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Introduction 

 
In this paper, I would like to discuss various existing and interesting techniques which are used 
to evade the detection of a virus in Sandbox. We will also look at ways a sandbox can be 
hardened to prevent such evasion techniques. 
 
This paper is targeted towards those who have an experience with Windows OS internals, 
reverse engineering viruses as well as those who are interested in developing detection 
mechanisms for viruses in a Sandboxed environment. 
 
A deep understanding of the evasion techniques used by viruses in the wild helps us in 
implementing better detection mechanisms. 
 

Purpose 
 
New offensive techniques give rise to innovative detection mechanisms, as has always been the 
case in cyber security. 
 
Nowadays, it is becoming increasingly common for malware analysts to leverage sandboxes for 
automation of malware analysis. However, most techniques used in viruses to evade such 
sandboxes are targeted towards commercial and well-known VMs like VMWare Workstation, 
VMWare Fusion, Virtual Box, Virtual PC, Qemu and some sandboxes like CWSandbox, Anubis 
and so on. These techniques can prevent analysis in a sandbox based only on known 
information. 
 
However, there is a lot of scope for improvement in the techniques used by viruses to detect 
and evade a Virtualized Environment. This encourages the development of more hardened 
sandboxes which are as close to VMM transparency as possible. 
 

Anti VM techniques 
 
Before we discuss some new ways of preventing analysis in sandboxes, let us discuss some of 
the commonly used anti sandbox/anti vm techniques. 
 
Process Names: Till date, viruses rely on looking for known process names running on the 
machine to identify the presence of a virtual machine. By enumerating the process names using 
Process32First()/Process32Next(), they look for running process such as vmsrvc.exe, 



vmusrvc.exe, vboxtray.exe, vmtoolsd.exe, df5serv.exe, vboxservice.exe and so on. These are 
known values of process names that may be running in a sandbox used by malware analysts. 
 
Registry Artifacts: It is also common for viruses to access specific registry entries to check for 
presence of sandboxes. One of the most common registry entry accessed for this purpose is: 
 
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\Disk\Enum 
 
Subkey: “0” 
 
Then the value of above subkey is parsed for the presence of substrings like vmware, qemu, xen 
and so on. 
 
This is again based on known values.  
 
Module Names: Sandboxes inject modules in a process to log the activities performed by it. 
Since some of the module names used by security sandboxes are known publicly, they are used 
by the virus to detect the presence of sandbox the following way: 
 
Call GetModuleHandleA() on the module name. If the handle returned is Non Null, this 
indicates the module is loaded. It is unloaded by calling FreeLibrary(). Once this is done, the 
sandbox will not log any activity performed by the malware. Common module names often 
searched by the viruses are dbghelp.dll, sbiedll.dll and so on. 
 
Backdoor Detection: In most virtual machine softwares like VMWare Workstation, VMWare 
Fusion, Virtual PC, Parallels and so on, Hypervisor uses a backdoor to communicate with the 
guest operating system. 
 
We can detect the presence of virtualization software and also identify its type using this 
backdoor technique. 
 
For instance, to detect the presence of VMWare there is a known documented technique which 
checks for the presence of VMX backdoor used by Hypervisor to communicate with the guest 
operating system: 
 
mov eax,0x564d5868 
mov ecx, 0xa 
mov dx, 0x5658 
in eax, dx 
cmp ebx, 0x564d5868 
 
While these techniques are good, they are again directed towards specific virtualization 
softwares. 
 



Long Opcode Instructions: This technique was documented by jaelanicu in 2009. It is not used 
so often in viruses, however it is a unique technique. It is based on the fact that virtualized CPU 
does not have a limitation on the length of an instruction unlike a real x86 CPU. When an 
instruction of length greater than 0x15 bytes is executed on a real CPU, it will trigger an 
exception however in a virtual CPU it will not trigger an exception. This difference in the result 
is used to detect the presence of virtualization. 
 
It was observed that Qakbot uses this technique as shown in the screenshot below: 
 

 
 
Please note that this technique may not work reliably on recent versions of Virtualization 
Softwares. 
 
Number of Cores: It is common for malware analysts to allocate a single processer core to the 
sandbox. However, in a real world case today, most processors will have multiple cores. 
 
