
 1

MS11-046 - Dissecting a 0 day

By

Ronnie Johndas

 2

Contents

1. Abstract .. 3
2. Initialization phase .. 3

3. Exploitation ... 5
4. The Shellcode ... 8
5. Bibliography .. 9

 3

1. Abstract

In this paper, we are going to take a closer look at a zero day attack that performs a

privilege escalation to run commands in the system, which normally would be restricted

because of access level of the logged in user account.

The particular vulnerability used in this case is “MS11-046: Vulnerability in

Windows AFD.sys” which is a kernel level arbitrary memory overwrite, that is, the

attacker can replace the content of that particular memory address with any value that he

desires. Details can be found at http://support.microsoft.com/kb/2503665.

In this paper, the sections are divided into initialization phase where the attack

payload is constructed, exploitation phase where the vulnerability is used to run the

shellcode. The last section will discuss about the shellcode that was used by the malware

to perform the privilege escalation.

2. Initialization phase

The exe starts off by asking the user to enter a single argument, which will be the

command to run, once the privilege escalation is successfully performed.

It then calls "ZwQuerySystemInformation" with following arguments:

|InfoType = SystemModuleInfo

This gives the list of loaded driver names and their load addresses in kernel space.

The next step is to see if there is an entry in the list for “ntoskrnl.exe” or

"ntkrnlpa.exe" (systems with Physical Address Extension support), if it finds the entry

it will get their load addresses in kernel space from the

“_SYSTEM_MODULE_INFORMATION” structure. Usually the above mentioned

modules will be the first entry in the returned list.

(We will assume that the list entry that was found is “ntoskrnl.exe” and all the

observations will be based on that assumption. And also the OS where this malware

was run is Windows XP).

After that it proceeds to load the module “ntoskrnl.exe” using LoadLibrary(), this will

load the module in user space, and then finds the address of "HalDispatchTable".

The following instructions are used to get the address of "HalDispatchTable + 4" in the

module “ntoskrnl.exe” in kernel space:

1. 00401064 8B47 10 MOV EAX,DWORD PTR DS:[EDI+10]

2. 00401067 2BC6 SUB EAX,ESI

3. 00401069 03C1 ADD EAX,ECX

 4

The first instruction moves the base address of ntoskrnl.exe in kernel space to EAX

found using the call to ZwQuerySystemInformation mentioned above, which is then

substracted with load address of ntoskrnl.exe in user space and added to address of

HalDispatchTable in user space, same as adding the RVA of HalDispatchTable to the

base address of ntoskrnl.exe in kernel space. These steps provide the address of

HalDispatchTable in kernel space.

This is later used to get the address of HalDispatchTable + 4, this is the address

we are interested in.

 The structure HalDispatchTable is a jump table, where the addresses of functions

are stored that are used by HAL.

Its format is given below:

.data:00461138 HalDispatchTable db 3

.data:00461139 db 0

.data:0046113A db 0

.data:0046113B db 0

.data:0046113C off_46113C dd offset sub_47C1E2  HalDispatchTable + $4

.data:00461140 off_461140 dd offset sub_47C1EA

.data:00461144 dd offset sub_47C1F2

Where sub_47C1E2, sub_47C1EA, sub_47C1F2, etc are various function addresses

present inside the structure, the value of interest for us is 0046113C, this will be

explained later on.

After that it uses “ZwAllocateVirtualMemory”, with the desired base address set

to 0x00000000, so that a memory chunk gets allocated at location 0x00000000 if

available. This is the memory that will hold the shellcode, to which the execution will

jump to after a successful memory overwrite.

 Image 01

Image 01 shows the copied shellcode. There are some modifications done to the

shellcode based on the OS and version. The byte at location 0x83 can have different

values (0xC8 if you are running XP, 0xD8 for Server 2003, and 0x12C for vista and

above, these values are token offsets within EPROCESS structure, which will vary based

on OS):

 5

00401469 8983 83000000 MOV DWORD PTR DS:[EBX+83],EAX

After this, three more DWORD values are added to the locations (Here EBX = 0):

00401484 8983 87000000 MOV DWORD PTR DS:[EBX+87],EAX

0040148A 898B 8B000000 MOV DWORD PTR DS:[EBX+8B],ECX

00401490 8993 8F000000 MOV DWORD PTR DS:[EBX+8F],EDX

These are addresses of:

1. PsLookupProcessByProcessId API

2. Address to the location “HalDispatchTable + $4”.

3. Address of HalDispatchTable

It also places the process id of the executable (malware) into the shellcode address 0x7B.

And the final data to be copied over to the shellcode is SYSTEM PID, this is the process

id for the “system” process. In windows 2000 the pid for system process is “8” and for all

other versions it is “4”. The windows version is detected and based on that either of the

two pid values is copied to location 0x87. This step concludes the shellcode construction.

3. Exploitation

In this section we will see how the exe exploits the vulnerability.

It starts by getting the address to "NtDeviceIoControlFile" API from NTDLL. After that

it performs an inline function hooks on the API.

