
1 | P a g e

Bypass Certificate Pinning in modern

Android application via custom Root CA

Author: Nghia Van Le - Sun* Cyber Security Research

TESTING PLATFORM

Host OS: Kali Linux 2019.4

Android Emulator: Using genymotion - Android 6.0 - API Level 23

Tested Device: Rooted Redmi Note 6 Pro – Android 8.1.0 – API Level 27

TOOLS and APPLICATION

Host OS Tools: adb, Burpsuite, MobSF, genymotion

Mobile Tools: Root Certificate Manager (ROOT)

Mobile Application: Airtable

2 | P a g e

Contents
I. Introduction .. 3

II. About Certificate Pinning ... 3

III. How it affect to us (Pentester)? ... 4

IV. Bypass Certificate Pinning via custom Root CA .. 10

V. References ... 19

3 | P a g e

I. Introduction
This document is intended to provide detailed instructions for bypass certificate pinning

via custom Root CA. It covers all the required topics for understanding this method. The

proof of concept will help visualize and perform bypass certificate pinning, specially in

modern applications now and in the future.

II. About Certificate Pinning
By default, an application trusts all the CAs shipped with Operating System (pre-installed

CAs), it is around 140 trusted root CA included now [1].

Even though there is only a very small possibility for this to happen: if any of these CAs

issue a fraudulent certificate [2],the application is at risk of being hacked by Man-in-the-

Middle attack [3]. In addition, the users could be compromised with a rogue certificate

installed on their device through social engineering.

To prevent that, the developers has 2 options:

 - Limit the set of certificates they accept by either limiting the set of CAs they

trust.

 - Implement certificate pinning.

By enhanced security, the cost is negligible and easy to deal with, most developers

choose certificate pinning for their applications. The developers embed (or pinning) a list

of trustful certificates to their application during development, then use them to compare

against the server certificates during runtime. In case of mismatch, the TCP connection

will be disrupted, and no further user data will be sent to that server.

4 | P a g e

III. How does it affect us (Pentester)?
In the phase of static analysis, it has no effect on this process at all. But in dynamic

analysis, it can be a huge problem. You cannot observe or intercept the request/response

between the application and the server when they communicate with each other, even

worse is that the application will not work. If you can't solve this problem, your

pentesting process stops here.

But in fact, we can easily bypass it at this very moment, following this instruction:

1. Using a device or an emulator with Android version 6.0 - API level 23 or below. I

don’t have any physical device with this Android version so I’m using an emulator, let’s

create it:

5 | P a g e

2. Configure emulator to work with Burpsuite’s proxy server:

6 | P a g e

3. Push the Burp’s certificate and install on emulator:

 Settings > Install certificates > Install certificates > Choose the Burp’s certificate

> Create a PIN > Install the certificate and all done.

 Now in trusted credentials, in the USER tab, you will see the PortSwigger CA

beside SYSTEM root CA:

4. Install your application you like to pentesting on this emulator, in this case I’m using

the Airtable application, they have a bug bounty program on Hackerone [4], so this is

legal:

7 | P a g e

5. Now the app is running and you can fully intercept all the requests and responses

between the Airtable and its server.

8 | P a g e

This is the easiest way, but personally I think this method won't work in the near future.

9 | P a g e

Root cause:

The first reason is this method only works on devices/emulators with Android version 6.0

- API level 23 or below. This is because of “Apps that target API Level 24 and above no

longer trust user or admin-added CAs for secure connections, by default” [5].

I know that not too many physical devices are still running android 6. In the case of

insufficient facilities, you can use an emulator. But lots of applications do not allow

installation on virtualized devices, you can bypass it by some method, but it makes things

more complicated.

Second reason and most importantly: in Android software development, the

minSdkVersion is increasing every year. Android 6 - API level 23 was released in

October 2015, it's been over 4 years.

10 | P a g e

In the application we installed above (Airtable), it has the minSDK version 21. So the

method above is still working. I tested some other popular apps, most of them have the

minSdk version 21 as well. But just in the next few years, it will change.

IV. Bypass Certificate Pinning via custom Root CA
Let's say you don't have a device with Android 6 or lower, or that the app doesn't allow

installation on devices with API level 23 or below. How can you dynamic penetration

testing this app?

This method will remove every obstacle in the way, or I can say in the future way.

By pentesting on a rooted device, you can manually install a Root CA on your phone.

Then you can intercept all the requests and responses easily, like the way I just

mentioned.

But you cannot use the existing Burp’s CA certificate, let me show you:

1. First, I'll install the Root Certificate Manager ROOT application and push the Burp’s

CA certificate to my device: Redmi Note 6 Pro - running Android 8.1 – API level 27.

2. Burp’s CA certificate installation successfully via Root Certificate Manager :

11 | P a g e

3. Configure device to work with Burpsuite’s proxy server:

But when I try to access any HTTPs website in browser, I get the following error:

NET::ERR_CERT_VALIDITY_TOO_LONG

12 | P a g e

13 | P a g e

Open the app and it’s totally blank:

The root cause is Burpsuite’s CA certificate validity too long and regenerating the

certificate could not solve the problem.

14 | P a g e

Solution:

According to the Postwigger pages [6] I can import my custom CA certificate and they

also have a brief guide. But here is the full tutorial to help you during dynamic pentesting

the apps:

1. Create a folder

 mkdir cert && cd cert

2. Install openssl

 sudo apt-get install openssl

3. Find the default openssl config file and copy the default openssl.cnf

 cp /etc/ssl/openssl.cnf ./

4. Create a private key, the “days” value is 730 means it < 2 year of validity. Then fill

out some fields:

 openssl req -x509 -days 730 -nodes -newkey rsa:2048 -outform der -keyout

server.key -out ca.der -extensions v3_ca -config openssl.cnf

5. Convert to der format:

 openssl rsa -in server.key -inform pem -out server.key.der -outform der

15 | P a g e

6. Convert key to pkcs8 format:

 openssl pkcs8 -topk8 -in server.key.der -inform der -out server.key.pkcs8.der -

outform der -nocrypt

Now we had 5 files in our cert folder:

7. Push certificate to device and install it, I named it Sun:

16 | P a g e

8. Importing these files to Burp’s proxy server: "ca.der" and server.key.pkcs8.der:

17 | P a g e

Now all done and you can intercept all the traffic:

18 | P a g e

19 | P a g e

V. References

[1]: https://android.googlesource.com/platform/system/ca-certificates/+/master/files/

[2]: https://en.wikipedia.org/wiki/DigiNotar#Issuance_of_fraudulent_certificates

[3]: https://en.wikipedia.org/wiki/Man-in-the-middle_attack

[4]: https://hackerone.com/airtable

[5]: https://android-developers.googleblog.com/2016/07/changes-to-trusted-

certificate.html

[6]: https://portswigger.net/burp/documentation/desktop/tools/proxy/options

https://android.googlesource.com/platform/system/ca-certificates/+/master/files/
https://en.wikipedia.org/wiki/DigiNotar#Issuance_of_fraudulent_certificates
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://hackerone.com/airtable
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://portswigger.net/burp/documentation/desktop/tools/proxy/options

