
24 DECEMBER 2018 / TECHNICAL

How To Exploit PHP
Remotely To Bypass Filters

& WAF Rules

In the last three articles, I’ve been focused on how to
bypass WAF rule set in order to exploit a remote
command execution. In this article, I’ll show you how
many possibilities PHP gives us in order to exploit a
remote code execution bypassing filters, input sani-
tization, and WAF rules. Usually when I write articles
like this one people always ask “really people write
code like this?” and typically they’re not pentesters.
Let me answer before you ask me again : YES and
YES.

This is the first of two vulnerable PHP scripts that I’m going to
use for all tests. This script is definitely too easy and dumb but

https://www.secjuice.com/tag/technical/
https://www.google.com/search?q=PHP+remote+code+execution
https://github.com/search?l=PHP&o=desc&q=eval%28&s=indexed&type=Code

it’s just to reproducing a remote code execution vulnerability sce-
nario (probably in a real scenario, you’ll do a little bit more work to
reach this situation):

first PHP script

Obviously, the sixth line is pure evil. The third line tries to inter-
cept functions like system , exec or passthru (there’re many oth-
er functions in PHP that can execute system commands but let’s
focus on these three). This script is running in a web server be-
hind the CloudFlare WAF (as always, I’m using CloudFlare be-
cause it’s easy and widely known by the people, this doesn’t
mean that CloudFlare WAF is not secure. All other WAF have the
same issues, more or less…). The second script will be behind
ModSecurity + OWASP CRS3.

Trying to read /etc/passwd
For the first test, I try to read /etc/passwd using system() func-
tion by the request /cfwaf.php?code=system(“cat /etc/passwd”);

CloudFlare WAF blocks my first try

As you can see, CloudFlare blocks my request (maybe because
the “/etc/passwd”) but, if you have read my last article about
uninitialized variable, I can easily bypass with something like cat
/etc$u/passwd

CloudFlare WAF bypassed but input sanitization blocks the request

CloudFlare WAF has been bypassed but the check on the user’s
input blocked my request because I’m trying to use the “system”
function. Is there a syntax that let me use the system function

https://www.secjuice.com/web-application-firewall-waf-evasion/

without using the “system” string? Let’s take a look at the PHP
documentation about strings!

PHP String escape sequences
\[0–7]{1,3} sequence of characters in octal notation, which

silently overflows to fit in a byte (e.g. “\400” === “\000”)

\x[0–9A-Fa-f]{1,2} sequence of characters in hexadecimal no-
tation (e.g. “\x41")

\u{[0–9A-Fa-f]+} sequence of Unicode codepoint, which will be
output to the string as that codepoint’s UTF-8 representation
(added in PHP 7.0.0)

Not everyone knows that PHP has a lot of syntaxes for represent-
ing a string, and with the “PHP Variable functions” it becomes our
Swiss Army knife for bypassing filters and rules.

PHP Variable functions
PHP supports the concept of variable functions. This
means that if a variable name has parentheses appended
to it, PHP will look for a function with the same name as
whatever the variable evaluates to, and will attempt to exe-
cute it. Among other things, this can be used to implement
callbacks, function tables, and so forth.

this means that syntaxes like $var(args); and “string”(args);
are equal to function(args); . If I can call a function by using a
variable or a string, it means that I can use an escape sequence
instead of the name of a function. Here an example:

https://secure.php.net/manual/en/language.types.string.php

the third syntax is an escape sequence of characters in a hexa-
decimal notation that PHP converts to the string “system” and
then it converts to the function system with the argument “ls”.
Let’s try with our vulnerable script:

user input sanitization bypassed

This technique doesn’t work for all PHP functions, variable func-
tions won’t work with language constructs such as echo, print,
unset(), isset(), empty(), include, require and the like. Utilize wrapper
functions to make use of any of these constructs as variable
functions.