The following code is used to perform the hook:

MOV BYTE PTR DS:[ESI],68

/* ESI points to the start address of NtDeviceIoControlFile */

MOV DWORD PTR DS:[ESI+1],<zero.loc_40164>

MOV BYTE PTR DS:[ESI+5],0C3

/* All the above instruction serve the purpose of injecting instruction into the

address space of NtDeviceIoControlFile */

The entry point of NtDeviceIoControlFile changes to the following after the above

instructions are executed:

 6

PUSH <zero.loc_401640>

RETN

The address <zero.loc_401640> points to the hook routine (given below) which will be

executed before NtDeviceIoControlFile’s original code:

CMP DWORD PTR SS:[ESP+18],12007

/*12007 indicates Iocontrolcode for socket Connect*/

JNZ SHORT <zero.loc_40165B>

MOV EAX, DWORD PTR DS:[40FA70]

/*contains value 8053513c (this the address of HalDispatchTable + $4)*/

MOV DWORD PTR SS:[ESP+24],EAX

/*output buffer for NtDeviceIoControlFile, the address now point to 8053513c*/

MOV DWORD PTR SS:[ESP+28],0

/*The length of output buffer is set to 0 */

LEA EAX, DWORD PTR DS:[40FA78]

/*Location of the original NtDeviceIoControlFile which gets executed next.*/

PUSH EAX

RETN

The above code changes arguments provided to the function

"NtDeviceIoControlFile" when a socket connect being performed, the arguments changed

are output buffer and its length, they become:

outbuffer = 8053513c

Length = 0;

After this the routine at address 0x0040fa78 gets executed which is the original

"NtDeviceIoControlFile" code (given below) with the modified arguments:

MOV EAX,42

MOV EDX,7FFE0300

CALL EDX

RETN 28

 7

Once the hook is setup without any errors, the exes connects to 127.0.0.1 at 135

port using the connect() API. The API NtDeviceIoControlFile gets called within the

connect() API. As a consequence of this call, the driver writes the location (0x8053513c

 HalDispatchTable + $4) with the value 0 (this is the arbitrary memory overwrite

vulnerability discussed earlier), and as we can recall our shellcode is stored at the

location 0x00000000 (Image 01).

After the overwrite, hook from "NtDeviceIoControlFile” is removed.

The final step in exploitation is to call the API “ntdll.ZwQueryIntervalProfile”.

Now, within this API there is a call to the function:

Call DWORD PTR [HalDispatchTable+$4]

As mentioned before, HalDispatchTable+$4 has the value 0 stored after the call to

connect(). Hence the above call becomes:

Call 0x00000000

Our shellcode which was at the location 0x00000000 gets executed.

If we look at the API call "NtDeviceIoControlFile" which lead to the memory overwrite,

it uses the following file handle to perform the device operation:

 Handles, item 8

 Handle=0000003C

 Type=File (pipe)

 Refs= 2.

 Access=001F01FF

SYNCHRONIZE|WRITE_OWNER|WRITE_DAC|READ_CONTROL|DELETE|READ

_DATA|WRITE_DATA|CREATE_PIPE_INSTANCE|READ_ATTRIBUTES|WRITE_

ATTRIBUTES

 Name=\Device\Afd

From the above information we can see that the malware is trying to exploit the driver

AFD.sys.

 8

4. The Shellcode

Now let’s move to shellcode analysis, to perform this we’ll be using IDA Pro 6.1 and

VirtualKD 2.6, using these we can perform kernel level debugging.

Once we have setup the tools for kernel debugging we’ll patch the location where the

shellcode is read from process memory and copied to the buffer located at 0x00000000

(Image

02).

 Image 02

In the above image you can see that, the starting point of the shellcode was patched with

0xcc which is software breakpoint (INT 3). So now when the shellcode is triggered, the

execution will hit this breakpoint and create an exception that will be caught by our

remote kernel debugger (IDA Pro) (show in Image 03).

 9

Image 03

As we can see in Image 03, the execution has stopped at that point and we can proceed

with our analysis.

To continue, we need to change the value 0xCC (INT 3) with 0x90 (NOP). Let’s look at

what the shellcode is doing.

The shellcode calls PsLookupProcessByProcessId with the argument retrieved from the

address 0x7B (which, as discussed earlier contains the process id under which the

malware is running), and saves the EPROCESS structure returned. Next, it calls

PsLookupProcessByProcessId for SYSTEM PID which was in the buffer 0x87 (as

discussed before) and retrieves the pointer to access Token (Executive object describing

the security profile of a process) from the EPROCESS structure of the “system” process

and copies this value into the token pointer within the EPROCESS structure returned by

the first PsLookupProcessByProcessId (called with the malware PID).

The above steps gives the malware pid the same access rights / privileges as the “system”

process.

Now all that is left to do is to run the command provided by the attacker. This is done by

providing the command by the user as argument to cmd.exe using the API

CreateProcessA().

This paper intends to provide details of one of the attack vector that was used to exploit

the vulnerability. There may be other exploits available known or unknown that uses the

above mentioned vulnerability.

5. Bibliography

1. Understanding Windows Shellcode, by Skape

http://www.hick.org/code/skape/papers/win32-shellcode.pdf

Accessed March 16, 2009

http://www.hick.org/code/skape/papers/win32-shellcode.pdf