Malwares can use several techniques to find the number of CPU cores and then decide if they 
are running inside a virtual machine on the basis of the result. One of the easiest ways of doing 
this is by checking the Process Environment Block: 
 
Mov eax, dword ptr fs:[0x30] 
Mov eax, dword ptr ds:[eax+0x64] 
Cmp eax, 0x1 
Je vm_detected 
 



This technique may appear to be trivial but it can be effective in some cases. 
 
Data structures: There are certain structures like IDT, GDT and LDT, which are at different 
locations between Host and Guest OS. This concept was used in techniques such as Red Pill to 
detect the presence of virtualization software. Since SIDT is a sensitive unprivileged instruction, 
VMM performs binary translation for it to return a different result than the host OS. Credits for 
Red Pill to Joanna Rutkowska. 
 
Please note that on a multi processor machine the behavior of SIDT is not consistent. I will be 
testing this on various virtualization softwares/processor configurations and including a 
consistent code in my VM Buster program (Appendix I). 
 
Device Information: It is also possible to detect the presence of virtualization software by 
enumerating the device details using APIs like SetupDiGetClassDevsA, SetupDiEnumDeviceInfo 
and SetupDiGetDeviceRegistryPropertyA. After enumerating, it can be compared with known 
values used in Sandboxes like VMware Pointing, VMware Accelerated, VMware SCSI, VMware 
SVGA, VMware Replay, VMware server memory, CWSandbox, Virtual HD, QEMU and so on. 
 
File System Artifacts: There are some system drivers specific to the virtualization software, 
which can be located in the path: %windir%\system32\drivers\. It was observed that there are 
a few viruses, which check for the presence of these files as well. 
 
Some of the driver names to look for: vmci.sys, vmhgfs.sys, vmmouse.sys, vmscsi.sys, 
vmusbmouse.sys, vmx_svga.sys, vmxnet.sys, VBoxMouse.sys. 
 
Network Adapter MAC Address: The vendor of Network Adapter can be identified from the 
first 3 bytes of a Mac Address. 
 
Example: 00-0C-29-B4-0A-15 
 
00-0c-29 is specific to VMWare. 
 
Sensitive Instructions:  We know that the x86 processor architecture cannot be completely 
virtualized. VMWare introduced the concept of full virtualization using binary translation for 
sensitive unprivileged instructions like SIDT, SLDT, SGDT, VERR, VERW and others. Fortunately, 
these instructions exhibit a different behavior for a Guest OS and the Host OS due to this binary 
translation performed by the VMM. 
 
Malwares in the past have used instructions such as VERR/VERW to detect the presence of 
virtualization softwares like VMWare. 
 
Please note that the newer versions of VMWare are not impacted by it. Also, you can harden 
your Virtual Environment from these techniques by disabling the Acceleration option provided 
by your VMM software. 



 
I have written a C program, which will use almost all of the above methods for various 
virtualization softwares to detect their presence. It is scalable and can be modified to support 
more virtualization softwares by adding more artifacts information. 
 
The program can be found in Appendix I. 
 
As can be seen, it is really easy to detect the presence of Virtual Environment for a virus. One 
must harden their sandbox by modifying the default configuration of a Guest Operating System 
to protect themselves from such Anti VM techniques. 
 

Drawbacks of Common Anti VM techniques 
 
We looked at some of the commonly used techniques for detecting the presence of a sandbox. 
While these techniques are effective against few virtualization softwares, they rely on known 
data. 
 
As the usage of sandboxes for detecting the malicious binaries is increasing and security 
organizations are leveraging these sandboxes for detection mechanisms, attackers will explore 
new evasion techniques. 
 
If we have a sandbox which has an unknown list of running processes, unknown file system and 
registry artifacts, no guest VM tools, multiple processor cores, unknown injected module name, 
unknown hypervisor port, then almost all of the above commonly used anti vm/anti sandbox 
techniques are rendered ineffective. 
 

Essentials of Sandbox Based Detection 
 
A sandbox, which is used to automatically analyze the behavior of a binary and conclude its 
maliciousness, has to monitor the activities performed by the binary. After studying closely 
various sandboxes used for automation of malware analysis, it was found that almost all these 
sandboxes have below common attributes: 
 

1. They inject a module into the process address space of the binary being analyzed. 
2. The injected module will perform API hooking in user mode to log the API calls and the 

parameters passed. 
 

