
Understanding MQTT and CoAP Protcols

 -Tarun Bareja

In today’s modern world IOT (Internet of things) i.e. smart devices like your smart TV, smart

camera, and smart air conditioners have become essential part of our life. Have you ever thought

how do these devices communicate? To get an answer to this we need to understand MQTT

protocol or Message Queuing Telemetry Transport Protocol. Let’s dig more on this.

Message Queuing Telemetry Transport or MQTT is a simple messaging protocol, designed

for constrained devices with low-bandwidth. So, it’s the perfect solution for Internet of Things

applications. MQTT allows you to send commands to control outputs, read and publish data

from sensor nodes. The MQTT protocol uses a publish/subscribe architecture in contrast to

HTTP with its request/response paradigm. Publish/Subscribe is event-driven and enables

messages to be pushed to clients.

History of MQTT

Andy Stanford-Clark (IBM) and Arlen Nipper (Cirrus Link, then Eurotech) authored the

first version of the protocol in 1999. It was used to monitor an oil pipeline through the desert.

The goal was to have a protocol that is bandwidth-efficient, lightweight and uses little battery

power, because the devices were connected via satellite link and at this time it was extremely

expensive.

In 2013, IBM submitted MQTT v3.1 to the OASIS specification body with a charter that

ensured only minor changes to the specification could be accepted. MQTT-SN is a variation of

the main protocol aimed at embedded devices on non-TCP/IP networks, such as Zigbee.

Historically, the "MQ" in "MQTT" came from the IBM MQ (then 'MQSeries') MQ product line.

However, the protocol provides publish-and-subscribe messaging (no queues, in spite of the

name) and was specifically designed for resource-constrained devices and low bandwidth, high

latency networks such as dial up lines and satellite links, for example.

Overview

Now, that we have some understanding of MQTT let’s dig a little deeper into the technical

aspects of MQTT. First, the protocol runs on top of the TCP/IP networking stack. When

clients connect and publish/subscribe, MQTT has different message types that help with the

handshaking of that process. The MQTT header is two bytes and first byte is constant.

In the first byte, you specify the type of message being sent as well as the QoS level retain, and

DUP (duplication) flags. The second byte is the remaining length field. The MQTT protocol

defines two types of network entities: a message broker and a number of clients.

An MQTT broker is a server that receives all messages from the clients and then routes the

messages to the appropriate destination clients. An MQTT client is any device (from a micro

controller up to a full-fledged server) that runs an MQTT library and connects to an MQTT

broker over a network. Information is organized in a hierarchy of topics. When a publisher has a

new item of data to distribute, it sends a control message with the data to the connected broker.

The broker then distributes the information to any clients that have subscribed to that topic. The

publisher does not need to have any data on the number or locations of subscribers, and

subscribers in turn do not have to be configured with any data about the publishers.

If a broker receives a topic for which there are no current subscribers, it will discard the topic

unless the publisher indicates that the topic is to be retained. This allows new subscribers to a

topic to receive the most current value rather than waiting for the next update from a publisher.

When a publishing client first connects to the broker, it can set up a default message to be sent to

subscribers if the broker detects that the publishing client has unexpectedly disconnected from

the broker.

Let’s understand some terminologies commonly used of MQTT.

Client – Any publisher or subscriber that connects to the centralized broker over a network is

considered to be the client. It’s important to note that there are servers and clients in MQTT.

Both publishers and subscribers are called as clients since they connect to the centralized service.

Broker – The broker is the software that receives all the messages from the publishing clients

and sends them to the subscribing clients. It holds the connection to persistent clients. Since the

broker can become the bottleneck or result in a single point of failure, it is often clustered for

scalability and reliability. Some of the commercial implementations of MQTT brokers include

HiveMQ, Xively, AWS IoT, and Loop.

Topic – A topic in MQTT is an endpoint to that the clients connect. It acts as the central

distribution hub for publishing and subscribing messages. In MQTT, a topic is a well-known

location for the publisher and subscriber. It’s created on the fly when either of the clients

establishes the connection with the broker

Connection – MQTT can be utilized by clients based on TCP/IP. The standard port exposed by

brokers is 1883, which is not a secure port. Those brokers who support TLS/SSL typically use

port 8883. For secure communication, the clients and the broker rely on digital certificates. AWS

IoT is one of the secure implementations of MQTT, which requires the clients to use the X.509

certificates.

Connect: Waits for a connection to be established with the server and creates a link between the

nodes.

Disconnect: Waits for the MQTT client to finish any work it must do, and for the TCP/IP

session to disconnect.

Publish: Returns immediately to the application thread after passing the request to the MQTT

client.

Quality of service (QoS): Each connection to the broker can specify a quality of service

measure. These are classified in increasing order of overhead:

• At most once - the message is sent only once and the client and broker take no additional

steps to acknowledge delivery (fire and forget).

