
Hypervisor From Scratch – Part 1: Basic Concepts & Con�gure Testing Environment
Published August 21, 2018 by Sinaei

 

Hello everyone!

Welcome to the first part of a multi-part series of tutorials called “Hypervisor From Scratch”. As the name implies,
this course contains technical details to create a basic Virtual Machine based on hardware virtualization. If you
follow the course, you’ll be able to create your own virtual environment and you’ll get an understanding of how
VMWare, VirtualBox, KVM and other virtualization so�wares use processors’ facilities to create a virtual
environment.

Introduction

Both Intel and AMD support virtualization in their modern CPUs. Intel introduced (VT-x technology) that previously
codenamed “Vanderpool” on November 13, 2005, in Pentium 4 series. The CPU flag for VT-x capability is “vmx”
which stands for Virtual Machine eXtension.

AMD, on the other hand, developed its first generation of virtualization extensions under the codename “Pacifica“,

and initially published them as AMD Secure Virtual Machine (SVM), but later marketed them under the
trademark AMD Virtualization, abbreviated AMD-V.

There two types of the hypervisor. The hypervisor type 1 called “bare metal hypervisor” or “native” because it runs
directly on a bare metal physical server, a type 1 hypervisor has direct access to the hardware. With a type 1
hypervisor, there is no operating system to load as the hypervisor.

Contrary to a type 1 hypervisor, a type 2 hypervisor loads inside an operating system, just like any other application.
Because the type 2 hypervisor has to go through the operating system and is managed by the OS, the type 2
hypervisor (and its virtual machines) will run less e�iciently (slower) than a type 1 hypervisor.

Even more of the concepts about Virtualization is the same, but you need di�erent considerations in VT-x and AMD-
V. The rest of these tutorials mainly focus on VT-x because Intel CPUs are more popular and more widely used. In
my opinion, AMD describes virtualization more clearly in its manuals but Intel somehow makes the readers
confused especially in Virtualization documentation.

Hypervisor and Platform 

 3



These concepts are platform independent, I mean you can easily run the same code routine in both Linux or
Windows and expect the same behavior from CPU but I prefer to use Windows as its more easily debuggable (at
least for me.) but I try to give some examples for Linux systems whenever needed. Personally, as Linux kernel
manages faults like #GP and other exceptions and tries to avoid kernel panic and keep the system up so it’s better
for testing something like hypervisor or any CPU-related a�air. On the other hand, Windows never tries to manage
any unexpected exception and it leads to a blue screen of death whenever you didn’t manage your exceptions, thus
you might get lots of BSODs.By the way, you’d better test it on both platforms (and other platforms too.).

At last, I might (and definitely) make mistakes like wrong implementation or misinformation or forget about
mentioning some important description so I should say sorry in advance if I make any faults and I’ll be glad for
every comment that tells me my mistakes in the technical information or misinformation.

That’s enough, Let’s get started!

The Tools you’ll need

You should have a Visual Studio with WDK installed. you can get Windows Driver Kit (WDK) here.

The best way to debug Windows and any kernel mode a�air is using Windbg which is available in Windows SDK
here. (If you installed WDK with default installing options then you probably install WDK and SDK together so you
can skip this step.)

You should be able to debug your OS (in this case Windows) using Windbg, more information here.

Hex-rays IDA Pro is an important part of this tutorial.

OSR Driver Loader which can be downloaded here, we use this tools in order to load our drivers into the Windows
machine.

SysInternals DebugView for printing the DbgPrint() results.

