
! " #

Sina & Shahriar's Blog
An aggressive out-of-order blog...

+

Hypervisor From Scratch – Part 4: Address Translation Using
Extended Page Table (EPT)
Published October 5, 2018 by Sinaei

Hello guys!

Welcome to the fourth part of the “Hypervisor From Scratch”. This part is primarily
about translating guest address through Extended Page Table (EPT) and its
implementation. We also see how shadow tables work and other cool stuff.

First of all, make sure to read the earlier parts before reading this topic as these
parts are really dependent on each other also you should have a basic
understanding of paging mechanism and how page tables work. A good article is
here for paging tables.

Most of this topic derived from Chapter 28 – (VMX SUPPORT FOR ADDRESS

$ 0

https://twitter.com/Intel80x86
https://github.com/binvoke
https://rayanfam.com/feed
https://rayanfam.com/
https://rayanfam.com/tutorials
https://www.triplefault.io/2017/07/introduction-to-ia-32e-hardware-paging.html

TRANSLATION) available at Intel 64 and IA-32 architectures software developer’s
manual combined volumes 3.

The full source code of this tutorial is available on GitHub :

[https://github.com/SinaKarvandi/Hypervisor-From-Scratch]

Before starting, I should give my thanks to Petr Beneš, as this part would never be
completed without his help.

Introduction Introduction

Second Level Address Translation (SLAT) or nested paging, is an extended layer in
the paging mechanism that is used to map hardware-based virtualization virtual
addresses into the physical memory.

AMD implemented SLAT through the Rapid Virtualization Indexing (RVI)
technology known as Nested Page Tables (NPT) since the introduction of its third-
generation Opteron processors and microarchitecture code name Barcelona. Intel
also implemented SLAT in Intel® VT-x technologies since the introduction of
microarchitecture code name Nehalem and its known as Extended Page Table
(EPT) and is used in Core i9, Core i7, Core i5, and Core i3 processors.

ARM processors also have some kind of implementation known as known as Stage-
2 page-tables.

There are two methods, the first one is Shadow Page Tables and the second one is
Extended Page Tables.

Software-assisted paging (Shadow Page Tables)Software-assisted paging (Shadow Page Tables)

Shadow page tables are used by the hypervisor to keep track of the state of physical
memory in which the guest thinks that it has access to physical memory but in the
real world, the hardware prevents it to access hardware memory otherwise it will
control the host and it is not what it intended to be.

In this case, VMM maintains shadow page tables that map guest-virtual pages
directly to machine pages and any guest modifications to V->P tables synced to VMM

https://github.com/SinaKarvandi/Hypervisor-From-Scratch
https://twitter.com/PetrBenes

V->M shadow page tables.

By the way, using Shadow Page Table is not recommended today as always lead to
VMM traps (which result in a vast amount of VM-Exits) and losses the performance
due to the TLB flush on every switch and another caveat is that there is a memory
overhead due to shadow copying of guest page tables.

Hardware-assisted paging (Extended Page Table)Hardware-assisted paging (Extended Page Table)

To reduce the complexity of Shadow Page Tables and avoiding the excessive vm-
exits and reducing the number of TLB flushes, EPT, a hardware-assisted paging
strategy implemented to increase the performance.

According to a VMware evaluation paper: “EPT provides performance gains of up to
48% for MMU-intensive benchmarks and up to 600% for MMU-intensive
microbenchmarks”.

EPT implemented one more page table hierarchy, to map Guest-Virtual Address to
Guest-Physical address which is valid in the main memory.

In EPT,

One page table is maintained by guest OS, which is used to generate the
guest-physical address.
The other page table is maintained by VMM, which is used to map guest
physical address to host physical address.

so for each memory access operation, EPT MMU directly gets the guest physical
address from the guest page table and then gets the host physical address by the
VMM mapping table automatically.

Extended Page Table vs Shadow Page Table Extended Page Table vs Shadow Page Table

EPT:

Walk any requested address
Appropriate to programs that have a large amount of page table miss
when executing
Less chance to exit VM (less context switch)

Two-layer EPT
Means each access needs to walk two tables

Easier to develop
Many particular registers
Hardware helps guest OS to notify the VMM

SPT:

Only walk when SPT entry miss
Appropriate to programs that would access only some addresses
frequently
Every access might be intercepted by VMM (many traps)

One reference
Fast and convenient when page hit

Hard to develop
Two-layer structure
Complicated reverse map
Permission emulation

Detecting Support for EPT, NPTDetecting Support for EPT, NPT

If you want to see whether your system supports EPT on Intel processor or NPT on
AMD processor without using assembly (CPUID), you can download coreinfo.exe
from Sysinternals, then run it. The last line will show you if your processor supports
EPT or NPT.

EPT TranslationEPT Translation

EPT defines a layer of address translation that augments the translation of linear
addresses.

The extended page-table mechanism (EPT) is a feature that can be used to support
the virtualization of physical memory. When EPT is in use, certain addresses that
would normally be treated as physical addresses (and used to access memory) are
instead treated as guest-physical addresses. Guest-physical addresses are translated
by traversing a set of EPT paging structures to produce physical addresses that are
used to access memory.

EPT is used when the “enable EPT” VM-execution control is 1. It translates the
guest-physical addresses used in VMX non-root operation and those used by VM
entry for event injection.