• At least once - the message is re-tried by the sender multiple times until

acknowledgement is received (acknowledged delivery).

• Exactly once - the sender and receiver engage in a two-level handshake to ensure only

one copy of the message is received (assured delivery).

Practical

Prerequisites: I am using windows 10 as a host machine.

You would need the following:

VMware Workstation: You can download it from here. Or Virtual box

Kali Linux: You can download if from here.

Raspberry pi: You can download it from here.

Once you have them downloaded. Open VMware Workstation and install Kali Linux and

Raspberry pi.

Follow the commands in Raspberry pi.

• sudo apt-get update

• sudo apt-get install mosquitto

• sudo apt-get install mosquitto-clients

• sudo service mosquitto stop

• sudo service mosquitto start

• mosquitto_pub -t test -h 192.168.174.146 -m hello

Now, open Kali linux and follow the following commands.

• sudo apt-get update

• sudo apt-get install mosquitto

• sudo apt-get install mosquitto-clients

• mosquitto_sub -h 192.168.174.146 -t test

Note: when dup flag is 0 it means this is the first attempt at sending this published packet,

if the flag is 1 it indicates a possible re-attempt at sending the message

https://www.vmware.com/in/products/workstation-pro/workstation-pro-evaluation.html
https://www.virtualbox.org/
https://www.kali.org/downloads/
https://www.raspberrypi.org/downloads/

 POC

Open Raspberry Pi.

Open Kali Linux now

Constrained Application Protocol (CoAP)

Constrained Application Protocol (CoAP) is a specialized Internet Application Protocol for

constrained devices, as defined in RFC 7252. It enables those constrained devices called "nodes"

to communicate with the wider Internet using similar protocols. CoAP is designed for use

between devices on the same constrained network (e.g., low-powered networks), between

devices and general nodes on the Internet, and between devices on different constrained

networks both joined by an internet. CoAP is also being used via other mechanisms, such as

SMS on mobile communication networks.

CoAP is a service layer protocol that is intended for use in resource-constrained internet

devices, such as wireless sensor network nodes. CoAP is designed to easily translate to HTTP for

simplified integration with the web, while also meeting specialized requirements such as

multicast support, very low overhead, and simplicity. Multicast, low overhead, and simplicity are

extremely important for Internet of Things (IoT) and Machine-to-Machine (M2M) devices,

which tend to be deeply embedded and have much less memory and power supply than

traditional internet devices have. Therefore, efficiency is very important. CoAP can run on most

devices that support UDP or a UDP analogue. There is one more protocol that works similar to

CoAP protocol that is MQTT protocol. I’ll make one more article for MQTT Protocol. Let’s see

how MQTT and CoAP are similar. MQTT is publish/subscribe messaging protocol designed

for lightweight M2M communications. It was originally developed by IBM and is now an open

standard. Both MQTT and CoAP:

1. Are open standards

2. Are better suited to constrained environments than HTTP

3. Provide mechanisms for asynchronous communication

4. Run on IP

5. Have a range of implementations.

MQTT and CoAP are both useful as IoT protocols, but have fundamental differences.

1. MQTT is a many-to-many communication protocol for passing messages between

multiple clients through a central broker. It decouples producer and consumer by letting

clients publish and having the broker decide where to route and copy messages. While

MQTT has some support for persistence, it does best as a communications bus for live

data.

2. CoAP is a one-to-one protocol for transferring state information between client and

server. While it has support for observing resources, CoAP is best suited to a state

transfer model, not purely event based.

3. MQTT clients make a long-lived outgoing TCP connection to a broker. This usually

presents no problem for devices behind NAT. CoAP clients and servers both send and

receive UDP packets.

4. MQTT provides no support for labeling messages with types or other metadata to help

clients understand it. MQTT messages can be used for any purpose, but all clients must

know the message formats up-front to allow communication. CoAP, conversely, provides

inbuilt support for content negotiation and discovery allowing devices to probe each other

to find ways of exchanging data.

Architecture of CoAP

Like HTTP, CoAP is a document transfer protocol. Unlike HTTP, CoAP is designed for the

needs of constrained devices. CoAP packets are much smaller than HTTP TCP flows. Bit fields

and mappings from strings to integers are used extensively to save space. Packets are simple to

generate and can be parsed in place without consuming extra RAM in constrained devices. CoAP

runs over UDP, not TCP. Clients and servers communicate through connectionless datagrams.

Retries and reordering are implemented in the application stack. Removing the need for TCP

may allow full IP networking in small microcontrollers. CoAP allows UDP broadcast and

multicast to be used for addressing. CoAP follows a client/server model. Clients make requests

to servers, servers send back responses. Clients may GET, PUT, POST and DELETE resources.

CoAP is designed to interoperate with HTTP and the RESTful web at large through simple

proxies. Because CoAP is datagram based, it may be used on top of SMS and other packet based

communications protocols.

