
Assembly “wrapping”: a technique for anti-disassembly 

 

You can see this technique as an improvement on what is called “impossible 
disassembly” which you can read about in a classic: “Practical Malware Analysis”, 
by Michael Sikorski and Andrew Honig, in chapter 15. I’ll be showing some slightly 
more advanced examples and, of course, the technique itself, not in x86 but in x64 
(more room while wrapping the real code). 

In order to explain this, I’ll be going through the basics till the more advanced 
stuff, always explaining with code examples: 

 Background — Linear sweep and Recursive descent 

 “Impossible disassembly” — the technique 

 Example in Windows using C 

 Advanced version — “jmp short -9” 

 Assembly wrapping 

 

 

Disclaimer: While this technique might be used for malicious purposes, I do not 
condone it. The only reason I look into such techniques is that 1: they are 
technically interesting; and 2: as part of a Red Team, you will undoubtedly be 
developing your own tool arsenal and, as such, end up going deep into reverse 
engineering (RE) and implementing anti-RE techniques. 

Credit: Johannes Kinder, to my knowledge, came up with this originally in a 2010 
paper using x86 to explain the concept he called “overlapping instructions” 
[http://infoscience.epfl.ch/record/167546/files/thesis.pdf]. I only have a new name 
for it, because I wrote the whole article thinking I came up with it, till this was 
brought to my attention. However, I’ll be going deeper with practical examples, 
well-known disassemblers’ tests, and using x64. 

 

The C code will be compiled with mingw-w64 compiler, and if you are wondering “why 
aren’t you using Visual Studio?”, that would be because they (Microsoft) don’t 
support inline assembly for x64 architecture [https://docs.microsoft.com/en-
us/cpp/assembler/inline/inline-assembler?view=vs-2019]. Just to be clear, this is 
not an incapability issue, it’s actually a choice they made for better code compiling 
optimization. 

Also, the whole point of this blog is to show a specific anti-disassembly technique 
in disassemblers. But not only in the purest of forms, such as in tools like objdump 
or IDA, but also the disassemblers inside debuggers (e.g. x64dbg). So, while I would 
not intentionally compare apples and oranges, when I do mention debuggers, what I 
actually mean is the disassembler inside them. Also, while I do use Immunity quite 
a lot, it doesn’t support 64-bit PE files, so it won’t be featured here. 



Background — Linear sweep and Recursive descent 

 

As a beginner in RE, one tends to assume that the disassembled code shown by 
disassemblers (e.g. IDA, objdump) or debuggers (e.g. x64dbg, gdb) is definitive. 
However, that is not true, as proven by the fact that most of these tools allow the 
researcher to rearrange the code/data analysis. 

Bottom line, the linear sweep starts from entry point / start of function and just 
runs through the opcodes assuming everything is code and all linear (one instruction 
starts after the other), while the recursive descent is smarter and follows the 
control flow to better distinguish between code and data. However, there’s still 
linear sweep when doing recursive descent, as it only stops doing the linear sweep 
when finding control flow instructions such as conditional jumps, absolute jumps, 
calls, and returns. 

As an example, check the following code, with data in between. It’s not relevant 
here to understand all instructions, but rather the fact that there’s data (“buffer 
db …”) in between the code: 

 

source code in assembly x64 

 

This simply prints out “Australia” in the console. If you want to know more about 
this code, I’ve written extensively about shellcoding (even though this is not 
shellcoding as it has null bytes and absolute references to the buffer memory 
position) in previous blogs such as https://pentesterslife.blog/2017/11/01/x86_64-
tcp-bind-shellcode-with-basic-authentication-on-linux-systems/. 

 

compilation + execution 

 



The point here is to show objdump and gdb doing a linear sweep, and IDA using the 
recursive descent to analyze the code, so let’s see how each distinguish between 
code and data. Note that the “len” line will not show up as it will simply be 
calculated and replaced in the relevant locations — mov rdx,len — by the compiler. 

 

linear sweep with objdump 

 

 

linear sweep with gdb 

 



 

recursive descent with IDA 

 

You can clearly tell that the recursive descent (done by IDA here) is better at 
telling the difference between code and data. 

I’d definitely recommend reading chapter 1 of “IDA Pro book”, 2nd Edition, or 
chapter 15 on “Practical Malware Analysis”, chapter 15 for more on these algorithms. 

 

“Impossible disassembly” — the technique 

 

By understanding the algorithms previously mentioned, one can imagine there are a 
few ways to exploit the disassembly process. One such way is called impossible 
disassembly. The name is a bit unfortunate because it’s not actually impossible, as 
it is only referenced that way because of the predicament in which the disassembler 
will find itself: one byte belonging to two instructions. 