Detect and Unload 
 
We know that a module is injected into the address space of our malicious binary to log the 
activities. 
 
How do we detect its presence? 



 
As a malware author, we are aware of the modules that will be loaded by our binary during the 
course of its execution. We can enumerate over the list of loaded modules and identify the 
injected DLL. Below is an example code to do this. 
 
Let us consider a binary, which loads only ntdll.dll and kernel32.dll by default. For the purpose 
of demonstration, I have used LoadLibrary() to load an extra module, gdi32.dll. In a real world 
scenario, the extra module would be injected by an external entity like a kernel mode driver. 
 
#include <windows.h> 

#include <stdio.h> 

#include <TlHelp32.h> 

 

/* 

Author: Sudeep Singh 

*/ 

 

int main(int argc, char **argv) 

{ 

HANDLE psnap; 

HMODULE hModule; 

MODULEENTRY32 me; 

me.dwSize = sizeof(MODULEENTRY32); 

 

psnap = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, 0); 

 

if(!Module32First(psnap, &me)) 

{ 

    printf("There was an error in retrieving the module information\n"); 

    exit(0); 

} 

 

while(Module32Next(psnap, &me)) 

{ 

    if(strcmp(me.szModule, "kernel32.dll") != 0) 

    { 

        if(strcmp(me.szModule, "ntdll.dll") != 0) 

        { 

            hModule = GetModuleHandle(me.szModule); 

            if(FreeLibrary(hModule) != 0) 

            { 

                printf("successfully unloaded injected module, %s\n", 

me.szModule); 

            } 

        } 

    } 

} 

 

return 0; 

} 

 



We are enumerating over the modules using Module32First()/Module32Next() and doing a 
basic string comparison to identify the extra loaded modules. Once we find the injected DLL, we 
can unload it using a call to FreeLibrary(). 
 
Please note that even though this technique might appear to be easy, it can render the entire 
sandbox analysis mechanism ineffective once the injected DLL is unloaded. 
 
What happens if the module is unloaded? 
 
You might ask, what is the impact of unloading the injected DLL? Since all the API hooks are 
applied by your injected DLL as soon as the module is loaded into the address space of virus. 
 
While the API hooks remain intact, their functionality is rendered ineffective. As an example, 
consider an inline hook placed by your injected DLL on an API, Sleep() imported from 
kernel32.dll 
 
The function prolog of Sleep() after inline hook looks like: 
 
jmp <into_module_address_space> 
push 0 
push dword ptr ds:[ebp+0x8] 
 
After the module is unloaded, when Sleep() API is invoked by the virus, it will try to follow the 
inline hook into the module address space. However, since the module is unloaded, this would 
result in a crash (since it does not point to a valid memory address range). As a result of this, 
the binary would not be analyzed in the sandbox. 

 
Protect from Unload 

 
If the above technique is used by a virus to identify the extra loaded module and 
unload it using FreeLibrary(), we can protect from this using several methods. 
 

 Reference Count of DLL: We know that FreeLibrary() will unload a module from the process 
address space only if the reference count is 0. 

 
 Also, the reference count of a loaded module can be incremented by calling LoadLibrary(). Each 

time we call LoadLibrary(), it increments the reference count of loaded module and each time 
we call FreeLibrary(), it decrements the reference count. 

 
 As an example, let us consider the code mentioned above. We compile it into a binary and run 

it inside a debugger. 
 



 Set a breakpoint at a call to FreeLibrary() and run the program. When FreeLibrary() is called the 
first time, it is trying to unload the module, gdi32.dll 

 
 

 
 
 Before executing this call instruction, let us view the loaded modules in Olly Debugger. We can 

see that both, gdi32.dll and user32.dll are loaded in the process address space. 
 



 

 
 
 Now, we execute the call and notice that these modules are unloaded. This can be confirmed 

by viewing the Memory Window in Olly Debugger once again as shown below: 
 



 

 
 
 Let us modify the previous code by calling LoadLibrary() more than 1 time as shown below: 
 
 int i=0; 
 while(i<0x2) 
 { 
  LoadLibraryA("gdi32.dll"); 
  i++; 
 } 
 
 After compiling this into a binary and attaching the debugger, we once again check the Memory 

Window after executing the call to FreeLibrary(). This time, we observe that even though 
FreeLibrary() returns a non zero value, the module is still loaded in the address space. 