 

 

Creating a Test Environment

https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://rayanfam.com/topics/kernel-mode-debugging-by-windbg/
https://www.hex-rays.com/products/ida/
https://www.osronline.com/article.cfm?article=157
https://docs.microsoft.com/en-us/sysinternals/downloads/debugview


Almost all of the codes in this tutorial have to run in kernel level and you must set up either a Linux Kernel Module or
Windows Driver Kit (WDK) module. As configuring VMM involves lots of assembly code, you should know how to run
inline assembly within you kernel project. In Linux, you shouldn’t do anything special but in the case of  Windows,
WDK no longer supports inline assembly in an x64 environment so if you didn’t work on this problem previously
then you might have struggle creating a simple x64 inline project but don’t worry in one of my post I explained it
step by step so I highly recommend seeing this topic to solve the problem before continuing the rest of this part.

Now its time to create a driver!

There is a good article here if you want to start with Windows Driver Kit (WDK).

The whole driver is this :

AssemblyFunc1 and AssemblyFunc2 are two external functions that defined as inline x64 assembly code.

Our driver needs to register a device so that we can communicate with our virtual environment from User-Mode
code, on the hand, I defined DrvUnload which use PnP Windows driver feature and you can easily unload your
driver and remove device then reload and create a new device.

The following code is responsible for creating a new device :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#include <ntddk.h>
#include <wdf.h>
#include <wdm.h>
 
extern void inline AssemblyFunc1(void);
extern void inline AssemblyFunc2(void);
 
VOID DrvUnload(PDRIVER_OBJECT  DriverObject);
NTSTATUS DriverEntry(PDRIVER_OBJECT  pDriverObject, PUNICODE_STRING  pRegistryPath);
 
#pragma alloc_text(INIT, DriverEntry)
#pragma alloc_text(PAGE, Example_Unload)
 
NTSTATUS DriverEntry(PDRIVER_OBJECT  pDriverObject, PUNICODE_STRING  pRegistryPath)
{
 NTSTATUS NtStatus = STATUS_SUCCESS;
 UINT64 uiIndex = 0;
 PDEVICE_OBJECT pDeviceObject = NULL;
 UNICODE_STRING usDriverName, usDosDeviceName;
 
 DbgPrint("DriverEntry Called.");
 
 RtlInitUnicodeString(&usDriverName, L"\Device\MyHypervisor");
 RtlInitUnicodeString(&usDosDeviceName, L"\DosDevices\MyHypervisor");
 
 NtStatus = IoCreateDevice(pDriverObject, 0, &usDriverName, FILE_DEVICE_UNKNOWN, FILE_DEVICE_SECURE_OPE
 
 if (NtStatus == STATUS_SUCCESS)
 {
 pDriverObject->DriverUnload = DrvUnload;
 pDeviceObject->Flags |= IO_TYPE_DEVICE;
 pDeviceObject->Flags &= (~DO_DEVICE_INITIALIZING);
 IoCreateSymbolicLink(&usDosDeviceName, &usDriverName);
 }
 return NtStatus;
}
 
VOID DrvUnload(PDRIVER_OBJECT  DriverObject)
{
 UNICODE_STRING usDosDeviceName;
 DbgPrint("DrvUnload Called rn");
 RtlInitUnicodeString(&usDosDeviceName, L"\DosDevices\MyHypervisor");
 IoDeleteSymbolicLink(&usDosDeviceName);
 IoDeleteDevice(DriverObject->DeviceObject);
}

1
2
3
4
5
6
7
8
9
10
11
12

 RtlInitUnicodeString(&usDriverName, L"\Device\MyHypervisor");
 RtlInitUnicodeString(&usDosDeviceName, L"\DosDevices\MyHypervisor");
 
 NtStatus = IoCreateDevice(pDriverObject, 0, &usDriverName, FILE_DEVICE_UNKNOWN, FILE_DEVICE_SECURE_OPE
 
 if (NtStatus == STATUS_SUCCESS)
 {
 pDriverObject->DriverUnload = DrvUnload;
 pDeviceObject->Flags |= IO_TYPE_DEVICE;
 pDeviceObject->Flags &= (~DO_DEVICE_INITIALIZING);
 IoCreateSymbolicLink(&usDosDeviceName, &usDriverName);
 }

https://rayanfam.com/topics/inline-assembly-in-x64/
https://resources.infosecinstitute.com/writing-a-windows-kernel-driver/


If you use Windows, then you should disable Driver Signature Enforcement to load your driver, that’s because
Microso� prevents any not verified code to run in Windows Kernel (Ring 0).

