
Active Directory Offline Hash Dump and
Forensic Analysis

Csaba Barta
csaba.barta@gmail.com

July 2011

Disclaimer

The views, opinions and thoughts in this document are the views, opinions and thoughts of the author of the
document and do not represent the views, opinions or thoughts of any past or current employer of the author or any
other third person. The document is provided 'as is' without warranty of any kind. Use at your own responsibility. The
software tools are provided for educational purposes only.

mailto:csaba.barta@gmail.com
mailto:csaba.barta@gmail.com
mailto:csaba.barta@gmail.com
mailto:csaba.barta@gmail.com
mailto:csaba.barta@gmail.com
mailto:csaba.barta@gmail.com
mailto:csaba.barta@gmail.com

Table of contents
Active Directory Offline Hash Dump and Forensic Analysis

Table of contents
Introduction
What is NTDS.DIT?
Obtaining NTDS.DIT and the registry
Structure of NTDS.DIT
Password hash encryption used in Active Directory

Password Encryption Key
Password Hash Decryption
Decrypting the password hash history

Forensic analysis of user objects stored in NTDS.DIT
Important fields

Tools developed by the author
Future work

Introduction
The author participated in a project where it was required to extract the password hashes from
an offline NTDS.DIT file. After searching the Internet for an available tool, the author found that
there was no open source tool. Because of that the author decided to research the internals
of password encryption and storage of Active Directory and create a tool for the forensic
community.

A debt of gratitude to the author’s colleague Laszlo Toth (http://www.soonerorlater.hu) who
helped a lot in researching the encryption algorithms used during password storage. Thank you
Laszlo!

What is NTDS.DIT?
The NTDS.DIT file is used to store nearly all the information that is accessible in the Active
Directory (user objects, groups, membership information etc.). The file is usually located in the
%WINDIR%\NTDS\ folder after the administrator runs dcpromo (which transforms the windows
server into a domain controller). In the same folder there are other files that are used to provide
some kind of recovery for the database in case of emergency situations like power outage.
These files store uncommitted or unsaved transactions that can be rolled back during recovery
in order to restore the database to a consistent state.

Obtaining NTDS.DIT and the registry
In case of a live domain controller it is not trivial how one can obtain the NTDS.DIT file and the
important registry hives, because they are constantly locked for writing by the user SYSTEM.
This means that no userland process can access the files even for reading. Basically there are
two options in this case:

● Use a 3rd party forensic software (which supports acquiring locked files)
● Utilise Volume Shadow Copy Services (http://blogs.msdn.com/b/adioltean/archive/2005/

01/05/346793.aspx)

Using a 3rd party forensic software is essential for forensically sound acquisition. In case of
testing the second option might be sufficient.

Structure of NTDS.DIT
In fact the NTDS.DIT file is a database with usually 3 or more tables. The name and purpose of
the important tables are the following:

● datatable used to store the objects accessible in Active Directory
● link_table used to provide references to objects (like the field memberof)
● sd_tableused to store the security descriptors (introduced with Server 2k3)

The database engine which can be used to access the data stored in the tables is called
Extensible Storage Engine (ESE for short or JET Blue) and it is one of the proprietary engines
of Microsoft. The exact same engine can be used to access data stored in Exchange Server
mailboxes. The only difference between Excahnge databases and NTDS.DIT is the pagesize.
In case of NTDS.DIT the pagesize is 8192 bytes, while in case of Exchange it is 4096 bytes.

The columns of the tables (attributes of objects) are described in the schema. Every object
stored in the database has it’s own record with all the attributes even if that attribute does not
relate to the object at all (in this case the value of the attribute is null). For example a simple
table might look like this:

http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx
http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx
http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx
http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx
http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx
http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx
http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx
http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx
http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx
http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx
http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx
http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx
http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx
http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx
http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx
http://blogs.msdn.com/b/adioltean/archive/2005/01/05/346793.aspx

Object name Attribute 1 Attribute 2 Attribute 3

Object 1 1 2 null

Object 2 null 2 3

In this case “Object 1” has the “Attribute 1 and 2” and does not have “Attribute 3”
while “Object 2” has “Attribute 2 and 3” and no “Attribute 1”.

The names of the columns are not too descriptive. It is usually not possible to deduce the
purpose of the value stored in the column from the column name.

The following columns are important to dump password hashes and some information about
user accounts that might be useful in case of a forensic investigation:

ATTm3 Large text SAMAccountName

ATTm13 Large text Description

ATTr589970 Large binary data SID

ATTq589920 Windows File Time Date and time of last password change

ATTj589832 32 bit Integer UserAccountControl field

ATTq589983 Windows File Time Date and time of account expiry

ATTq589876 Windows File Time Date and time of last login

ATTj589993 32 bit Integer Bad password count

ATTk589879 Large binary data Encrypted LM hash

ATTk589914 Large binary data Encrypted NT hash

ATTk589918 Large binary data Encrypted NT hash history

ATTk589984 Large binary data Encrypted LM hash history

ATTk590689 Large binary data Encrypted PEK (Password Encryption Key)

Password hash encryption used in Active Directory
Note, that in the previous list there are numerous fields that are described as encrypted. The
purpose of this encryption is to provide protection against offline data extraction.