 
 This is a very trivial method to prevent your module from being unloaded. A virus author could 

check the reference count of a module before calling FreeLibrary(). 
 
 I wrote the following inline assembly, which can be used to find the reference count of any 

loaded module. We could then modify the reference count using inline assembly and call 
FreeLibrary(). 

 
__asm 

{ 

pushad 

mov ebx, hModule 



mov eax, dword ptr fs:[0x18] 

mov eax, dword ptr ds:[eax+0x30] 

mov eax, dword ptr ds:[eax+0xc] ; _PEB_LDR_DATA 

add eax, 0xc 

mov ecx, dword ptr ds:[eax] ; pointer to InLoadOrderModuleList 

repeat: 

mov edx, ecx 

cmp dword ptr ds:[edx+0x8], 0 

mov ecx, dword ptr ds:[ecx] 

je repeat 

cmp ebx, dword ptr ds:[edx+0x18] 

jnz repeat 

mov eax, dword ptr ds:[edx+0x38] 

mov ref_count, eax 

popad 

} 

 
 Above code will find the reference count (LoadCount) of the module that we want to unload. 

We find the LoadCount by parsing the Process Environment Block. 
 
 This will allow the attacker to unload the injected module even if the reference count was 

modified by calling LoadLibrary() multiple times. 
 
 Prevent Enumeration of Modules: If a sandbox is relying on DLL injection to analyze the 

behavior of a binary, it is essential to hook APIs such as Module32First()/Module32Next() 
which could be used to enumerate the loaded modules. However, based on the study of some 
sandboxes, it was found that these APIs are not hooked in the user mode. 

 
 Hiding the module in PEB: It is possible to hide the injected module in the Process Environment 

Block. This way, it would not show up in the list of loaded modules. Such techniques are 
encouraged and should be used by sandboxes. 

  
 When a process loads a module, information specific to the DLL is stored in the Process 

Environment Block. Below are some structures specific to PEB, which allow us to access DLL 
information: 

 
 0:001> dt nt!_PEB @$peb 

ntdll!_PEB 
 +0x000 InheritedAddressSpace : 0 '' 
 +0x001 ReadImageFileExecOptions : 0 '' 

   +0x002 BeingDebugged    : 0x1 '' 
   +0x003 SpareBool        : 0 '' 
   +0x004 Mutant           : 0xffffffff Void 
   +0x008 ImageBaseAddress : 0x01000000 Void 
   +0x00c Ldr              : 0x001a1e90 _PEB_LDR_DATA 
 



 PEB_LDR_DATA structure has 3 linked lists, which store information about all the loaded 
modules. 

 
 0:001> dt nt!_PEB_LDR_DATA 0x001a1e90 
 ntdll!_PEB_LDR_DATA 
 +0x000 Length           : 0x28 
 +0x004 Initialized      : 0x1 '' 
 +0x008 SsHandle         : (null)  
 +0x00c InLoadOrderModuleList : _LIST_ENTRY [ 0x1a1ec0 - 0x1a2bc0 ] 
 +0x014 InMemoryOrderModuleList : _LIST_ENTRY [ 0x1a1ec8 - 0x1a2bc8 ] 
 +0x01c InInitializationOrderModuleList : _LIST_ENTRY [ 0x1a1f28 - 0x1a2bd0 ] 
 
 The 3 linked lists are highlighted above. If we can unlink the information of our injected module 

from these 3 linked lists, our module will be hidden. 
  
 This means, 
 
 GetModuleHandle() would return NULL for our module name. As a result of this, the 

FreeLibrary() trick for unloading our module will not work. 
 
 Module32First()/Module32Next() will not show our DLL in the list of loaded modules. This is 

because these Windows APIs also use the information stored in PEB to enumerate the loaded 
modules. 

 
 What code we need to add to our DLL? 
 