EPT translation is exactly like regular paging translation but with some minor
differences. In paging, the processor translates Virtual Address to Physical Address

while in EPT translation you want to translate a Guest Virtual Address to Host
Physical Address.

If you’re familiar with paging, the 3rd control register (CR3) is the base address of
PML4 Table (in an x64 processor or more generally it points to root paging directory),
in EPT guest is not aware of EPT Translation so it has CR3 too but this CR3 is used to
convert Guest Virtual Address to Guest Physical Address, whenever you find your
target Guest Physical Address, it’s EPT mechanism that treats your Guest Physical
Address like a virtual address and the EPTP is the CR3.

Just think about the above sentence one more time!

So your target physical address should be divided into 4 part, the first 9 bits points
to EPT PML4E (note that PML4 base address is in EPTP), the second 9 bits point the
EPT PDPT Entry (the base address of PDPT comes from EPT PML4E), the third 9 bits
point to EPT PD Entry (the base address of PD comes from EPT PDPTE) and the last 9
bit of the guest physical address point to an entry in EPT PT table (the base address
of PT comes form EPT PDE) and now the EPT PT Entry points to the host physical
address of the corresponding page.

You might ask, as a simple Virtual to Physical Address translation involves accessing
4 physical address, so what happens ?!

The answer is the processor internally translates all tables physical address one by
one, that’s why paging and accessing memory in a guest software is slower than
regular address translation. The following picture illustrates the operations for a
Guest Virtual Address to Host Physical Address.

If you want to think about x86 EPT virtualization, assume, for example, that CR4.PAE
= CR4.PSE = 0. The translation of a 32-bit linear address then operates as follows:

Bits 31:22 of the linear address select an entry in the guest page directory
located at the guest-physical address in CR3. The guest-physical address of
the guest page-directory entry (PDE) is translated through EPT to determine
the guest PDE’s physical address.
Bits 21:12 of the linear address select an entry in the guest page table located
at the guest-physical address in the guest PDE. The guest-physical address of
the guest page-table entry (PTE) is translated through EPT to determine the
guest PTE’s physical address.
Bits 11:0 of the linear address is the offset in the page frame located at the
guest-physical address in the guest PTE. The guest physical address
determined by this offset is translated through EPT to determine the physical
address to which the original linear address translates.

Note that PAE stands for Physical Address Extension which is a memory
management feature for the x86 architecture that extends the address space and
PSE stands for Page Size Extension that refers to a feature of x86 processors that
allows for pages larger than the traditional 4 KiB size.

In addition to translating a guest-physical address to a host physical address, EPT
specifies the privileges that software is allowed when accessing the address.
Attempts at disallowed accesses are called EPT violations and cause VM-exits.

Keep in mind that address never translates through EPT, when there is no access.
That your guest-physical address is never used until there is access (Read or Write)
to that location in memory.

Implementing Extended Page Table (EPT)Implementing Extended Page Table (EPT)

Now that we know some basics, let’s implement what we’ve learned before. Based
on Intel manual we should write (VMWRITE) EPTP or Extended-Page-Table Pointer to
the VMCS. The EPTP structure described below.

The above tables can be described using the following structure :

1
2
3
4
5
6
7

// See Table 24-8. Format of Extended-Page-Table Pointer
typedef union _EPTP {
 ULONG64 All;
 struct {
 UINT64 MemoryType : 3; // bit 2:0 (0 = Uncacheable (UC) - 6 = Write - back(WB))
 UINT64 PageWalkLength : 3; // bit 5:3 (This value is 1 less than the EPT page-walk length)
 UINT64 DirtyAndAceessEnabled : 1; // bit 6 (Setting this control to 1 enables accessed and dirty flags for EPT)

Each entry in all EPT tables is 64 bit long. EPT PML4E and EPT PDPTE and EPT PD are
the same but EPT PTE has some minor differences.

An EPT entry is something like this :

Ok, Now we should implement tables and the first table is PML4. The following table
shows the format of an EPT PML4 Entry (PML4E).

PML4E can be a structure like this :

8
9
10
11
12

 UINT64 Reserved1 : 5; // bit 11:7
 UINT64 PML4Address : 36;
 UINT64 Reserved2 : 16;
 }Fields;
}EPTP, *PEPTP;

1
2
3
4
5
6
7
8

// See Table 28-1.
typedef union _EPT_PML4E {
 ULONG64 All;
 struct {
 UINT64 Read : 1; // bit 0
 UINT64 Write : 1; // bit 1
 UINT64 Execute : 1; // bit 2
 UINT64 Reserved1 : 5; // bit 7:3 (Must be Zero)

As long as we want to have a 4-level paging, the second table is EPT Page-Directory-
Pointer-Table (PDTP), the following picture illustrates the format of PDPTE :

PDPTE’s structure is like this :

