
approved by one user. The implementation of the safety
policy along with a white list of approved devices for each
user allows avoiding this kind of hidden links, but it is
complex and expensive to maintain.

X. CONCLUSIONS AND FUTURE WORK

Having networks disconnected from the Internet provides

this false security feeling regarding a higher level of
protection before any incident, which increases the system
vulnerability. The USB is an attack vector that frequently
goes unnoticed, however, the malware infection through USB
devices is a real and underlying problem. USB are also
potentially dangerous for cases of data exfiltration and
leakage. Furthermore, USB can connect computers that are
apparently isolated physically or logically. Since being aware
of such connections is essential for guaranteeing the security
of our computers and networks, in this paper we present a
solution able to automatically discover hidden links and
visualize them. It can be done both remotely and locally.
Furthermore, we have included several mechanisms for
connecting with nodes and extracting information about USB
connected to them. On the one hand, we have implemented
Powershell scripts that connect through WinRM and SMB-
PsExec. On the other hand, we have implemented a tool in
Python able to connect using the WMI protocol and that also
covers the local case. We have conducted several
experiments, with computers with diverse operating systems,
in different VLANs and different subnets and the result of all
of them probe that it is possible to connect through USB
computers that are apparently isolated. This is a main issue in
network and computer security, therefore, we would like to
raise awareness about that. Moreover, our tools are not only
able to discover this hidden links but can be very helpful in
cases of incident response, for example, if a data exfiltration
case takes place, it could help in the forensic tasks of tracing a
certain USB within a network or informing about the USB
connections that were done in a particular computer. We
would like to stress that the results of this paper are not
restricted to USB memories, but it can also be applied to other
devices connected through USB, such as external hard disks,
Wi-Fi or Bluetooth dongle, etc. The aim of this solution is to
reinforce computer and network security by helping in the
prevention of incidents, facilitating audits and providing
utilities useful for forensic analysis cases.

For future work, different colours can be used in the
directed graph to indicate whether the USB device was
introduced the same day, the week and so on. Additionally,
the granularity of the tool capabilities could be finer, so that
not only computers involved in the hidden network can be
traced but also the files involved.

ACKOWLEDGEMENT

This is a work developed by the CDO unit of Telefonica.

REFERENCES

 [1] S. Karnouskos, "Stuxnet worm impact on industrial cyber-physical
system security," in IECON 2011 - 37th Annual Conference of the IEEE
Industrial Electronics Society, Melbourne, VIC, pp. 4490-4494, 2011.

[2] Microsoft Computer Dictionary. Windows Registry.
https://support.microsoft.com/en-us/help/256986/windows-registry-
information-for-advanced-users. Last Updated: Jan 7, 2017.

[3] Nir Nissim, Ran Yahalom, Yuval Elovici, “USB-based attacks”, in
Computers & Security, vol. 70, pp. 675-688, 2017.

[4] Abhijeet Ramani, Somesh Kumar Dewangan: “Auditing Windows 7
Registry Keys to track the traces left out in copying files from system
to external USB Device” in International Journal of Computer
Science and Information Technologies, vol. 5 ,2, pp.1045-1052, 2014.

[5] Microsoft, “WS Management Protocol”, 2018.

https://msdn.microsoft.com/en-us/library/aa384470(v=vs.85).aspx

[6] Microsoft, “Windows Management Instrumentation”, 2018.

https://msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx

[7] Microsoft, “Windows Remote Management”, 2018.

https://msdn.microsoft.com/en-us/library/aa384426(v=vs.85).aspx

[8] Microsoft, “PsExec v2.2”, 2016. https://docs.microsoft.com/en-

us/sysinternals/downloads/psexec

[9] Richard Sharpe, “Just What is SMB?”, 2002.
https://docentes.uaa.mx/guido/wp-
ontent/uploads/sites/2/2015/04/What-is-SMB_.pdf

[10] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah
Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte, Dave Winer,
“Simple Object Access Protocol (SOAP) 1.1”, 2000.
https://www.researchgate.net/profile/Satish_Thatte/publication/23955
3871_Simple_object_access_protocol_SOAP_11/links/54489e4e0cf2f
14fb8142a59/Simple-object-access-protocol-SOAP-11.pdf

[11] A Hagberg, P Swart, DS Chult, “Exploring network structure,
dynamics, and function using NetworkX”, in SCIPY, 2008.

 http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-
UR-08-05495

