
Writing Behind a Buffer

Angelo Rosiello*

©Rosiello Security
http://www.rosiello.org

18/12/05

Permission to make digital or hard copies of all or part of this work for personal use is
granted without fee provided that copies are not made for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.

Copyright 2005 © Obsidis n°1 22/12/2005

* Rosiello Security e-mail:angelo@rosiello.org

1

http://www.rosiello.org/

Abstract
In this paper we are going to describe a kind of vulnerability that
is known in the literature but also poor documented. In fact, the
problem that is going to be analyzed can be reduced to a
memory adjacent overwriting attack but usually it is obtained
exploiting the last null byte of a buffer, hence we are going to
show that the same result is still possible writing behind a
buffer, under certain conditions. To fully understand the subject
of this article it's necessary to describe the memory organization1
of running processes, then the memory adjacent overwrite
attack, concluding with our analysis.

Memory Organization
A process can be defined as a running
program, thus the operating system has
loaded its instructions into memory and has
allocated different areas of memory to
manage its execution. The address space of
a running process can be divided into five
segments[1,2]:

• Code Segment: this segment
contains the executable code of the
program.

• Data and BSS Segment: both sectors
are dedicated to the global variables
and are allocated during the compile
time. To be clear, the sector BSS
contains not initialized data while
data segment is reserved for static
data.

• Stack Segment: local variables are
allocated in this segment. It is
particular useful for storing cotext
and for function parameters. The
stack memory grows downward.

• Heap Segment: this segment
represents all the rest of memory of
the process. The heap memory
grows upward and is allocated
dynamically.

 In figure 1 we can observe all the memory
segments described above.

Figure 1

 The memory adjacent overwrite attack,
exploits the memory allocated into the stack
for automatic variables to produce a buffer
overflow[6] and to gain the control of the
process execution flow.

Memory Adjacent Overwrite
Attack
Last years were released some articles[4,5]
about exploiting non-terminated adjacent
memory space. The problem exists when
the last null byte, terminating a buffer, is
overwritten and another buffer precedes it.

1 The considered architecture is Intel[3] but the concepts can be extended to other architectures, too.

2

Stack

Heap

BSS

Data

Code

In fact, when a buffer is declared it is
finished into the stack with a null byte to
separate it from the rest of the stack. To
stay clear let's bring an example written in
C where we are going to use two buffers.

//Example 1

int main() {

 char buffer1[]=”ab”;

 char buffer2[]=”cd”;

 ;

 return 0;

}

 Exploring the stack runtime we will notice
that buffer2 is near buffer1 and separated
from it thanks its last null byte.

Stack Memory
[c]

[d]

 (X) [0x0]

[a]

[b]

[0x0]

 Thus, overwriting the null byte indicated
with (X), buffer2 will be concatenated to
buffer1 containing the whole string “cdab”.

 The above scenario doesn't represent a
security problem yet, but if buffer2 is
copied into some other buffer, it could lead
to a stack overflow. Let's consider the
following example:

 //Example 2

void function(char buffer2[32]) {

 char buffer3[32];

 strcpy(buffer3, buffer2);

}

int main() {

 char buffer1[32]; //suppose buffer1 filled of chars

 char buffer2[32]; //suppose buffer2 filled of chars

 function(buffer2);

 return 0;

}

 Example 2 is not vulnerable but if
'buffer2[32]' is set to something different
from the null byte then an overflow will
occur overwriting the instruction pointer
and giving the attacker the chance to gain
the process execution flow control.

Behind a Buffer
Memory adjacent overwrite attack showed
us the possibility to exploit stack memory
organization to concatenate two regions of
memory. Recently, we could notice the
existance of a vulnerable scenario that is
specular to the one introduced in the
previous paragraph. Let's consider the
following piece of code:

//Example 3

int main() {

 char buffer1[2];

 char buffer2[2];

 /* some code here that fills buffer1 and buffer2 and
returning an integer value i */

 buffer1[i]='X';

 ;

 return 0;

}

 Key security of this piece of code is the
value of the variable 'i', in fact, if for some
reason 'i' assumes the value '-1', the null
byte of the buffer2 will be overwritten by
'X', exactly as it happened in example2.

 In this case we worked from behind of
buffer1, instead of proceeding over buffer2,
but obviously the result is the same.

3

 Exactly as in example2, in order to gain
the control of the instruction pointer, there
must be in the code some other vulnerable
instruction, like strcpy() into function().

Conclusions
Both described techniques to exploit
memory adjacent areas must be kept in
consideration when coding an application.
In fact, this security problem was at first
described as consequence of an unsafe use
of some standard C functions[7] (e.g.
strncpy(), strncat(), etc.) that do not
terminate buffers with a null byte, but it's
reductive and we showed that the problem
still remains also when those sensitive
functions aren't used at all.

 Fortunately these kind of bugs are
statistically not numerous and with enough
attention and a minimum knowledge they
can be completely avoided.

References
[1] Modern Operating Systems by Andrew
Tanenbaum. Prentice Hall; 2nd edition
(February 28, 2001)

[2] Operating Systems: Internals and
Design Principles by William Stallings.
Prentice Hall; 4th edition (December 15,
2000)

[3]http://developer.intel.com/design/pentiu
m/manuals
[4] Adjacent Overwrite BUG by Daniel
Hodson. Info Security Writers (January 20,
2004).
[5] Taking Advantageof non-terminated
adjacent memory space by twitch. Phrack
56 (January 05, 200)
[6] Stack Overflow & SIMPLESEM by
Angelo Rosiello. Rosiello Security
(September 09, 2003)

[7] C Standard Library Functions

4

http://www.cs.cf.ac.uk/Dave/C/chapter2_21.html
http://www.phrack.org/phrack/56/p56-0x0e
http://www.rosiello.org/archivio/Stack Overflow-en.pdf
http://www.rosiello.org/archivio/Stack Overflow-en.pdf
http://www.rosiello.org/archivio/Stack Overflow-en.pdf
http://www.phrack.org/phrack/56/p56-0x0e
http://www.phrack.org/phrack/56/p56-0x0e
http://www.phrack.org/phrack/56/p56-0x0e
http://www.infosecwriters.com/texts.php?op=display&id=140
http://www.infosecwriters.com/texts.php?op=display&id=140
http://www.infosecwriters.com/texts.php?op=display&id=140
http://www.infosecwriters.com/texts.php?op=display&id=140
http://developer.intel.com/design/pentium/manuals
http://developer.intel.com/design/pentium/manuals

	Writing Behind a Buffer
	©Rosiello Security
	Memory Organization
	Memory Adjacent Overwrite Attack
	Behind a Buffer
	Conclusions
	References