9
10
11
12
13
14
15
16
17

 UINT64 Accessed : 1; // bit 8
 UINT64 Ignored1 : 1; // bit 9
 UINT64 ExecuteForUserMode : 1; // bit 10
 UINT64 Ignored2 : 1; // bit 11
 UINT64 PhysicalAddress : 36; // bit (N-1):12 or Page-Frame-Number
 UINT64 Reserved2 : 4; // bit 51:N
 UINT64 Ignored3 : 12; // bit 63:52
 }Fields;
}EPT_PML4E, *PEPT_PML4E;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// See Table 28-3
typedef union _EPT_PDPTE {
 ULONG64 All;
 struct {
 UINT64 Read : 1; // bit 0
 UINT64 Write : 1; // bit 1
 UINT64 Execute : 1; // bit 2
 UINT64 Reserved1 : 5; // bit 7:3 (Must be Zero)
 UINT64 Accessed : 1; // bit 8
 UINT64 Ignored1 : 1; // bit 9
 UINT64 ExecuteForUserMode : 1; // bit 10
 UINT64 Ignored2 : 1; // bit 11
 UINT64 PhysicalAddress : 36; // bit (N-1):12 or Page-Frame-Number
 UINT64 Reserved2 : 4; // bit 51:N
 UINT64 Ignored3 : 12; // bit 63:52
 }Fields;

For the third table of paging we should implement an EPT Page-Directory Entry
(PDE) as described below:

PDE’s structure:

The last page is EPT which is described below.

17 }EPT_PDPTE, *PEPT_PDPTE;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// See Table 28-5
typedef union _EPT_PDE {
 ULONG64 All;
 struct {
 UINT64 Read : 1; // bit 0
 UINT64 Write : 1; // bit 1
 UINT64 Execute : 1; // bit 2
 UINT64 Reserved1 : 5; // bit 7:3 (Must be Zero)
 UINT64 Accessed : 1; // bit 8
 UINT64 Ignored1 : 1; // bit 9
 UINT64 ExecuteForUserMode : 1; // bit 10
 UINT64 Ignored2 : 1; // bit 11
 UINT64 PhysicalAddress : 36; // bit (N-1):12 or Page-Frame-Number
 UINT64 Reserved2 : 4; // bit 51:N
 UINT64 Ignored3 : 12; // bit 63:52
 }Fields;
}EPT_PDE, *PEPT_PDE;

PTE will be :

Note that you have, EPTMemoryType, IgnorePAT, DirtyFlag and SuppressVE in
addition to the above pages.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

// See Table 28-6
typedef union _EPT_PTE {
 ULONG64 All;
 struct {
 UINT64 Read : 1; // bit 0
 UINT64 Write : 1; // bit 1
 UINT64 Execute : 1; // bit 2
 UINT64 EPTMemoryType : 3; // bit 5:3 (EPT Memory type)
 UINT64 IgnorePAT : 1; // bit 6
 UINT64 Ignored1 : 1; // bit 7
 UINT64 AccessedFlag : 1; // bit 8
 UINT64 DirtyFlag : 1; // bit 9
 UINT64 ExecuteForUserMode : 1; // bit 10
 UINT64 Ignored2 : 1; // bit 11
 UINT64 PhysicalAddress : 36; // bit (N-1):12 or Page-Frame-Number
 UINT64 Reserved : 4; // bit 51:N
 UINT64 Ignored3 : 11; // bit 62:52
 UINT64 SuppressVE : 1; // bit 63
 }Fields;
}EPT_PTE, *PEPT_PTE;

There are other types of implementing page walks (2 or 3 level paging) and if you
set the 7th bit of PDPTE (Maps 1 GB) or the 7th bit of PDE (Maps 2 MB) so instead of
implementing 4 level paging (like what we want to do for the rest of the topic) you
set those bits but keep in mind that the corresponding tables are different. These
tables described in (Table 28-4. Format of an EPT Page-Directory Entry (PDE) that
Maps a 2-MByte Page) and (Table 28-2. Format of an EPT Page-Directory-Pointer-
Table Entry (PDPTE) that Maps a 1-GByte Page). Alex Ionescu’s SimpleVisor is an
example of implementing in this way.

An important note is almost all the above structures have a 36-bit Physical Address
which means our hypervisor supports only 4-level paging. It is because every page
table (and every EPT Page Table) consist of 512 entries which means you need 9 bits
to select an entry and as long as we have 4 level tables, we can’t use more than 36 (4
* 9) bits. Another method with wider address range is not implemented in all major
OS like Windows or Linux. I’ll describe EPT PML5E briefly later in this topic but we
don’t implement it in our hypervisor as it’s not popular yet!

By the way, N is the physical-address width supported by the processor. CPUID with
80000008H in EAX gives you the supported width in EAX bits 7:0.

Let’s see the rest of the code, the following code is the Initialize_EPTP function
which is responsible for allocating and mapping EPTP.

Note that the PAGED_CODE() macro ensures that the calling thread is running at an
IRQL that is low enough to permit paging.

First of all, allocating EPTP and put zeros on it.

1
2
3
4

UINT64 Initialize_EPTP()
{
 PAGED_CODE();
 ...

1
2
3
4
5
6
7

 // Allocate EPTP
 PEPTP EPTPointer = ExAllocatePoolWithTag(NonPagedPool, PAGE_SIZE, POOLTAG)

 if (!EPTPointer) {
 return NULL;
 }
 RtlZeroMemory(EPTPointer, PAGE_SIZE);

https://github.com/ionescu007/SimpleVisor

Now, we need a blank page for our EPT PML4 Table.

And another empty page for PDPT.

Of course its true about Page Directory Table.

The last table is a blank page for EPT Page Table.