In the following image, the disassembly you see above the hex bytes is what the 
disassembler will show you or “see”, but the instructions below is what it turns 
out to be (after the jump is made). 

 

 

jmp -1 algorithm 

 

The difficulty here (and hence the “impossible”) is a basic assumption in 
disassembly, which states that one byte is only interpreted in the context of one 
instruction. This is obviously not true, as shown above where 0xff belongs to two 
instructions. 



Note that, after the jump, there is an increment to eax. Make sure this does not 
impact your hidden code! If you were messing with eax and were expecting it to be 
a specific value, this will change it of course. Also, you can swap the 0xc0 for 
something else, but you have to keep in mind that this new byte has to be the start 
of an instruction that will consume some of the next bytes of “real code” and only 
partially. 

So, let’s see it in action! Using the previous assembly example, but this time 
printing out “Evil code!”, which will be what we’re trying to hide from the 
disassembler. 

Let’s inject the anti-disassembly code right at the beginning of the _start entry 
point: 

 

source code in assembly x64 

 

After compiled with nasm, you can see the code is hidden, even with recursive 
descent: 

 

 

IDA 

 

And this runs just as before: 



 

execution 

 

Keep in mind that, as I’ve pointed out before, a reverse engineer can instruct IDA 
to interpret bytes/opcodes as data (pressing ‘D’) or as code (pressing ‘C’) after 
identifying this technique. So, this won’t stop any decent reverse engineer but 
might slow them down. And you can slow them down even more with the advanced 
variation of this that we’ll look at ahead. 

Also, the “inc eax” (ff c0 executed after the jump -1) is irrelevant in this example, 
given that I set rax to 1 right after. 

 

Example in Windows using C 

 

Why not show a similar example but with assembly, in Windows? Because the concept 
is exactly the same. The only actual difference is that instead of doing the “db …” 
(stands for define byte) in the beginning (define byte), you’d be doing a “.byte 
0xeb,0xff,0xc0” (different compilers…). 

So, for our proof-of-concept, let’s use the following, and see if we can hide the 
“evil” part from disassemblers: 

 

source code in C 

 

Which then executes into the following, where you can see the “evil” code being 
executed: 

 

compilation + execution 

 



But when looking at it, using different tools, they can’t disassembly it right, at 
first — again, you can do this manually in both the following tools, but it requires 
extra work in your RE. 

So, let’s look at IDA: 

 

IDA 

 

The first “printf” (“puts”) is clearly shown but not the second “evil” code. So, 
the added 3 bytes do exactly what they are supposed to do. 

In x64dbg, it compromises its analysis as well. A common task in RE is to search 
for string references and intermodular calls, and in this case, the “evil code” 
doesn’t show up and, in looking for intermodular calls, it only shows one occurrence 
of the “puts” function: 

 

x64dbg: only “hello world” shown 



 

 

x64dbg: only one “puts” shown 

 

And, of course, the disassembled code: 

 

x64dbg: disassembled code 

 

Advanced version: “jmp short -9” 

 

Now, just in case you’re wondering if one couldn’t simply write down a script (e.g. 
IDAPython) and patch that “eb ff c0” sequence by removing them, think again. While 
that would solve this specific problem, it wouldn’t solve the million variations 
that you can come up with. Also, after the CPU does the jump, it’ll execute “inc 
eax”, and to avoid complexity, we neglected that instruction. But one could write 
code right after, that would depend on that increment, or validate eax to a 
specific/expected value. So, you can see there’s no universal solution here. 
Moreover, what if we don’t just jump back one byte (jmp short -1 | eb ff) but, 
instead, jump 9 bytes back? 

Let’s see such an example: 



 

jmp -9 algorithm 

 

To understand this image, read the code as disassembled above the hex code, and 
then after the “jmp” backwards (-9), read the code below the hex code, which will 
be hidden from the disassembler. 

What you’ll see in the disassembler is: 

 

disassembled code 

 

The jump (right before the last instruction call) will go backwards and land the 
CPU (rip) right in the “middle” of the data I first put into rax, in the eb 08 part 
to be more precise, which is another jmp but ahead, right after the e8. The e8 is 
important here because it’s the start of a call instruction and will consume the 
next bytes as a memory address (as function/code memory location) and will, 
therefore, hide the instructions that those bytes actually represent. And that’s 
why the “jmp” ahead (eb 08) lands right after the e8 (fake call). 

Let’s see it working then: 

 

C code 

 

 



compiled + executed 

 

 

x64dbg 

 

 

IDA 

 

The other interesting thing is that, because of the nature of this code, the ff’s 
are quite irrelevant. So you can replace them with any other bytes and it would 
still work. Ideally, if you have different variations on the same executable, it 
would make it harder to automate detection and elimination, through scripting, of 
these byte sequences in the code. 