 In order to unlink our module from the PEB, we need to add a function which will be called 

when the reason code, DLL_PROCESS_ATTACH is passed to our DllMain() as shown below: 
 

BOOL APIENTRY DllMain(HMODULE hModule, DWORD  ul_reason_for_call, LPVOID 

lpReserved) 

{ 

    if(ul_reason_for_call == DLL_PROCESS_ATTACH) 

    { 

        HideDll((ULONG_PTR)hModule); 

        MessageBoxA(NULL,"DLL Hidden", "Hide the DLL", MB_OK); 

    } 

return 1; 

} 

 
 The complete code for unlinking the DLL from PEB can be found in Appendix III. Credits to 

Pnluck from OpenRCE for this. 
 

When LoadLibrary() is called, it invokes the DllMain() function of DLL which in turn will call 
HideDll() function that unlinks the module from PEB. 

 



 In order to confirm that our method works, let us use the program discussed previously to 
enumerate the modules using Module32First()/Module32Next() to load our new modified 
module. 

 
 We will set a breakpoint at a call to LoadLibrary(). 
  
 When we return from LoadLibrary(), we can see the base address of our module as 0x10000000 

in eax. 
 
 Let us view the list of loaded modules in Memory Window of Olly Debugger. We can see that a 

memory region is mapped at address 0x10000000 however no module name is shown. 
 

 
 
 This means, it is possible to hide our injected module from the Debugger as well. 

 

 
 
 
 
 
 



API Hooking 
 

 So far we looked at methods of detecting the injected DLL and how one can prevent that DLL 
from being unloaded by a virus. 

 
 Now, let us target another essential functionality of an automated malware analysis sandbox. In 

order to log the activities performed by the virus, there are API hooks placed by the injected 
DLL. It is becoming increasingly common these days for malwares to detect the API hooks in a 
sandbox. However, it was observed that most malwares only check for inline API hooks. 

 
 We will look at some of the viruses found in the wild and understand the API hook detection 

techniques used by them. 
 

Detect and Skip 
 

 As we know, in Windows, some APIs when invoked will in turn invoke other low level APIs. A 
good example of this is APIs imported from kernel32.dll. These APIs in turn invoke functions 
from ntdll.dll 

 
 For instance, 
 
 Sleep() from kernel32.dll calls SleepEx() from kernel32.dll 
 
 SleepEx() in turn calls NtDelayExection() from ntdll.dll 
 
 We also know that in Microsoft Windows, most of the wrapper APIs have a 0x5 byte stub at 

function prolog which looks like shown below: 
 
 mov edi, edi 
 push ebp 
 mov ebp, esp 
 
 This stub has a size of 0x5 bytes and since we require 0x5 bytes to place an inline API hook, it 

makes it very convenient for sandboxes to apply an inline API hook for such APIs. 
 
 An inline hook for Sleep() API would look like: 
 
 jmp <into module address space> 
 push 0 
 push dword ptr ds:[ebp+0x8] 
 call kernel32!SleepEx 
 



 Since an API hook on wrapper API can be bypassed by a virus by calling lower level APIs, an API 
is hook is placed on SleepEx() as well which has a different function prolog. 

 
 Options for inline API hook: 
 
 1. Short jmp - opcode 0xeb 
 2. Near jmp - opcode 0xe9 
 3. Call - opcode 0xe8 
 
 As there is only a limited number of ways in which a sandbox can apply an inline hook, it is 

trivial to bypass them by checking the first byte of the API. 
 
 If the malware calls the APIs through a stub which first checks the API prolog and then skips it if 

an inline hook is detected, the sandbox would not be able to log any activity of the malware. 
 
 Example stub: 
  

api_address = GetProcAddress(hModule, api_name); 

 

__asm 

{ 

mov    eax, api_address 

cmp     byte ptr [eax],0E8h 

je      dest1 

cmp     byte ptr [eax],0E9h 

je      dest1 

cmp     byte ptr [eax],0EBh 

jne     dest2 

dest1: 

cmp     dword ptr [eax+5],90909090h 

je      dest2 

mov     edi,edi 

push    ebp 

mov     ebp,esp 

lea     eax,[eax+5] 

dest2: 

jmp     eax 

} 

 
 In the above stub, we check if the first byte of the API prolog is 0xe8 or 0xe9. If so, then we 

jump to the location, dest1. At dest1, we check if the inline hook is followed by 4 NOP 
instructions. This check is to ensure that the inline hook is not a default hook placed by OS since 
from Windows 7 onwards; the calls from kernel32.dll are redirected to kernelbase.dll as shown 
below: 

 



 

 
 
 If we detect an inline API hook, then we execute the standard prolog instructions stored in our 

stub (0x5 byte stub). This is followed by adding 0x5 to the API address to skip over the function 
prolog and resume execution from the 4th instruction. 