Now that we have all of our pages available, let’s allocate two page (2*4096)
continuously because we need one of the pages for our RIP to start and one page for
our Stack (RSP). After that, we need two EPT Page Table Entries (PTEs) with

1
2
3
4
5
6
7

 // Allocate EPT PML4
 PEPT_PML4E EPT_PML4 = ExAllocatePoolWithTag(NonPagedPool, PAGE_SIZE, POOLTAG
 if (!EPT_PML4) {
 ExFreePoolWithTag(EPTPointer, POOLTAG);
 return NULL;
 }
 RtlZeroMemory(EPT_PML4, PAGE_SIZE);

1
2
3
4
5
6
7
8

// Allocate EPT Page-Directory-Pointer-Table
 PEPT_PDPTE EPT_PDPT = ExAllocatePoolWithTag(NonPagedPool, PAGE_SIZE, POOLTAG
 if (!EPT_PDPT) {
 ExFreePoolWithTag(EPT_PML4, POOLTAG);
 ExFreePoolWithTag(EPTPointer, POOLTAG);
 return NULL;
 }
 RtlZeroMemory(EPT_PDPT, PAGE_SIZE);

1
2
3
4
5
6
7
8
9
10

 // Allocate EPT Page-Directory
 PEPT_PDE EPT_PD = ExAllocatePoolWithTag(NonPagedPool, PAGE_SIZE, POOLTAG)

 if (!EPT_PD) {
 ExFreePoolWithTag(EPT_PDPT, POOLTAG);
 ExFreePoolWithTag(EPT_PML4, POOLTAG);
 ExFreePoolWithTag(EPTPointer, POOLTAG);
 return NULL;
 }
 RtlZeroMemory(EPT_PD, PAGE_SIZE);

1
2
3
4
5
6
7
8
9
10
11

 // Allocate EPT Page-Table
 PEPT_PTE EPT_PT = ExAllocatePoolWithTag(NonPagedPool, PAGE_SIZE, POOLTAG)

 if (!EPT_PT) {
 ExFreePoolWithTag(EPT_PD, POOLTAG);
 ExFreePoolWithTag(EPT_PDPT, POOLTAG);
 ExFreePoolWithTag(EPT_PML4, POOLTAG);
 ExFreePoolWithTag(EPTPointer, POOLTAG);
 return NULL;
 }
 RtlZeroMemory(EPT_PT, PAGE_SIZE);

permission to execute, read, write. The physical address should be divided by 4096
(PAGE_SIZE) because if we dived a hex number by 4096 (0x1000) 12 digits from the
right (which are zeros) will disappear and these 12 digits are for choosing between
4096 bytes.

By the way, we let stack be executable too and that’s because, in a regular VM, we
should put RWX to all pages because its the responsibility of internal page tables to
set or clear NX bit. We need to change them from EPT Tables for special purposes
(e.g intercepting instruction fetch for a special page). Changing from EPT tables will
lead to EPT-Violation, in this way we can intercept these events.

The actual need is two page but we need to build page tables inside our guest
software thus we allocate up to 10 page.

I’ll explain about intercepting pages from EPT, later in these series.

Note: EPTMemoryType can be either 0 (for uncached memory) or 6 (write-back)
memory and as we want our memory to be cacheable so put 6 on it.

The next table is PDE. PDE should point to PTE base address so we just put the
address of the first entry from the EPT PTE as the physical address for Page Directory
Entry.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

 // Setup PT by allocating two pages Continuously
 // We allocate two pages because we need 1 page for our RIP to start and 1 page for RSP 1 + 1 and other paages for paging

 const int PagesToAllocate = 10;
 UINT64 Guest_Memory = ExAllocatePoolWithTag(NonPagedPool, PagesToAllocate *
 RtlZeroMemory(Guest_Memory, PagesToAllocate * PAGE_SIZE);

 for (size_t i = 0; i < PagesToAllocate; i++)
 {
 EPT_PT[i].Fields.AccessedFlag = 0;
 EPT_PT[i].Fields.DirtyFlag = 0;
 EPT_PT[i].Fields.EPTMemoryType = 6;
 EPT_PT[i].Fields.Execute = 1;
 EPT_PT[i].Fields.ExecuteForUserMode = 0;
 EPT_PT[i].Fields.IgnorePAT = 0;
 EPT_PT[i].Fields.PhysicalAddress = (VirtualAddress_to_PhysicalAddress(Guest_Memory
 EPT_PT[i].Fields.Read = 1;
 EPT_PT[i].Fields.SuppressVE = 0;
 EPT_PT[i].Fields.Write = 1;

 }

1 // Setting up PDE

Next step is mapping PDPT. PDPT Entry should point to the first entry of Page-
Directory.

The last step is configuring PML4E which points to the first entry of the PTPT.

We’ve almost done! Just set up the EPTP for our VMCS by putting 0x6 as the memory
type (which is write-back) and we walk 4 times so the page walk length is 4-1=3 and
PML4 address is the physical address of the first entry in the PML4 table.

I’ll explain about DirtyAndAcessEnabled field later in this topic.