 

Assembly wrapping 

 

So the previous code has something interesting about it: it jumps back into a large 
instruction (mov rax,…) and executes code that is inside the value you’re putting 
into rax. The ff’s are quite irrelevant but, what if they weren’t? What if I could 
build a “skeleton” code where I could then place hidden code instead of the ff’s? 
This is what I came up with: 



 

skeleton.nasm 

 

The hidden code execution will be triggered by the jmp instruction. The values are 
reversed (little-endian), but what’s happening here is a jump back to the first 
byte of the 8-byte value placed in rax, which will be (in the correct order) “ff ff 
ff ff ff ff eb 04”. Now, all ff’s will be replaced with my real/hidden code which 
will be executed, and then the “eb 04” is simply a jump ahead into the start of the 
next 8-byte value placed into the next “mov rax,…”, which will again execute the 
code that will be placed there until it reaches the “eb 02” which, again, jumps 
ahead into the next hidden instruction. 

Before writing up code to be hidden inside this skeleton, we must acknowledge some 
limitations: 

 Given the fact that I chose the “mov rax,…” (a 10-byte instruction) as my 
“skeleton”, none of the hidden code’s instructions must be longer than 6 
bytes. This is because the bytes/opcodes on a single instruction must be 
placed right next to each other when being read by the CPU, and I only have 
6 available, given that “mov rax,…” is made of 2 bytes that identify the 
instruction, and 8 bytes to put in the register. I still need to take on 2 
of these 8 bytes for the “jmp short 2 / eb 02”, so I’m left with 6 bytes to 
play with. However, I can still join instructions together, as long as the 
total number of bytes doesn’t exceed the number 6. And you’ll also notice 
that I sometimes have to “pad” (encryption term) the instructions when they’re 
shorter than 6 bytes with NOPs (0x90), otherwise, the compiler nasm will have 
null bytes appended to the higher end of the 8-byte value. 

 Given the previous point, you can now understand why I can’t write this in 
C, as you’ll definitely have the C compiler throw assembly code with 
instructions longer than 6 bytes at you. So I need full control on writing 
the assembly, which forces me to write it myself. 

I’ll mention the advantages after the example as you’ll understand my point better. 

So the code we wish to hide is the following: 



 

code.nasm 

 

This is not as simple or straight-forward as the previous assembly codes I’ve shown, 
because this is more like actual shellcode, while still just printing something — 
“Evil\n” — out on the command line. I chose to do this, this way because I want to: 

 have as short instructions as possible to fit the most inside those 6 bytes, 
in a single “mov rax,…”. 

 have no null bytes, again to save on space. 

 need position-independent code as absolute memory positions will change once 
placed inside the skeleton code. 

These are all characteristics of shellcode, which I’ve written extensively about in 
my previous blog [https://pentesterslife.blog/] so I won’t delve into the details 
of the code, but suffice to say it simply prints out “Evil\n”: 

 

compilation + execution of hidden code to produce opcodes 

 

The executable has the following opcode: 



 

objdump with opcode of compiled code.nasm 

 

Notice that there are, as in previous examples, two syscalls: the write to stdout 
file descriptor and the exit (process). Without this last one, the process breaks 
(rip is incremented out of the .text memory section and tries to execute data in 
memory where it has no permissions to execute) and you’ll see an error being shown. 

 

exit syscall commented out 

 

 

segmentation fault due to not properly exiting the process 

 

This is interesting because, as you’ll see ahead, the skeleton itself doesn’t 
properly exit the process, so it should crash. However, it doesn’t actually crash, 
because the actual code it’ll be executing does exit properly. 



 

final skeleton code 

 

 

hidden code executed from within the skeleton 

 

Success!! And the disassemblers will simply show the skeleton and not the hidden 
code: 

 

disassembly by objdump 

 



 

disassembly by IDA 

 

Now while this specific example is very easy to recognize as an anti-disassembly 
technique (a first mov rax,… then a jmp -x, and a never-ending sequence of mov 
rax,…), you have to consider its flexibility. If you spread the movs further (even 
though no longer than 256 bytes as per the relative jump: “jmp short”) and place 
other code (that will simply never be executed) in between, you can make this look 
a lot like something else completely benign, which could be a huge advantage in 
hiding the real code. Another advantage is the fact that this is a pain to manually 
instruct the disassembler on how to interpret the code/data. So you’d have to end 
up writing some plugin to help you if the hidden code is large (albeit shellcode), 
which could be very tricky if you think about the fact that you’ll have to automate 
the distinction between real “mov rax,…” instructions and the “wrappers”. 

Also, you can choose longer instructions as wrappers, which will give you more 
space, per line/instruction to fit in your hidden code. 

 

 

So, there you go. I hope you found it as interesting as I did. 


