
 
Michał Bućko 

Senior security specialist 
HACK.PL 

 
 
 

IE ActiveX-based 0-days basics 
Demystified 

 
 

 
The aim of this paper is not to explain in simple words how to find and exploit 
an unknown vulnerability in IE. The aim of it is to show the This paper is 
limited to bugs in ActiveX controls handling only. This document was written 
for educational purposes only. I am in no way responsible for any 
irresponsible action taken by the readers.  
 
 
 

 
 
 

This is going to be a short article giving the notion of exploitation unknown bugs. 
Basic knowledge of exploitation and ActiveX is required. Knowledge of code 
obfuscation is recommended. This paper covers only the basics. I would also like to 
drop a few lines about my understanding of hacking. If You really want to understand 
a bit from the Windows OS, this article might be helpful. It is in no way a tutorial how 
to find a new vulnerability and exploit this. 
 
 

Firstly, I want to concentrate on the notion of hacking. It is definitely not connected 
only with security. It has nothing to do with breaking into remote machines. If You 
want to use this to do something bad, skip it. If You only want to show yourself in the 
‘hacking world’, such thing does not exist. To hack means to crave for knowledge, to 
admire the beauty of the world, to live and not to look at others. It means much more, 
If you don’t understand it right now, please, don’t use this article to act against 
humanity.  Hacker does not want to show himself up in this world, he can stop using 
computers if he wants, he might have never used one. It is a strange world to learn, 
to understand it. People come to this world and forget the truth they have in their 
hearts.  

 
After the important introduction it is time to act. Our task is to find an unknown 
vulnerability in Internet Explorer. The bugs we are looking for will be based on 
improper ActiveX controls handling. This article won’t teach You everything – take 
that into consideration. It is hard work. 
 
 
 
 



 
 
 
 
 
 
Lets begin. At first we should take a close look at the available objects, which can be 
then embedded in the our web site. This means that one can use them this way: 
 
<object id="excel"classid="CLSID:0002E510-0000-0000-C000-000000000046"> 

... 

</object> 

 
 
 
 
 
The above code adds an Excel sheet on the exemplary web site. The general syntax 
is shown below: 
 
 

<object id=target  classid="CLSID:{some_classid}" > </object> 
 
 

 
But how do we find the vulnerable object?  
 
Well, there are many ways. Some people prepare a fuzzer(or use one!) that goes 
through all the possible controls (that can be used as embedded objects) and try to 
crash one by one by the use of the fundamental ways of exploitation. The other 
people concentrate on the the objective, lets say they want to crash Microsoft Excel 
Sheet (the aforementioned classid). Concentrating on the objective is, in my opinion, 
a better way (maybe not faster). One can learn more by trying to exploit an objective 
as it might a difficult task sometimes. I highly recommend using your own fuzzers. 
The software available right now is in no way perfect. Many 0-day 
vulnerabilities I know that (in some cases) can pass the tests 
undetected/unnoticed.  
 
 
What should I know about the objects? 
 
This is typical: 
 
Class SomeClass 
GUID: {some-guid} 
Number of Interfaces: how many interfaces? 
Default Interface: what is the default interface? 
RegKey Safe for Script: F/T 
RegKey Safe for Init: F/T 
KillBitSet: F/T 
 

 
 



 
 
The last three factors are significant. Each of them might affect the system’s security. 
Those are the factors I am not going to write about. You should read about those as 
much as possible with regards to what is going to be said below.  
 
 
What about crashing? 
 
When I was a child I used to build small castles from Lego blocks. Now it is time to 
take a close look at the castle. Why is it built on sand? Lets get back to our ActiveX 
controls. One executes different object’s functions with specific parameters 
(parameter that don’t match the required parameter pattern, those parameters 
shouldn’t be rubbish, one should think before doing) as shown below: 
 
 

obj = document.getElementById('target').object; 
obj.somefunction(“%n%n%n%n%n%n%n%n%n%....”); 

 
 
 

The final part of the exploitation process is described in many papers covering buffer 
overflow exploitation and shellcoding (knowledge of reverse engineering, debugging, 
buffer overflows, assembler is required) and I am not going to repeat it one more 
time. Having our code prepared should we start testing our exploit. We build an 
exemplary website with our code and check how’s it going. It would be also nice if 
first tests gathered much information about victims and eventual error logs. Error logs 
are going to help if something (in some cases) goes bad. My experience tells me that 
one might often overlook a substantial feature that is necessary for the exploit to work 
correctly. It is quite normal that first exploit applications are going to crash the 
application remotely without code execution. This must be analysed and the 
information should be in the logs.  
 
 
 
However, being able to exploit the vulnerability remotely is not everything. Our task is 
to gain the control over many machines. The code must not only exploit the 
vulnerability but shellcode used should also help us stat undetected in the remote 
machine for some time. This is mainly achieved by code obfuscation, which makes 
our code much more difficult to analyze. The specialist (before realizing a patch) 
must overcome the obstacles connected to the obfuscation. There is a variety of 
methods that can be used to hide the code.  
 
 
 
As the task is to gain control over many machines it is also advised to prepare a 
special code to be executed and to install a rootkit on the remote machine. 
Bypassing the AV restrictions should be taken into consideration, new possibilities 
should be analysed. The AV should in no way be able to detect the attacker. 
 
 



 
As we want to exploit the Internet Explorer and hide very deep in the system, should 
we be cognizant of shellcoding on Windows systems. One must learn about the 
basics of registry, startup and shutdown procedures and windows services. One 
should know how to use object viewers, process explorers, file monitors and kernel 
debuggers. One should also learn about boot configuring in Windows(boot.ini, 
ntdetect,..), Ntoskrnl, Registry Hive and device drivers. Hiding in the system requires 
knowledge of execution layers (executive and kernel), creating and deleting 
processes and threads, memory management and interprocess communication. It is 
very important to learn more about remote thread injection and virtual memory 
management. At the time You are versed in the aforementioned Your knowledge will 
become a very powerful weapon. But, please, comprehension and Understanding 
(not only computer understanding, understanding is achieved by living, by asking 
questions and by ‘admiring the grass and the tree’) is your privilege and you should 
not use it against other people.  
 
And now just a few things about ActiveX from an attacker point of view. There are 
many AX controlls, many of them don’t present much of a risk. ActiveX are very 
similar to executable files in Windows, however, can be executed remotely. ActiveX 
controls are mobile. It must be understood that ActiveX vulnerabilities not only affect 
Internet Explorer but different software using it. Currently, I have a few unreported 0-
day vulnerabilities in AX controls. Those vulnerabilities can be quite easily exploited 
and affect much software, not only Internet Explorer. I would say that creating a 
dangerous worm is not a problem for a real blackhat specialist. This is why new 
solutions are required. 
 
 
Obfuscation is also worth mentioning. The attacker might try to hide his/her real 
intentions and make security analysts work harder by obfuscating the code. The code 
should be as difficult to understand as it is possible. There are many worms that 
simply collects the code from different places, the code is quite difficult to analyze 
(not at first sight!). Code obfuscation in future worms can be even made difficult by 
the advanced use of botnets (mobile and migrating code, analogy to WSN).  
 
 
 
 
Kind regards, 
Michał Bućko 
 


