

By Haboob Team

Abusing

Windows Data Protection API

 1

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Table of Contents

1. Introduction .. 2

2. What Is DPAPI? ... 2

3. What Is the Master Key? .. 2

4. What Is CREDHIST? .. 3

5. How DPAPI Works? .. 4

6. Using DPAPI With PowerShell .. 6

7. Encrypting and Decrypting Data with DPAPI using “Mimikatz” .. 7

8. Abusing DPAPI to get RDP Credentials .. 9

9. Abusing DPAPI to Extract “Chrome” Browser Credentials ... 13

10. Abusing the Master Keys to Steal Browser Sessions and Bypass 2FA ... 16

11. Conclusion ... 22

12. References .. 23

 2

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

1. Introduction
This paper will cover what is known as Windows DPAPI (Data Protection Application

Programming Interface), what is its use, how it works and how to abuse it from a penetration

tester’s point of view.

2. What Is DPAPI?
DPAPI (Data Protection Application Programming Interface) is a simple cryptographic application

programming interface available as a built-in component in Windows 2000 and later versions of

Microsoft Windows operating systems. This API is meant to be the standard way to store

encrypted data on a computer’s disk that is running a Windows operating system. DPAPI provides

an easy set of APIs to easily encrypt “CryptProtectData()” and decrypt “CryptUnprotectData()”

opaque data “blobs” using implicit crypto keys tied to a specific user or the system. This allows

applications to protect user data without having to worry about things such as key management.

DPAPI is used by many popular applications including Internet Explorer, Google Chrome and

Skype to encrypt their passwords. It is also used by Windows itself to store sensitive information

such as EFS certificates and WiFi keys (WEP and WPA).

3. What Is the Master Key?
A user's Master Key is a binary file that contains the key which is used for creating the private

primary encryption key in all DPAPI blobs. Since the Master Key encrypts a user's private keys,

the master key itself requires serious protection. To protect the Master key, Microsoft used the

User's password for encrypting and protecting the Master Key. Every Master Key has a unique

name (GUID). Each DPAPI blob stores that unique identifier. In other words, the Master Key’s GUID

is the key's "link" to the DPAPI blob. The Master Key is stored in a separate file in the Master Key

storage folder along with other system data. MKSF is a special location on disk where Master

Keys are stored. User's Master Keys are stored in:

 “%APPDATA%/Microsoft/Protect/%SID%” for user Master Keys.

 “%WINDIR%/System32/Microsoft/Protect” for system Master Keys.

 3

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

In a decrypted form, the master key example will look like this:

ad6ba06e7b374a095da1d00f29844005a28cf810d996e41782aac0b7ad56eac4c78262410b438f

44508a444aaf5cf14d8020cbbff40fcfbc943084c9e9ba0b38

4. What Is CREDHIST?
It is clearly visible that the security of the Master Key is dependent on the user’s password, ergo

to obtain it and decrypt it, we need to know the user's password. However, what happens if the

user changes his password? Here comes the purpose of DPAPI Credential History (CREDHIST)

which is used to store all previous user’s passwords. It is also encrypted with the user's current

password and saved in a stack structure. Whenever the operating system tries to decrypt a

Master Key, then it uses the user’s current password, to decrypt the first entry in the CREDHIST.

The decrypted CREDHIST entry is then used to decrypt the required Master Key, and if it fails, it

proceeds to decrypt the second entry in CREDHIST and uses its output to try to decrypt the Master

Key until the correct CREDHIST entry that successfully decrypts the Master Key is found.

Figure 1: User Master Keys

 4

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

5. How DPAPI Works?
DPAPI encryption is based on a user’s password, therefore, data encrypted under one account

cannot be decrypted under another account. DPAPI allows restricting access to data even within

one account by setting an additional secret (entropy). Thus, unless it knows the additional secret,

one application cannot access data protected by another application.

Figure 2: DPAPI Credential History (CREDHIST) Stack

 5

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Assuming that a secret is to be stored by an application securely using DPAPI, this is the

process that will take place to achieve that goal:

1. The secret is passed by the application to the Data Protection API through a call to

“CryptProtectData()”.

2. DPAPI generates a user’s encryption key.

3. DPAPI generates a random master key (if it is not already present) and encrypts it with the

user's derived key, which is derived from user credentials. If the master key was already

available, it will also be decrypted with this user’s derived key.

Figure 3: DPAPI Encrypt and Decrypt Functions

 6

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

4. DPAPI will generate a session key every time a call to “CryptProtectData()” is made. This session

key is derived from the “master key”, arbitrary (static) data and possibly (optional) the entropy

that the user provides.

5. The password is encrypted with this session key. The session key itself is not saved. The only

thing that is stored is the random data that has been used. DPAPI can decrypt the data itself

(with a call to “CryptUnprotectData()”) because it has the master key, the random data and the

same entropy.

6. Using DPAPI With PowerShell
There are classes that nicely wrap this functionality already in the “.NET” framework, and

therefore can be utilized by PowerShell. The [System.Security.Cryptography.ProtectedData] class

provides an easy way to use the DPAPI with its Protect() and Unprotect() methods.

