
Dynamic-Link Library Hijacking

Max “RIVAL”
www.siteofmax.com

rival@riseup.net

Abstract

The aim of this paper is to briefly discuss DLL
Hijacking vulnerabilities and the techniques used to
mitigate and fix them. This paper is aimed towards
people with a basic understanding of Dynamic-Link
Libraries and how they can be used in applications,
however provides certain points of information for
those who do not.

1. Introduction

Windows is statistically the most used Operating
System around with Windows 7 taking around 55% of
users. However, this does not mean that Windows is
completely secure. DLL Hijacking, also known as DLL
Preloading, is a fairly recent discovery from H.D.
Moore in 2010 and although DLL hijacking is
considered a big topic, there aren't a lot of resources
that detail both the effects and the methods of defense
for both users and developers. DLL Hijacking
Vulnerabilities affect a lot of business applications and
so can be of significant importance to security
researchers and penetration testers. These
vulnerabilities have also been known to be found in
applications such as Windows Movie Maker and
Windows Address Book [1]. In order to understand
DLL Hijacking, you must understand how Windows
Applications find their DLL files if not given a full
path.

2. Windows DLL

Dynamic-Link Libraries are collections of data and
executable code that are used by other applications and
DLL files. The main reasons for using DLL files
instead of just putting the functions and data into the
executable itself are to both make it easier to update the
software (instead of requiring any user wishing to
update to re-download the entire executable, you'd only
need to re-download one or two small files. You can

imagine how useful this is for designers of games that
may need to be frequently updated) and to reduce
excess memory usage by allowing the DLL file's code
to be shared between applications.

3. Windows DLL Search Order

Programmers often don't specify an absolute path to
the DLL file they want to use. This would have caused
the problem of the DLL not being found and used,
however Microsoft came up with the Dynamic-Link
Library Search Order, which runs at the application's
load time, to solve this issue. By default, the first item
found is the item that is used. The search order is as
follows:

Above: Diagram of Windows DLL Search. Depending
on settings or your OS version, sometimes the path
specified by lpPathName (for example, from the
SetDllDirectory function) is used instead of the
Directory of the Application. If SafeDllSearchMode is
enabled, then the search order also differs so that
“Current Directory” comes fifth in the search order.

4. Principles of DLL Hijacking

Now we understand how Windows goes about
searching for the DLL file itself, we can understand
DLL hijacking. For example, let's say the application
requires “functions.dll”, a file that has not been
specified with an absolute path, however is located
within the System Directory. An attacker could place

Directory of the Application

Current Directory

System Directory

16-bit System Directory

Windows Directory

Directories in PATH variable

their own DLL files in an area accessed BEFORE the
systems directory (such as the directory of the
application). When a user opens the application, during
the DLL search process, it will discover the attacker's
file before it comes across the DLL in the Systems
Directory and thus will load it instead, meaning any
malicious code from the attacker will be executed.

5. Finding DLL Hijacking Vulnerabilities

Finding the vulnerability in a program is the first
step in exploiting it. A good way to do this is to use
Process Monitor to see when the program executes a
search for a DLL file. When Process Monitor is loaded
up, you can try to trigger a function from another DLL
or wait until one is triggered. After this has been done,
all that's required is to go to the Filter menu and add
your filters. Below are the filters you should consider
using to make your search a lot shorter:

• Operation is QueryOpen then Include
• Process Name is vuln.exe then Include
• Path contains .dll then Include

If you find something that looks similar to this:

Path Result

C:\Windows\System32\vuln.dll NAME NOT
FOUND

C:\Windows\System\vuln.dll NAME NOT
FOUND

C:\Windows\vuln.dll NAME NOT
FOUND

Then you have most likely found a DLL hijacking
vulnerability.

6. Finding function names from a DLL

In order to create a new DLL with malicious
content, we must first know the function names that are
used in it. On Windows this can be done with the
DUMPBIN utility. With DUMPBIN we can use the
/EXPORTS option. Below is an example of the output
of an example DLL:
Dump of file C:\example.dll
File Type: DLL
 Section contains the following exports for example
 00000000 characteristics
 4FC31DEF time date stamp Mon Jun 05 18:32:49 2013
 0.00 version
 1 ordinal base
 3 number of functions
 3 number of names
 ordinal hint RVA name
 1 0 00007BA0 output_data

 2 1 00007C40 show_integer
 3 2 00008940 add_integers
 Summary
 1000 .CRT
 1000 .bss
 1000 .data
 1000 .edata
 1000 .idata
 1000 .rdata
 1000 .reloc
 9000 .text
 1000 .tls

An alternative is the use of a debugger. Debuggers can
show you plain text that is stored in the program. In our
case, we will be able to see the name of any referenced
DLL file stored as plain text.