The solution introduced by Microsoft in order to provide this protection is complex and
composed of 3 layers of encryption of which 2 layers use RC4 and the third layer uses DES.

In order to decrypt a hash stored in NTDS.DIT the following steps are necessary:

1. decrypt the PEK (Password Encryption Key) with bootkey (RC4 - layer 1)
2. hash decryption first round (with PEK and RC4 - layer 2)
3. hash decryption second round (DES - layer 3)

Password Encryption Key
The PEK or Password Encryption Key is used to encrypt data stored in NTDS.DIT. This key

is the same across the whole domain, which means that it is the same on all the domain
controllers. The PEK itself is also stored in the NTDS.DIT in an encrypted form. In order to
decrypt it one will need the registry (the SYSTEM hive) from the same domain controller where
NDTS.DIT file was obtained. This is because the PEK is encrypted with the BOOTKEY which is
different on all domain controllers (and in fact on all computers in the domain).

In order to decrypt the PEK one will have to obtain the ATTk590689 field from the NTDS.DIT.
As it was mentioned all the objects stored in the database will have this field. In order to
determine which one is needed one has to check whether the value is null or not.

The length of the value is 76 bytes (it is stored as binary data). The structure of the value is the
following:

header 8 bytes key material for RC4 16 bytes encrypted PEK 52 bytes

After decryption the value of the decrypted PEK can also be divided into 2 parts. One will have
to skip the first 36 bytes (so the length of the actual PEK key is 16 bytes).

Here is the python algorithm that can be used to decrypt the PEK key after one has obtained
the bootkey (bootkey can be collected from the SYSTEM registry hive and the method is well
documented - http://moyix.blogspot.com/2008/02/syskey-and-sam.html):

md5=MD5.new()

md5.update(bootkey)

for i in range(1000):

md5.update(enc_pek[0:16])

rc4_key=md5.digest();

rc4 = ARC4.new(rc4_key)

pek=rc4.encrypt(enc_pek[16:])

return pek[36:]

As one can see there is an MD5 hashing part of the decryption with 1000 rounds. This is for
making the bruteforce attack against the key more time consuming.

Password Hash Decryption
Now that the PEK is decrypted the next task is decrypt the hashes stored in the ATTk589879
(encrypted LM hash) and ATTk589914 (encrypted NT hash) attributes of user objects.

The first step is to remove the RC4 encryption layer. During this the PEK key and the first 16
bytes of the encrypted hash is used as key material for the RC4 cypher. Below is the structure
of the 40 bytes long encrypted hash value stored in the NTDS.DIT database.

header 8 bytes key material for RC4 16 bytes encrypted hash 16 bytes

http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html

The algorithm to remove the RC4 encryption layer is the following:

md5 = MD5.new()

md5.update(pek)

md5.update(enc_hash[0:16])

rc4_key = md5.digest();

rc4 = ARC4.new(rc4_key)

denc_hash = rc4.encrypt(enc_hash[16:])

The final step is to remove the DES encryption layer which is in fact very similar to the so
called “standard” SYSKEY encryption used in case of password hashes stored in the registry
(details of the algorithm can be found here - http://moyix.blogspot.com/2008/02/syskey-and-
sam.html).

Below is the last part of the algorithm:

(des_k1,des_k2) = sid_to_key(rid)

d1 = DES.new(des_k1, DES.MODE_ECB)

d2 = DES.new(des_k2, DES.MODE_ECB)

hash = d1.decrypt(denc_hash[:8]) + d2.decrypt(denc_hash[8:])

Notice, that it is essential to have the SID of the user in order to determine the RID and to
compute the keys used for DES.

Decrypting the password hash history
During a computer forensic investigation the password history might play a very important role.
In case when the investigator needs to decrypt an encrypted file for which the password is
unknown it might be very helpful to see how the person used to choose passwords (what are
the “rules” he/she follows).

In order to decrypt the password history the investigator needs to extract the ATTk589918
(encrypted NT hash history) and ATTk589984 (encrypted LM hash history) from NTDS.DIT.
The decryption process is very similar to the one detailed above. The only difference is that
the whole history needs to be decrypted with the PEK and afterwards the hashes should be
decrypted one by one using RC4 and DES because the history is created by concatenating the
encrypted hashes resulting in a huge binary value which is encrypted with the PEK.

