

1 | P a g e

Exploit WordPress Plugin vulnerability using static

source code analysis techniques

---***---

Submit by: SunCSR (Sun* Cyber Security Research)

I. How WordPress Plugin work?

● Hooks

○ events that happen during the execution of the functionality of

WordPress, themes or plugins.

○ 1900 hooks : publish_post, save_post, after_signup_user, ...

● 2 types of hook

○ Action Hook: do something at right spot

■ add_action('save_post','wpdemo_my_save_post', 10, 3);

○ Filter Hook: transform data

■ add_filter(the_title, 'make_title_red', 999);

● DB query

○ global $wpdb

● REST API

○ register_rest_route('myplugin/v1', '/author/(?P<id>\d+)',

array(...))

II. Built-in Defense

● Sanitizers:

○ XSS: addslashes_gpc, esc_attr, esc_attr__, esc_attr_x, esc_html,

esc_html__, esc_html_x, esc_js, esc_textarea, tag_escape,

wp_htmledit_pre, wp_html_excerpt, _wp_specialchars,

wp_specialchars, zeroise,...

https://developer.wordpress.org/reference/hooks/

2 | P a g e

○ SQLi: esc_sql, format_to_post, htmlentities2, sanitize_email,

sanitize_file_name, sanitize_html_class, sanitize_key,

sanitize_mime_type, sanitize_option, sanitize_sql_orderby,

sanitize_text_field, sanitize_title, sanitize_title_for_query,

sanitize_trackback_urls, sanitize_user,

○ CSRF: wp_nonce_field, wp_create_nonce, wp_nonce_url,...

● $wpdb->prepare

III. Problems

● Open-source

● There is NO official plugin framework

● Incomplete document

○ https://developer.wordpress.org/plugins/

● Sanitizers misuse

SQLi XSS

esc_html ❌ ✅

esc_attr ❌ ✅

sanitize_text_field ✅ ❌

https://developer.wordpress.org/plugins/

3 | P a g e

IV. From static source code analysis to exploration

1. Using regex to find SQL Injection vulnerability

SQL Injection occurs when user input is not filtered for escape characters and is then passed

into an SQL statement. This results in the potential manipulation of the statements

performed on the database by the end-user of the application. The SQL statement is

constructed by concatenation before it is passed to function to execute, meaning we are

vulnerable to maliciously crafted parameters.

4 | P a g e

2. Using Taint Analysis

Taint analysis identifies every source of user data — form inputs, headers, you

name it — and follows each piece of data through your system to make sure it

gets sanitized before you do anything with it.

3. Using Taint Analysis Tools

5 | P a g e

6 | P a g e

V. Conclusions

● Site Owners

○ Always update your plugins (Wordpress 5.5 auto-update)

○ Install WordPress Security Plugins: Sucuri, Wordfence, All in One WP

Security & Firewall, ...

● Hacker/Pentester

○ Watch closely for new vulns

○ Taint analysis is powerful