To do this, press and hold the shi� key and restart your computer. You should see a new Window, then

1. Click Advanced options.
2. On the new Window Click Startup Settings.
3. Click on Restart.
4. On the Startup Settings screen press 7 or F7 to disable driver signature enforcement.

 

The latest thing I remember is enabling Windows Debugging messages through registry, in this way you can get
DbgPrint() results through SysInternals DebugView.

Just perform the following steps:

In regedit, add a key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Debug Print Filter

Under that , add a DWORD value named IHVDRIVER with a value of 0xFFFF

Reboot the machine and you’ll good to go.

Some thoughts before the start

There are some keywords that will be frequently used in the rest of these series and you should know about them
(Most of the definitions derived from Intel so�ware developer’s manual, volume 3C).



Virtual Machine Monitor (VMM): VMM acts as a host and has full control of the processor(s) and other platform
hardware. A VMM is able to retain selective control of processor resources, physical memory, interrupt
management, and I/O.

Guest So�ware: Each virtual machine (VM) is a guest so�ware environment.

VMX Root Operation and VMX Non-root Operation: A VMM will run in VMX root operation and guest so�ware will
run in VMX non-root operation.

VMX transitions: Transitions between VMX root operation and VMX non-root operation.

VM entries: Transitions into VMX non-root operation.

Extended Page Table (EPT): A modern mechanism which uses a second layer for converting the guest physical
address to host physical address.

VM exits: Transitions from VMX non-root operation to VMX root operation.

Virtual machine control structure (VMCS): is a data structure in memory that exists exactly once per VM, while it is
managed by the VMM. With every change of the execution context between di�erent VMs, the VMCS is restored for
the current VM, defining the state of the VM’s virtual processor and VMM control Guest so�ware using VMCS.

The VMCS consists of six logical groups:

 Guest-state area: Processor state saved into the guest state area on VM exits and loaded on VM entries.
 Host-state area: Processor state loaded from the host state area on VM exits.
 VM-execution control fields: Fields controlling processor operation in VMX non-root operation.
 VM-exit control fields: Fields that control VM exits.
 VM-entry control fields: Fields that control VM entries.
 VM-exit information fields: Read-only fields to receive information on VM exits describing the cause and the
nature of the VM exit.

I found a great work which illustrates the VMCS, The PDF version is also available here. 

https://rayanfam.com/wp-content/uploads/sites/2/2018/08/VMCS.pdf




Don’t worry about the fields, I’ll explain most of them clearly in the later parts, just remember VMCS Structure varies
between di�erent version of a processor.

VMX Instructions 

VMX introduces the following new instructions.

Intel/AMD Mnemonic Description

INVEPT Invalidate Translations Derived from EPT

INVVPID Invalidate Translations Based on VPID

VMCALL Call to VM Monitor



VMCLEAR Clear Virtual-Machine Control Structure

VMFUNC Invoke VM function

VMLAUNCH Launch Virtual Machine

VMRESUME Resume Virtual Machine

VMPTRLD Load Pointer to Virtual-Machine Control Structure

VMPTRST Store Pointer to Virtual-Machine Control Structure

VMREAD Read Field from Virtual-Machine Control Structure

VMWRITE Write Field to Virtual-Machine Control Structure

VMXOFF Leave VMX Operation

VMXON Enter VMX Operation

Life Cycle of VMM Software

The following items summarize the life cycle of a VMM and its guest so�ware as well as the interactions
between them:

So�ware enters VMX operation by executing a VMXON instruction.
Using VM entries, a VMM can then turn guests into VMs (one at a time). The VMM e�ects a VM entry
using instructions VMLAUNCH and VMRESUME; it regains control using VM exits.
VM exits transfer control to an entry point specified by the VMM. The VMM can take action appropriate
to the cause of the VM exit and can then return to the VM using a VM entry.
Eventually, the VMM may decide to shut itself down and leave VMX operation. It does so by executing
the VMXOFF instruction.