7. Writing DLL exploits

Let's jump into the practical side of DLL Hijacking.
Let's say we have a program that reads a particular
format and uses the following segment of code to load
a DLL:

DLL_FILE = LoadLibrary(“test.dll”);

The following code is used to execute the “output_text”
function:

output_text = (DLLPROC)
GetProcAddress(DLL_FILE, “output_text”);

A segment of the DLL code is as follows:

void output_text()
{
 cout << “All is going well!\n”;
 return;
}

For this example we will assume the DLL file “test.dll”
is located in the Windows directory. As we have not
specified a full path, the search algorithm commences.
The program finds the DLL in the Windows directory
and executes the output_text function. The following is
output:

All is going well!

We can create a new DLL file with the same function
name as follows:

void output_text()
{
 cout << “Something's not right here!\n”;
 return;
}

If we place our new file in the same location as one of a
file the program is intended to open, when the
application is executed via the file, the program will
search in the folder that has called the program before
the Windows directory. You can imagine how much of

an impact this vulnerability can have. It's unlikely the
victim will pay much attention to a DLL file that comes
with their wanted file as they have no reason to fear it.
When the application loads the wanted file, it will also
load the attacker's DLL and execute the malicious
function.

8. Attacking a victim remotely

A lot of people confuse DLL hijacking with
replacement, where the user would have to replace the
original file for the program itself. However, with
hijacking that is not necessary as all that's required is
for the user to execute the program from a location
where the attacker's DLL is. It's all well and good
saying that the user needs to have the DLL already on
their computer in order for it to be used against the
target, however it doesn't seem very simple. This is
where Social Engineering can come in handy. Below
are two examples of how an attacker could use DLL
Hijacking on a target:

1. An attacker finds a vulnerability in a text file
viewer. The attacker creates an archive file
with both a text file, and a malicious DLL. A
victim downloads the archive and opens the
text file directly from the archive itself. The
archive program extracts both files to a
location and opens the text file with the
default text file reader (in this case, the
vulnerable program). The program searches
for the DLL and first checks for it from where
the file was opened (in this case, the
temporary location the archive program
extracted the files to). It finds the attacker's
DLL and uses the functions from that. The
malicious code is executed.

2. An attacker finds a vulnerability in an email
viewer used by the company they work for. He
uploads the malicious DLL, a few random
files, and an email file to a shared folder used
by the people within the company. A victim
opens the email file and the email reader uses
the malicious DLL file instead of the intended
one which could be located in the Windows
Directory. The malicious code is executed.

9. Defending against DLL Hijacking

The most important part of explaining a
vulnerability is explaining how to defend against it.
The responsibility of protecting the users falls to the
developers of software themselves. Since this has

brought a lot of attention towards the Windows Search
Order, developers should learn to rely less upon the
Operating System itself for support. As is the case with
DLL Hijacking, the full path to the library needs to be
specified in order to avoid this problem entirely. The
alternative to this is to move the DLL files to a place
that is checked earlier in the search order, however I
myself do not recommend this option [2]. Yet another
alternative is to create a checksum hash of the DLL and
store it within the program itself so that on execution,
when a DLL is found, it's checksum hash value must
match the hash stored in the program. This can be
improved by using a strong hashing algorithm
alongside a salt or by using public and private keys in
the program to encrypt the checksum outside the
program and decrypt it within it. The users themselves
also have the ability to protect themselves by taking
certain precautions. The user can ensure that the files
they are opening are not in the same directory as a DLL
that may seem suspicious. For example, if a DLL
comes with a picture you've downloaded, it's a good
idea to remove the DLL before opening the picture.
Users also have the ability to alter the registry key
CWDIllegalInDllSearch [3]. Users can set two
different registry keys themselves:

• HKEY_LOCAL_MACHINE\SYSTEM\Current
ControlSet\Control\Session
Manager\CWDIllegalInDllSearch

• HKEY_LOCAL_MACHINE\Software\Microso
ft\Windows NT\CurrentVersion\Image File
Execution
Options\binaryname.exe\CWDIllegalInDllSea
rch

Hopefully this has allowed you to understand DLL
Hijacking and the algorithm used by the Windows
Operating System. The more developers that are aware
of this problem, the less likely it is that they will rely
solely on the Operating System to handle processes
such as this.

10. References

[1] Microsoft Security TechCenter, “Microsoft Security
Advisory (2269637)”, http://technet.microsoft.com/en-
us/security/advisory/2269637

[2] Swiat, “More information about the DLL preloading
remote attack vector”, Technet, August 23rd 2010
http://blogs.technet.com/b/srd/archive/2010/08/23/more-
information-about-dll-preloading-remote-attack-vector.aspx

[3] Microsoft Support, ”A new CWDIllegalInDllSearch
registry entry is available to control the DLL search path
algorithm”, http://support.microsoft.com/kb/2264107