2
3
4
5
6
7
8
9
10
11
12

 EPT_PD->Fields.Accessed = 0;
 EPT_PD->Fields.Execute = 1;
 EPT_PD->Fields.ExecuteForUserMode = 0;
 EPT_PD->Fields.Ignored1 = 0;
 EPT_PD->Fields.Ignored2 = 0;
 EPT_PD->Fields.Ignored3 = 0;
 EPT_PD->Fields.PhysicalAddress = (VirtualAddress_to_PhysicalAddress(EPT_PT
 EPT_PD->Fields.Read = 1;
 EPT_PD->Fields.Reserved1 = 0;
 EPT_PD->Fields.Reserved2 = 0;
 EPT_PD->Fields.Write = 1;

1
2
3
4
5
6
7
8
9
10
11
12

 // Setting up PDPTE
 EPT_PDPT->Fields.Accessed = 0;
 EPT_PDPT->Fields.Execute = 1;
 EPT_PDPT->Fields.ExecuteForUserMode = 0;
 EPT_PDPT->Fields.Ignored1 = 0;
 EPT_PDPT->Fields.Ignored2 = 0;
 EPT_PDPT->Fields.Ignored3 = 0;
 EPT_PDPT->Fields.PhysicalAddress = (VirtualAddress_to_PhysicalAddress(EPT_PD
 EPT_PDPT->Fields.Read = 1;
 EPT_PDPT->Fields.Reserved1 = 0;
 EPT_PDPT->Fields.Reserved2 = 0;
 EPT_PDPT->Fields.Write = 1;

1
2
3
4
5
6
7
8
9
10
11
12

 // Setting up PML4E
 EPT_PML4->Fields.Accessed = 0;
 EPT_PML4->Fields.Execute = 1;
 EPT_PML4->Fields.ExecuteForUserMode = 0;
 EPT_PML4->Fields.Ignored1 = 0;
 EPT_PML4->Fields.Ignored2 = 0;
 EPT_PML4->Fields.Ignored3 = 0;
 EPT_PML4->Fields.PhysicalAddress = (VirtualAddress_to_PhysicalAddress(EPT_PDPT
 EPT_PML4->Fields.Read = 1;
 EPT_PML4->Fields.Reserved1 = 0;
 EPT_PML4->Fields.Reserved2 = 0;
 EPT_PML4->Fields.Write = 1;

1
2
3

 // Setting up EPTP
 EPTPointer->Fields.DirtyAndAceessEnabled = 1;
 EPTPointer->Fields.MemoryType = 6; // 6 = Write-back (WB)

and the last step.

All the above page tables should be aligned to 4KByte boundaries but as long as we
allocate >= PAGE_SIZE (One PFN record) so it’s automatically 4kb-aligned.

Our implementation consist of 4 tables, therefore, the full layout is like this:

Accessed and Dirty Flags in EPTPAccessed and Dirty Flags in EPTP

In EPTP, you’ll decide whether enable accessed and dirty flags for EPT or not using
the 6th bit of the extended-page-table pointer (EPTP). Setting this flag causes
processor accesses to guest paging structure entries to be treated as writes.

4
5
6
7

 EPTPointer->Fields.PageWalkLength = 3; // 4 (tables walked) - 1 = 3
 EPTPointer->Fields.PML4Address = (VirtualAddress_to_PhysicalAddress(EPT_PML4
 EPTPointer->Fields.Reserved1 = 0;
 EPTPointer->Fields.Reserved2 = 0;

1
2

 DbgPrint("[*] Extended Page Table Pointer allocated at %llx",EPTPointer);
 return EPTPointer;

For any EPT paging-structure entry that is used during guest-physical-address
translation, bit 8 is the accessed flag. For an EPT paging-structure entry that maps a
page (as opposed to referencing another EPT paging structure), bit 9 is the dirty flag.

Whenever the processor uses an EPT paging-structure entry as part of the guest-
physical-address translation, it sets the accessed flag in that entry (if it is not already
set).

Whenever there is a write to a guest-physical address, the processor sets the dirty
flag (if it is not already set) in the EPT paging-structure entry that identifies the final
physical address for the guest-physical address (either an EPT PTE or an EPT paging-
structure entry in which bit 7 is 1).

These flags are “sticky,” meaning that, once set, the processor does not clear them;
only software can clear them.

5-Level EPT Translation5-Level EPT Translation

Intel suggests a new table in translation hierarchy, called PML5 which extends the
EPT into a 5-layer table and guest operating systems can use up to 57 bit for the
virtual-addresses while the classic 4-level EPT is limited to translating 48-bit guest-
physical
addresses. None of the modern OSs use this feature yet.

PML5 is also applying to both EPT and regular paging mechanism.

Translation begins by identifying a 4-KByte naturally aligned EPT PML5 table. It is
located at the physical address specified in bits 51:12 of EPTP. An EPT PML5 table
comprises 512 64-bit entries (EPT PML5Es). An EPT PML5E is selected using the
physical address defined as follows.

Bits 63:52 are all 0.
Bits 51:12 are from EPTP.
Bits 11:3 are bits 56:48 of the guest-physical address.
Bits 2:0 are all 0.
Because an EPT PML5E is identified using bits 56:48 of the guest-physical
address, it controls access to a 256-TByte region of the linear address space.

The only difference is you should put PML5 physical address instead of the PML4
address in EPTP.

For more information about 5-layer paging take a look at this Intel documentation.

Invalidating Cache (INVEPT)Invalidating Cache (INVEPT)

Well, Intel’s explanation about Cache invalidating is really vague and I couldn’t
understand it completely but I asked Petr and he explains me in this way:

https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf

VMX-specific TLB-management instructions:

INVEPT – Invalidate cached Extended Page Table (EPT) mappings in
the processor to synchronize address translation in virtual machines
with memory-resident EPT pages.