Another nice feature of the DPAPI is the ability to use the machine account to derive the encryption

key instead of the current user’s login credentials. This will be useful if we want to decrypt the

data in other users’ contexts in the same host for example doing persistence for multiple users

on a host.

The [Security.Cryptography.DataProtectionScope] enumeration contains the CurrentUser (0x00)

and LocalMachine (0x01) values which let us specify which scope to use.

Here is an example using these methods through PowerShell:

Figure 4: DPAPI with PowerShell

 7

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

In this example we used DPAPI “Protect()” and “Unprotect()” methods to encrypt the

“PowerView” PowerShell script by passing it to PowerShell’s Invoke-Expression to load it in

memory. “$EncryptedBytes” which contains the encrypted script, can also be stored on disk,

registry, or somewhere else. So, if the artifacts are pulled during forensics and threat hunting

activities it will be hard to decrypt the collected data outside the machine where the data were

collected from.

7. Encrypting and Decrypting Data with DPAPI using “Mimikatz”
As we did previously, it is also possible to utilize DPAPI to encrypt and decrypt data through the

DPAPI module in “Mimikatz” tool.

For example, we can use the “Protect” command and add the text we want to encrypt inside the

“/data” option. Also, optionally we can save the encrypted data on disk using the “/out” option, as

the following:

Figure 5: Encrypt Data using Mimikatz

 8

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

If we take a closer look at the “Mimikatz” output in (Fig.5), we can see “guidMasterKey” which is

the Master Key Name/Identifier that is used to encrypt the data.

As a result, a file with the name “encryptedData.txt” will be created and it will contain our data

in encrypted format:

As can be seen, we do not need to deal with encryption keys or passwords, the operating system

is managing everything related to the encryption and decryption of the data.

"dpapi module" can be used for decryption as well, using the option “/in:” to specify the data to be

decrypted, which is also called a Blob. Moreorver, the “/unprotect” switch is used to tell

“Mimikatz” to decrypt the data, otherwise it will be read and displayed without decryption.

Figure 6: Encrypted Data

Figure 7: Decrypting Data protected by DPAPI using “Mimikatz”

 9

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

8. Abusing DPAPI to get RDP Credentials
“Credential Manager” is where Windows stores login credentials like usernames, passwords and

addresses. The credentials could be used on the same machine or used to access other resources

on the network such as websites. The credentials encrypted on disk via DPAPI.

Figure 8: Windows Credential Manager

These credentials are stored within the user’s directory in the following path:

“C:\Users\<username>\AppData\Local\Microsoft\Credentials*”

Figure 9: Listing of User Credentials Files through PowerShell

 10

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Since these files are encrypted using DPAPI, let’s take a look at it using “Mimikatz”:

The two most important fields in the output in (Fig.10) are the “guidMasterKey” field which is the

name/Identifier of the master key that is used to encrypt and decrypt the data, and the “pbData”

field which contains the data we want to decrypt.

Using “Mimikatz” there is a good chance that we find the required master key above, stored in

the LSASS cache:

“GUID” is an identifier of a master key file. “MasterKey” is the master key itself.

Figure 10: Output of Mimikatz "dpapi::cred" command

Figure 11: Obtaining the “Master Key” via “Mimikatz”

 11

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Since we now have obtained the master key that is used to encrypt the credential file let’s use it

fto decrypt the the credential file using “Mimikatz” command:

We’ve been able to get clear-text credentials that can be abused for lateral movement.

Figure 12: Clear-text password

 12

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

If we run “dpapi::cache”, we can see that “Mimikatz” stores a cache of extracted master keys.

Figure 13: dpapi cache

These master keys can be saved for later use on a different machine with the following

“Mimikatz” command:

“dpapi::cache /save /file:cache.bin”

Figure 14: Save the “MasterKeys” cache via “Mimikatz”

 13

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

9. Abusing DPAPI to Extract “Chrome” Browser Credentials
As mentioned before, if we have compromised a system and our malicious process is running

under a particular user's context, we can decrypt its DPAPI secrets without knowing their logon

password.

Chrome uses DPAPI to store two files which are “Cookies” and “Login Data”. Both files are “sqlite3”

databases in which sensitive data is stored as DPAPI blobs.

 Cookies database file location:

“%localappdata%\Google\Chrome\User Data\Default\Cookies”

 Saved login data file location:

“%localappdata%\Google\Chrome\User Data\Default\Login Data”

The actual cookie values are DPAPI encrypted with the user’s master key, which in turn is

protected by the user’s password. The following figure, shows how to decrypt Chrome browser

cookies database:

Figure 15: Decrypting Chrome Cookies Database File

 14

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Since we are in the same user’s context we can decrypt cookie values without knowing the user’s

password. We can do the same with “Login Data” file to extract chrome login passwords:

Figure 16: Extracting Chrome Login Passwords

We’ve been able to extract cookies and login passwords from chrome using DPAPI live on the

compromised machine. Also, it is possible to extract these credentials on a different machine

(Offline Decryption), using the following:

1. The Encrypted Master key used to encrypt “%localappdata%\Google\Chrome\User

Data\Default\Login Data”.