 

That’s enough for now!

In this part, I explained about general keywords that you should be aware and we create a simple lab for our future
tests. In the next part, I will explain how to enable VMX on your machine using the facilities we create above, then
we survey among the rest of the virtualization so make sure to check the blog for the next part.

References

[1] Intel® 64 and IA-32 architectures so�ware developer’s manual combined volumes 3
(https://so�ware.intel.com/en-us/articles/intel-sdm) 

https://software.intel.com/en-us/articles/intel-sdm


Sina & Shahriar's Blog
An aggressive out-of-order blog…

The contents of this blog is licensed to the public under a Creative Commons Attribution 4.0 license.

[2] Hardware-assisted Virtualization (http://www.cs.cmu.edu/~412/lectures/L04_VTx.pdf)

[3] Writing Windows Kernel Driver (https://resources.infosecinstitute.com/writing-a-windows-kernel-driver/)

[4] What Is a Type 1 Hypervisor? (http://www.virtualizationso�ware.com/type-1-hypervisors/)

[5] Intel / AMD CPU Internals (https://github.com/LordNoteworthy/cpu-internals)

[6] Windows 10: Disable Signed Driver Enforcement
(https://ph.answers.acer.com/app/answers/detail/a_id/38288/~/windows-10%3A-disable-signed-driver-
enforcement)

[7] Instruction Set Mapping » VMX Instructions (https://docs.oracle.com/cd/E36784_01/html/E36859/gntbx.html)

PAGES

Blog Map

Tools & Scripts

Tutorials

Sinaei

Judas tree , What kind of mystery is this, that every spring, Comes with our hearts' mourning, Judas tree, You
be elate, You sing my unsang song...

 

Published in CPU, Hypervisor and Tutorials

Create a virtual machine How to create Virtual Machine Hypervisor fundamentals Hypervisor Tutorials

Intel Virtualization Intel VMX Intel VTX Tutorial using CPU Virtualization VMM Implementation

https://rayanfam.com/
https://creativecommons.org/licenses/by/4.0/
https://www.cs.cmu.edu/~412/lectures/L04_VTx.pdf
https://resources.infosecinstitute.com/writing-a-windows-kernel-driver/
http://www.virtualizationsoftware.com/type-1-hypervisors/
https://github.com/LordNoteworthy/cpu-internals
https://ph.answers.acer.com/app/answers/detail/a_id/38288/~/windows-10%3A-disable-signed-driver-enforcement
https://docs.oracle.com/cd/E36784_01/html/E36859/gntbx.html
https://rayanfam.com/blog-map/
https://rayanfam.com/tools/
https://rayanfam.com/tutorials/
https://rayanfam.com/topics/author/sina/
https://twitter.com/Intel80x86
https://github.com/SinaKarvandi
https://rayanfam.com/topics/category/cpu/
https://rayanfam.com/topics/category/hypervisor/
https://rayanfam.com/topics/category/tutirials/
https://rayanfam.com/topics/tag/create-a-virtual-machine/
https://rayanfam.com/topics/tag/how-to-create-virtual-machine/
https://rayanfam.com/topics/tag/hypervisor-fundamentals/
https://rayanfam.com/topics/tag/hypervisor-tutorials/
https://rayanfam.com/topics/tag/intel-virtualization/
https://rayanfam.com/topics/tag/intel-vmx/
https://rayanfam.com/topics/tag/intel-vtx-tutorial/
https://rayanfam.com/topics/tag/using-cpu-virtualization/
https://rayanfam.com/topics/tag/vmm-implementation/