Message formats

The smallest CoAP message is 4 bytes in length, if omitting Token, Options and Payload. CoAP

makes use of two message types, requests and responses, using a simple, binary, base header

format. The base header may be followed by options in an optimized Type-Length-Value format.

CoAP is by default bound to UDP and optionally to DTLS, providing a high level of

communications security.

Any bytes after the headers in the packet are considered the message body. The length of the

message body is implied by the datagram length. When bound to UDP, the entire message

MUST fit within a single datagram.

The first 4 bytes are mandatory in all CoAP datagrams.

Version (VER) (2 bits)

Indicates the CoAP version number.

Type (2 bits)

This describes the datagram's message type for the two message type context of Request and

Response.

Request

0: Confirmable: This message expects a corresponding Acknowledgement message.

1: Non-confirmable: This message does not expect a confirmation message.

Response

2: Acknowledgement: This message is a response that acknowledge a confirmable

message

3: Reset: This message indicates that it had received a message but could not process it.

Token Length (4 bits)

Indicates the length of the variable-length Token field, which may be 0-8 bytes in length.

Request/Response Code (8 bits)

0 1 2 3 4 5 6 7

Class Code

The three most significant bits form a number known as the "class", which is analogous to the

class of HTTP status codes. The five least significant bits form a code that communicates further

detail about the request or response. The entire code is typically communicated in the form

class.code.

Message ID (16 bits)

Used to detect message duplication and to match messages of type Acknowledgement/Reset to

messages of type Confirmable/Non-confirmable.:Response messages will have the same

Message ID as request.

Token

Optional field whose size is indicated by the Token Length field, whose values is generated by

the client. The server must echo every token value without any modification back to the client. It

is intended for use as a client-local identifier to provide extra context for certain concurrent

transactions.

Option Delta:

• 0 to 12: For delta between 0 to 12 : Small delta between the last option id and the desired

option id

• 13: For delta from 13 to 268 : Option Delta Extended is 8bit that is the Option Delta

value minus 13

• 14: For delta from 269 to 65,804 : Option Delta Extended is 16bit that is the Option Delta

value minus 269

• 15: Reserved for Payload Marker, where the Options Delta/length are set together as

0xFF.

Option Length:

• 0 to 12: For Option Length between 0 to 12 : Small Option Length between the last

option id and the desired option id

• 13: For Option Length from 13 to 268 : Option Length Extended is 8bit that is the Option

Length value minus 13

• 14: For Option Length from 269 to 65,804 : Option Length Extended is 16bit that is the

Option Length value minus 269

• 15: Reserved for future use. Is an error if Option Delta field is set to 0xFF.

Option Value:

• Size of Option Value field is defined by Option Length value in bytes.

• Semantic and format this field depends on the respective option.

Payload:

The payload is the part of transmitted data that is the actual intended message. Headers and

metadata are sent only to enable payload delivery.

Security issues

CoAP uses DTLS (Datagram Transport Layer Security) as a secure protocol and UDP (User

Datagram Protocol) is used as a transfer protocols. Therefore, the attacks on UDP or DTLS

could actually cause CoAP attack. Most of the DTLS attacks can be carried out in a single

session and strong authenticated encryption algorithm is needed. MITM (Man in the middle) is

one the CoAP attacks, phishing and sniffing could be considered as CoAP attack.

CoAP was designed as a lightweight machine-to-machine (M2M) protocol that can run on

smart devices where memory and computing resources are scarce. In a very simplistic

explanation, CoAP is very similar to HTTP, but instead of working on top of TCP packets, it

works on top of UDP, a lighter data transfer format created as a TCP alternative.

Just like HTTP is used to transport data and commands (GET, POST, CONNECT) between a

client and a server, CoAP also allows the same multicast and command transmission features,

but without needing the same amount of resources, making it ideal for today's rising wave of

Internet of Things (IoT) devices. But just like any other UDP-based protocol, CoAP is inherently

susceptible to IP address spoofing and packet amplification, the two major factors that enable the

amplification of a DDoS attack. An attacker can send a small UDP packet to a CoAP client (an

IoT device), and the client would respond with a much larger packet. In the world of DDoS

attacks, the size of this packet response is known as an amplification factor, and for CoAP, this

can range from 10 to 50, depending on the initial packet and the resulting response.

References

• https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

• "MQTT 3.1.1 specification". OASIS. December 10, 2015. Retrieved April 25, 2017.

• https://en.wikipedia.org/wiki/MQTT

• "IBM MQ". IBM. Retrieved November 18, 2013.

• http://mqtt.org/

• https://en.wikipedia.org/wiki/Constrained_Application_Protocol

• https://coap.technology/

• https://www.eclipse.org/community/eclipse_newsletter/2014/february/article2.php