2. The User’s password to decrypt the Master key.

3. The User’s SID number. (SID can be taken from the folder name of the encrypted master

key)

 Figure 17: Obtaining SID Number and Master Key

 15

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Once we have all the information required, we can decrypt the master key offline on a different

machine using “Mimikatz”:

As seen on (Fig.18), the decryption succeeds, and the master key value is successfully obtained.

Finally, comes the step of decrypting chrome’s “Login Data” file using the decrypted master key,

which can be done using “Mimikatz” as well, as in shown in the following figure:

Figure 18: Decrypting Master Key (Offline)

 16

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

We’ve been able to extract chrome passwords in our attacking machine successfully.

10. Abusing the Master Keys to Steal Browser Sessions and Bypass

2FA
What we did in decrypting and obtaining credentials using DPAPI and Mimikatz is great. However,

nowadays most accounts are protected with two-factor authentication, an amazing way to bypass

two-factor authentication is by stealing browser’s sessions and user cookies. We can achieve that

by stealing browser’s data and the target’s Master keys then recreating the session on our

attacking machine.

For demonstration a Twitter account is created with 2FA authentication enabled and is used on

the compromised machine.

We will start by simply copying chrome’s user profile files and “Local State” file from the target

machine to our attacking machine, which can be found here:

“C:\Users\<username>\AppData\Local\Google\Chrome\User Data\Default”

Figure 19: Extracting Chrome Login Passwords Offline

 17

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Figure 21: Listing of Chrome User Data Folder Contents (1)

Figure 20: Listing of Chrome User Data Folder Contents (2)

 18

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Now we need to decrypt the master key used to encrypt chrome’s data. If we know the user’s

password, we can easily decrypt the master key for the user as we did previously. Since we are

in a machine that is joined in a domain let’s take advantage of MS-BKRP (BackupKey Remote

Protocol) and ask the domain controller to decrypt it for us using the “/rpc” switch in “Mimikatz”:

Figure 22: Decrypting the Master Key with RPC

 19

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Going back to our attacking machine, we will copy the chrome profile files that we’ve collected

from the target machine to “C:\Users\<Username>\AppData\Local\Google\Chrome\User Data\

Default”, and “Local State” file to “C:\Users\<Username>\AppData\Local\Google\Chrome\User

Data\”.

Figure 23: Copy Local State File

Figure 24: Copy User Profile Files

 20

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Now in order to let chrome being able to use DPAPI to decrypt these files that we copied, we

have to recreate the master key in our attacking machine:

Here we are using the same “guid” and “key” that we extracted from the target machine.

“/password” switch is to provide the user password of our attacking machine (as explained

previously, DPAPI is using user’s password to encrypt the master keys).

After the key is created, we will copy it to where master keys are located, which is in this

directory: “C:\Users\<User>\AppData\Roaming\Microsoft\Protect\<User-SID>”

Figure 25: Recreating the Master Key on the Attacking Machine

Figure 26: Master Key After Copying it

 21

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

Now when we open chrome and navigate to twitter.com on our attacking machine, we can see

that we’re already logged on and bypassed two-factor authentication!

Figure 27: Successfully replicated the stolen session and gained access bypassing 2FA

 22

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

11. Conclusion
DPAPI provides some significant advantages and makes the life of a hacker/red teamer a little

harder. It robustness is based on the fact that as a user/programmer, you don’t have to worry

about the algorithm, the key used or key management in general, as everything is handled by

the operating system. In this paper we looked into how it is possible to overcome this obstacle

and use it to our advantage where the programmer/user will be assured of security where it is

more like obscurity. Some examples of decrypting and abusing DPAPI and master keys were

demonstrated. The main thing is to understand how it can be used during Pentesting and Red

Teaming activities.

 23

Abusing Windows Data Protection API

Copyright © 2020 Haboob

 f

Contact Haboob: info@haboob.sa

 f

12. References
[1] https://en.wikipedia.org/wiki/Data_Protection_API

[2] https://weekly-geekly.github.io/articles/434514/index.html

[3] https://www.harmj0y.net/blog/redteaming/operational-guidance-for-offensive-user-

dpapi-abuse/

[4] https://github.com/gentilkiwi/mimikatz/wiki/howto-~-credential-manager-saved-

credentials

[5] https://twitter.com/gentilkiwi/status/1236634429419851777?s=21

[6] https://ired.team/offensive-security/credential-access-and-credential-dumping/reading-

dpapi-encrypted-secrets-with-mimikatz-and-c++

[7] https://miloserdov.org/?p=4205

[8] https://rastamouse.me/2017/08/jumping-network-segregation-with-rdp/

[9] https://www.passcape.com/index.php?section=docsys&cmd=details&id=28#51