Forensic analysis of user objects stored in NTDS.DIT
During a computer forensic investigation it might be important to extract as much information
as possible of a user account. This part of the document describes what user account related
information can be extracted from NTDS.DIT.

Important fields
One should analyse the following fields in order to gain information about the account:

http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html

● ATTm3 SAMAccountName

● ATTm13 Description

● ATTk589970 SID

● ATTq589920 Date and time of last password change

● ATTj589832 UserAccountControl field

● ATTq589983 Date and time of account expiry

● ATTq589876 Date and time of last login

● ATTj589993 Bad password count

The fields containing date or time values can be interpreted as UTC Windows File Time,
because the Active Directory usually stores date and time information in this format. Windows
Filetime is a 64-bit value representing the number of 100-nanosecond intervals since January 1,
1601 (UTC) (http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx).

The following python code snippet transforms the value into human readable form:

import datetime

_FILETIME_null_date = datetime.datetime(1601, 1, 1, 0, 0, 0)

timestr = _FILETIME_null_date + \

 datetime.timedelta(microseconds=int(value) / 10)

Date and time of the last logon
In case of the last logon field there is an important thing that an investigator should always bear
in mind. The time that is stored in NTDS.DIT is the last logon that happened on the domain
controller from which the file was obtained. It might happen that on another DC the last logon
time is different. In order to find out the proper time of the last login one should check the stored
value on all the DCs.

Bad password count
The high value of the bad password count field could indicate a bruteforce attack against the
user account.

UserAccountControl field
From the UserAccountControl field a wealth of information could be obtained. This value is used
to store multiple flags regarding the user account. The details of the important flags can be
found in the following table.

http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms724284(v=vs.85).aspx

Value Description

0x00000001 Logon script is executed

0x00000002 The user account is disbaled

0x00000010 The user account is locked out

0x00000020 No password is required for the account

0x00000040 The user cannot change password

0x00000200 Account type is normal account

0x00000800 Account type is interdomain trust account

0x00001000 Account type is workstation trust account

0x00002000 Account type is server trust account

0x00010000 Password of the user account will never expire

0x00020000 The account type is MSN logon

0x00040000 Smart card is required for logon

0x00800000 The password of the user account is expired

This field might indicate if the account is disabled or locked and other information that might be
important in case of a computer forensic investigation. More information can be found at the
following URL:

http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx

http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms680832(v=vs.85).aspx

Tools developed by the author
The hashdump process is composed of two main parts

1. Extracting the required data from NTDS.DIT (esedbdumphash)
2. Decrypting the hashes and interpreting other information regarding the user account

(dsdump, dsdumphistory, dsuserinfo)

For the extraction of the important records stored in the NTDS.DIT file the author used the
libesedb library (developed by Joachim Metz) that can be downloaded from the following
URL:

http://sourceforge.net/projects/libesedb/

A proof of concept tool called esedbdumphash was created based on the source of the tool
called esedbexport (that is included by default in libesedb) in order to include only the
important objects in the export and to minimise the file size of the output.

In order to decrypt the hashes the author decided to extend the excellent framework called
creddump developed by Brendan Dolan-Gavitt. The original version of the framework can be
downloaded from the following URL:

http://code.google.com/p/creddump/

Three new modules were added to the framework in order to achieve the goals:

● dsdump.py Password hash dumper (in cooperation with Laszlo)
● dsdumphistory.py Password hash history dumper
● dsuserinfo.py User account information dumper

A new main library file dshashdump.py was created in order to contain the functions needed to
decrypt the hashes stored in the NTDS.DIT file.

The author also added support for dumping LSA secrets on newer operating systems like
Windows Vista and Windows 7 (lsadumpw2k8.py).

It should be mentioned the tools are in proof of concept state.

Future work
The NTDS.DIT file contains other important information that can be useful in case of a computer
forensic investigation. The author is currently working on the extraction of this information.

http://sourceforge.net/projects/libesedb/
http://sourceforge.net/projects/libesedb/
http://sourceforge.net/projects/libesedb/
http://sourceforge.net/projects/libesedb/
http://sourceforge.net/projects/libesedb/
http://sourceforge.net/projects/libesedb/
http://sourceforge.net/projects/libesedb/
http://sourceforge.net/projects/libesedb/
http://sourceforge.net/projects/libesedb/
http://sourceforge.net/projects/libesedb/
http://code.google.com/p/creddump/
http://code.google.com/p/creddump/
http://code.google.com/p/creddump/
http://code.google.com/p/creddump/
http://code.google.com/p/creddump/
http://code.google.com/p/creddump/
http://code.google.com/p/creddump/
http://code.google.com/p/creddump/
http://code.google.com/p/creddump/
http://code.google.com/p/creddump/
http://code.google.com/p/creddump/
http://code.google.com/p/creddump/