Improve the user input
sanitization
What happens if I exclude characters like double and single
quotes from the user input on the vulnerable script? Is it possible
to bypass it even without using double quotes? Let’s try:

prevent using “ and ‘ on $_GET[code]

as you can see on the third line, now the script prevents the use
of “ and ‘ inside the $_GET[code] querystring parameter. My
previous payload should be blocked now:

https://php.net/manual/en/function.echo.php
https://php.net/manual/en/function.print.php
https://php.net/manual/en/function.unset.php
https://php.net/manual/en/function.isset.php
https://php.net/manual/en/function.empty.php
https://php.net/manual/en/function.include.php
https://php.net/manual/en/function.require.php

Now my vulnerable script prevents using “

Luckily, in PHP, we don’t always need quotes to represent a string.
PHP makes you able to declare the type of an element, something
like $a = (string)foo; in this case, $a contains the string “foo”.
Moreover, whatever inside round brackets without a specific type
declaration, is treated as a string:

In this case, we’ve two ways to bypass the new filter: the first one
is to use something like (system)(ls); but we can’t use “system”
inside the code parameter, so we can concatenate strings like
(sy.(st).em)(ls); . The second one is to use the $_GET variable.

If I send a request like ?a=system&b=ls&code=$_GET[a]($_GET[b]);
the result is: $_GET[a] will be replaced with the string “system”
and $_GET[b] will be replaced with the string “ls” and I’ll able to
bypass all filters!

Let’s try with the first payload (sy.(st).em)(whoami);

WAF bypassed, filter bypassed

and the second payload ?
a=system&b=cat+/etc&c=/passwd&code=$_GET[a]

($_GET[b].$_GET[c]);

WAF bypassed, filter bypassed

In this case is not useful, but you can even insert comments in-
side the function name and inside the arguments (this could be
useful in order to bypass WAF Rule Set that blocks specific PHP
function names). All following syntaxes are valid:

get_defined_functions
This PHP function returns a multidimensional array containing a
list of all defined functions, both built-in (internal) and user-de-
fined. The internal functions will be accessible via $arr[“inter‐
nal”] , and the user-defined ones using $arr[“user”] . For
example:

This could be another way to reach the system function without
using its name. If I grep for “system” I can discover its index num-
ber and use it as a string for my code execution:

1077 = system

obviously this should work against our CloudFlare WAF and

obviously, this should work against our CloudFlare WAF and
script filters:

bypass using get_defined_functions

Array of characters
Each string in PHP can be used as an array of characters (almost

like Python does) and you can refer to a single string character
with the syntax $string[2] or $string[-3] . This could be anoth-
er way to elude rules that block PHP functions names. For exam-
ple, with this string $a=”elmsty/ “; I can compose the syntax
system(“ls /tmp”);

If you’re lucky you can find all the characters you need inside the
script filename. With the same technique, you can pick all chars
you need with something like (__FILE__)[2] :

OWASP CRS3

Let me say that with the OWASP CRS3 all becomes harder. First,
with the techniques seen before I can bypass only the first para-
noia level, and this is amazing! Because the Paranoia Level 1 is
just a little subset of rules of what we can find in the CRS3, and
this level is designed for preventing any kind of false positive.
With a Paranoia Level 2 all things becomes hard because of the
rule 942430 “Restricted SQL Character Anomaly Detection (args):
of special characters exceeded”. What I can do is just execute a
single command without arguments like “ls”, “whoami”, etc.. but I
can’t execute something like system(“cat /etc/passwd”) as done
with CloudFlare WAF:

Previous Episodes
Web Application Firewall Evasion Techniques #1
https://medium.com/secjuice/waf-evasion-techniques-
718026d693d8

https://medium.com/secjuice/waf-evasion-techniques-718026d693d8

Web Application Firewall Evasion Techniques #2
https://medium.com/secjuice/web-application-firewall-waf-eva-
sion-techniques-2-125995f3e7b0

Web Application Firewall Evasion Techniques #3
https://www.secjuice.com/web-application-firewall-waf-evasion/

If you liked this post, please share
and follow:
Twitter: @Menin_TheMiddle
GitHub: theMiddleBlue
LinkedIn: Andrea Menin

https://medium.com/secjuice/web-application-firewall-waf-evasion-techniques-2-125995f3e7b0
https://www.secjuice.com/web-application-firewall-waf-evasion/
https://twitter.com/Menin_TheMiddle
https://github.com/theMiddleBlue
https://www.linkedin.com/in/andreamenin/