INVVPID – Invalidate cached mappings of address translation based
on the Virtual Processor ID (VPID).

Imagine we access guest-physical-address 0x1000,it’ll get translated to host-
physical-address 0x5000. Next time, if we access 0x1000, the CPU won’t send the
request to the memory bus but uses cached memory instead. it’s faster. Now let’s
say we change EPT_PDPT->PhysicalAddress to point to different EPT PD or change
the attributes of one of the EPT tables, now we have to tell the processor that your
cache is invalid and that’s what exactly INVEPT performs.

Now we have two terms here, Single-Context and All-Context.

Single-Context means, that you invalidate all EPT-derived translations based on a
single EPTP (in short: for single VM).

All-Context means that you invalidate all EPT-derived translations. (for every-VM).

So in case if you wouldn’t perform INVEPT after changing EPT’s structures, you
would be risking that the CPU would reuse old translations.

Basically, any change to EPT structure needs INVEPT but switching EPT (or VMCS)
doesn’t need INVEPT because that translation will be “tagged” with the changed
EPTP in the cache.

The following assembly function is responsible for INVEPT.

1
2
3
4
5
6
7
8
9

INVEPT_Instruction PROC PUBLIC
 invept rcx, oword ptr [rdx]
 jz @jz
 jc @jc
 xor rax, rax
 ret

@jz: mov rax, VMX_ERROR_CODE_FAILED_WITH_STATUS
 ret

Note that VMX_ERROR_CODE_FAILED_WITH_STATUS
and VMX_ERROR_CODE_FAILED define like this.

Now, we implement INVEPT.

To invalidate all the contexts use the following function.

And the last step is for Single-Context INVEPT which needs an EPTP.

Using the above functions in a modification state, tell the processor to invalidate its
cache.

Conclusion Conclusion

In this part, we see how to initialize the Extended Page Table and map guest physical
address to host physical address then we build the EPTP based on the allocated

10
11
12
13

@jc: mov rax, VMX_ERROR_CODE_FAILED
 ret
INVEPT_Instruction ENDP

1
2
3

 VMX_ERROR_CODE_SUCCESS = 0
 VMX_ERROR_CODE_FAILED_WITH_STATUS = 1
 VMX_ERROR_CODE_FAILED = 2

1
2
3
4
5
6
7
8
9
10

unsigned char INVEPT(UINT32 type, INVEPT_DESC* descriptor)
{
 if (!descriptor)
 {
 static INVEPT_DESC zero_descriptor = { 0 };
 descriptor = &zero_descriptor;
 }

 return INVEPT_Instruction(type, descriptor);
}

1
2
3
4

unsigned char INVEPT_ALL_CONTEXTS()
{
 return INVEPT(all_contexts ,NULL);
}

1
2
3
4
5

unsigned char INVEPT_SINGLE_CONTEXT(EPTP ept_pointer)
{
 INVEPT_DESC descriptor = { ept_pointer, 0 };
 return INVEPT(single_context, &descriptor);
}

addresses.

The future part would be about building the VMCS and implementing other VMX
instructions. Don’t forget to check the blog for the future posts.

Have a good time!

References

[1] Vol 3C – 28.2 THE EXTENDED PAGE TABLE MECHANISM (EPT)
(https://software.intel.com/en-us/articles/intel-sdm)

[2] Performance Evaluation of Intel EPT Hardware Assist
(https://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf)

[3] Second Level Address Translation
(https://en.wikipedia.org/wiki/Second_Level_Address_Translation)

[4] Memory Virtualization
(http://www.cs.nthu.edu.tw/~ychung/slides/Virtualization/VM-Lecture-2-2-
SystemVirtualizationMemory.pptx)

[5] Best Practices for Paravirtualization Enhancements from Intel® Virtualization
Technology: EPT and VT-d (https://software.intel.com/en-us/articles/best-practices-

https://software.intel.com/en-us/articles/intel-sdm
https://www.vmware.com/pdf/Perf_ESX_Intel-EPT-eval.pdf
https://en.wikipedia.org/wiki/Second_Level_Address_Translation
http://www.cs.nthu.edu.tw/~ychung/slides/Virtualization/VM-Lecture-2-2-SystemVirtualizationMemory.pptx
https://software.intel.com/en-us/articles/best-practices-for-paravirtualization-enhancements-from-intel-virtualization-technology-ept-and-vt-d

for-paravirtualization-enhancements-from-intel-virtualization-technology-ept-and-
vt-d)

[6] 5-Level Paging and 5-Level EPT
(https://software.intel.com/sites/default/files/managed/2b/80/5-
level_paging_white_paper.pdf)

[7] Xen Summit November 2007 – Jun Nakajima (http://www-
archive.xenproject.org/files/xensummit_fall07/12_JunNakajima.pdf)

[8] gipervizor against rutkitov: as it works (http://developers-
club.com/posts/133906/)

[9] Intel SGX Explained (https://www.semanticscholar.org/paper/Intel-SGX-
Explained-Costan-Devadas/2d7f3f4ca3fbb15ae04533456e5031e0d0dc845a)

[10] Intel VT-x (https://github.com/tnballo/notebook/wiki/Intel-VTx)

[11] Introduction to IA-32e hardware paging
(https://www.triplefault.io/2017/07/introduction-to-ia-32e-hardware-paging.html)

PAGES

Blog Map

Tools & Scripts

Tutorials

Sinaei

Judas tree , What kind of mystery is this, that every spring, Comes with our
hearts' mourning, Judas tree, You be elate, You sing my unsang song...

! "

https://twitter.com/Intel80x86
https://github.com/SinaKarvandi
https://software.intel.com/en-us/articles/best-practices-for-paravirtualization-enhancements-from-intel-virtualization-technology-ept-and-vt-d
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
http://www-archive.xenproject.org/files/xensummit_fall07/12_JunNakajima.pdf
http://developers-club.com/posts/133906/
https://www.semanticscholar.org/paper/Intel-SGX-Explained-Costan-Devadas/2d7f3f4ca3fbb15ae04533456e5031e0d0dc845a
https://github.com/tnballo/notebook/wiki/Intel-VTx
https://www.triplefault.io/2017/07/introduction-to-ia-32e-hardware-paging.html
https://rayanfam.com/blog-map/
https://rayanfam.com/tools/
https://rayanfam.com/tutorials/
https://rayanfam.com/topics/author/sina/

Leave a Reply

Your email address will not be published. Required fields are marked *

Comment

Name*

Jane Doe

Email*

name@email.com

Website

http://google.com

Published in CPU, Hypervisor and Tutorials

All-Context EPT EPTP Extended Page Table Extended Page Table Pointer

hypervisor paging INVEPT Nested Page Tables NPT

Rapid Virtualization Indexing RVI Second Level Address Translation

Single-Context SLAT Stage-2 page-tables

https://rayanfam.com/topics/tag/all-context/
https://rayanfam.com/topics/tag/ept/
https://rayanfam.com/topics/tag/eptp/
https://rayanfam.com/topics/tag/extended-page-table/
https://rayanfam.com/topics/tag/extended-page-table-pointer/
https://rayanfam.com/topics/tag/hypervisor-paging/
https://rayanfam.com/topics/tag/invept/
https://rayanfam.com/topics/tag/nested-page-tables/
https://rayanfam.com/topics/tag/npt/
https://rayanfam.com/topics/tag/rapid-virtualization-indexing/
https://rayanfam.com/topics/tag/rvi/
https://rayanfam.com/topics/tag/second-level-address-translation/
https://rayanfam.com/topics/tag/single-context/
https://rayanfam.com/topics/tag/slat/
https://rayanfam.com/topics/tag/stage-2-page-tables/
https://rayanfam.com/topics/category/cpu/
https://rayanfam.com/topics/category/hypervisor/
https://rayanfam.com/topics/category/tutirials/

Post Comment

Search …

Search

RECENT POSTS

Hypervisor From Scratch – Part 4: Address Translation Using Extended Page Table (EPT)

Hypervisor From Scratch – Part 3: Setting up Our First Virtual Machine

Using Intel’s Streaming SIMD Extensions 3 (MONITOR\MWAIT) As A Kernel Debugging Trick

Hypervisor From Scratch – Part 2: Entering VMX Operation

A Tour of Mount in Linux

RECENT COMMENTS

IRQL_EQUALITY on Hypervisor From Scratch – Part 3: Setting up Our First Virtual Machine

Kasbarg (Shayan) on Hypervisor From Scratch – Part 1: Basic Concepts & Configure Testing

Environment

Sinaei on Hypervisor From Scratch – Part 2: Entering VMX Operation

Carl OS on Hypervisor From Scratch – Part 1: Basic Concepts & Configure Testing Environment

Necrolis on Hypervisor From Scratch – Part 2: Entering VMX Operation

https://rayanfam.com/topics/hypervisor-from-scratch-part-4/
https://rayanfam.com/topics/hypervisor-from-scratch-part-3/
https://rayanfam.com/topics/using-intels-streaming-simd-extensions-3-monitormwait-as-a-kernel-debugging-trick/
https://rayanfam.com/topics/hypervisor-from-scratch-part-2/
https://rayanfam.com/topics/mount-in-linux/
https://rayanfam.com/topics/hypervisor-from-scratch-part-3/#comment-372
https://rayanfam.com/topics/hypervisor-from-scratch-part-1/#comment-319
https://rayanfam.com/topics/hypervisor-from-scratch-part-2/#comment-282
https://rayanfam.com/topics/hypervisor-from-scratch-part-1/#comment-281
https://rayanfam.com/topics/hypervisor-from-scratch-part-2/#comment-278

ARCHIVES

October 2018

September 2018

August 2018

July 2018

June 2018

May 2018

April 2018

March 2018

January 2018

December 2017

November 2017

October 2017

September 2017

August 2017

April 2017

March 2017

CATEGORIES

.Net Framework

Android

Cisco

CPU

Debugging

Emulator

https://rayanfam.com/topics/2018/10/
https://rayanfam.com/topics/2018/09/
https://rayanfam.com/topics/2018/08/
https://rayanfam.com/topics/2018/07/
https://rayanfam.com/topics/2018/06/
https://rayanfam.com/topics/2018/05/
https://rayanfam.com/topics/2018/04/
https://rayanfam.com/topics/2018/03/
https://rayanfam.com/topics/2018/01/
https://rayanfam.com/topics/2017/12/
https://rayanfam.com/topics/2017/11/
https://rayanfam.com/topics/2017/10/
https://rayanfam.com/topics/2017/09/
https://rayanfam.com/topics/2017/08/
https://rayanfam.com/topics/2017/04/
https://rayanfam.com/topics/2017/03/
https://rayanfam.com/topics/category/net-framework/
https://rayanfam.com/topics/category/android/
https://rayanfam.com/topics/category/cisco/
https://rayanfam.com/topics/category/cpu/
https://rayanfam.com/topics/category/debugging/
https://rayanfam.com/topics/category/emulator/

Hypervisor

Instrumentation

Kernel Mode

Linux

Malware

Network

Pentest

Programming

Ransomware

Security

Social

Software

SysAdmin

Tutorials

User Mode

Windows

TAGS

active directory Assembly x64 Visual Studio begining cache cisco Create a virtual machine

debian debugging kernel mode debug virtual machine debug windows getting started with

pykd helloworld How to create Virtual Machine Hypervisor fundamentals Hypervisor

Tutorials Intel Virtualization Intel VMX Intel VTX Tutorial ios ipsec kernel-mode linux network
opensource Page management in Windows PFN PFN Database proxy PyKD
example PyKD sample PyKD scripts PyKD tutorial run PyKD command Setting

up Virtual Machine Monitor start systemd tunnel using CPU Virtualization VMCS VMM Implementation VMM

Tutorials VMWare and Windbg windows server x64 assembly in driver _MMPFN

https://rayanfam.com/topics/category/hypervisor/
https://rayanfam.com/topics/category/instrumentation/
https://rayanfam.com/topics/category/kernel-mode/
https://rayanfam.com/topics/category/linux/
https://rayanfam.com/topics/category/malware/
https://rayanfam.com/topics/category/network/
https://rayanfam.com/topics/category/pentest/
https://rayanfam.com/topics/category/programming/
https://rayanfam.com/topics/category/ransomware/
https://rayanfam.com/topics/category/security/
https://rayanfam.com/topics/category/social/
https://rayanfam.com/topics/category/software/
https://rayanfam.com/topics/category/sysadmin/
https://rayanfam.com/topics/category/tutirials/
https://rayanfam.com/topics/category/user-mode/
https://rayanfam.com/topics/category/windows/
https://rayanfam.com/topics/tag/active-directory/
https://rayanfam.com/topics/tag/assembly-x64-visual-studio/
https://rayanfam.com/topics/tag/begining/
https://rayanfam.com/topics/tag/cache/
https://rayanfam.com/topics/tag/cisco/
https://rayanfam.com/topics/tag/create-a-virtual-machine/
https://rayanfam.com/topics/tag/debian/
https://rayanfam.com/topics/tag/debugging-kernel-mode/
https://rayanfam.com/topics/tag/debug-virtual-machine/
https://rayanfam.com/topics/tag/debug-windows/
https://rayanfam.com/topics/tag/getting-started-with-pykd/
https://rayanfam.com/topics/tag/helloworld/
https://rayanfam.com/topics/tag/how-to-create-virtual-machine/
https://rayanfam.com/topics/tag/hypervisor-fundamentals/
https://rayanfam.com/topics/tag/hypervisor-tutorials/
https://rayanfam.com/topics/tag/intel-virtualization/
https://rayanfam.com/topics/tag/intel-vmx/
https://rayanfam.com/topics/tag/intel-vtx-tutorial/
https://rayanfam.com/topics/tag/ios/
https://rayanfam.com/topics/tag/ipsec/
https://rayanfam.com/topics/tag/kernel-mode/
https://rayanfam.com/topics/tag/linux/
https://rayanfam.com/topics/tag/network/
https://rayanfam.com/topics/tag/opensource/
https://rayanfam.com/topics/tag/page-management-in-windows/
https://rayanfam.com/topics/tag/pfn/
https://rayanfam.com/topics/tag/pfn-database/
https://rayanfam.com/topics/tag/proxy/
https://rayanfam.com/topics/tag/pykd-example/
https://rayanfam.com/topics/tag/pykd-sample/
https://rayanfam.com/topics/tag/pykd-scripts/
https://rayanfam.com/topics/tag/pykd-tutorial/
https://rayanfam.com/topics/tag/run-pykd-command/
https://rayanfam.com/topics/tag/setting-up-virtual-machine-monitor/
https://rayanfam.com/topics/tag/start/
https://rayanfam.com/topics/tag/systemd/
https://rayanfam.com/topics/tag/tunnel/
https://rayanfam.com/topics/tag/using-cpu-virtualization/
https://rayanfam.com/topics/tag/vmcs/
https://rayanfam.com/topics/tag/vmm-implementation/
https://rayanfam.com/topics/tag/vmm-tutorials/
https://rayanfam.com/topics/tag/vmware-and-windbg/
https://rayanfam.com/topics/tag/windows-server/
https://rayanfam.com/topics/tag/x64-assembly-in-driver/
https://rayanfam.com/topics/tag/_mmpfn/

Sina & Shahriar's Blog
An aggressive out-of-order blog…

The contents of this blog is licensed to the public under a Creative Commons Attribution 4.0 license.

https://rayanfam.com/
https://creativecommons.org/licenses/by/4.0/