 
 This way, we do not affect the functionality of the API and also bypass any user mode inline 

hook applied on an API with a standard prolog. 
 
 Now, one might ask, what if the first instruction of an API is a jmp or a call instruction by default 

in the OS. We have included a check for Win 7 OS in our API hook checking stub above, when a 
jmp instruction is followed by 4 NOP instructions. 

 
 However, there are also some APIs imported from kernel32.dll, ntdll.dll and user32.dll, which 

have the first instruction as a jmp/call. 
 
 In order to find out the API names, I have written a C Program which enumerates all the APIs in 

the export directory of a module, calculates its address and checks the function prolog for 
control transfer instruction opcodes (0xe8, 0xe9 and 0xeb). 

 
 Based on the results for Win XP SP3, we have: 
 
 kernel32.dll - 4 
 ntdll.dll - 8 
 advapi32.dll - 0 
 user32.dll - 1 
 ws2_32.dll - 0 
 
 Let us check which functions in these modules have the first instruction as jmp/call by default in 

the OS: 
  
 kernel32.dll: 
 
 CloseProfileUserMapping 
 DebugBreak 
 GetUserDefaultLangID 
 UnregisterConsoleIME 
 



 ntdll.dll: 
 
 _CIlog 
 _CIpow 
 atan 
 ceil 
 floor 
 log 
 pow 
 
 user32.dll: 
 
 AnyPopup 
 
 As you can see in the list above, fortunately a virus rarely uses these APIs and we don't need to 

check for an inline API hook for these. 
 
 The API hook checking stub mentioned above works good for the purpose of virus. 
 
 Also, please note that, this API hook checking stub can also be utilized in a shellcode. The 

importance of using this in a shellcode is: 
 
 Some security products like EMET detect ROP payload execution by checking for stack pivot. 

These checks are done by monitoring a specific set of APIs, which are often called by ROP 
payloads like VirtualAlloc, VirtualProtect, CreateFile and so on. 

  
 Once, they detect a call to these APIs, they perform a check on the stack pointer to ensure that 

it is within the limits as mentioned in the TIB. 
 
 TIB->StackLimit < esp < TIB->StackBase 
 
 If a ROP payload calls all the above APIs through an API hook checking stub as mentioned 

above, it can bypass the exploit code detections such as stack pivot as used in some security 
products like EMET. 

 
 

 
 
 
 
 
 



Function Prolog Analysis 
 
 So far, we have discussed APIs, which have the default function prolog with a size of 0x5 bytes, 

which makes it very convenient for the sandboxes to apply an API hook without altering the 
functionality of the API. 

 
 I modified my previous C Program to calculate the number of APIs imported from various 

modules on Windows XP SP3 which have a non standard prolog (First 0x5 bytes are not equal to 
0x8b, 0xff, 0x55, 0x8b, 0xec). 

 
 The code for this can be found in Appendix II. 
 
 Below are the results: 
 
 

Module 
Name 

Non Standard 
Prolog 

Default Inline Hook by 
OS 

Total Number of Exported 
Functions 

kernel32.dll 215 4 953 

ntdll.dll 767 8 1315 

advapi32.dll 243 0 676 

user32.dll 204 1 732 

ws2_32.dll 33 0 117 

 
 Which are the other types of function prologs? 
 
 Prolog #1: 
 
 0:002> u kernel32!SleepEx 
 kernel32!SleepEx: 
 7c8023a0 6a2c                     push    2Ch 
 7c8023a2 686024807c      push    7c802460 
 7c8023a7 e82a010000      call    kernel32!_SEH_prolog (7c8024d6) 
 
 The size of first 2 instructions is 0x7 bytes followed by a CALL instruction. 
 
 Prolog #2: 
 
 0:002> u kernel32!CreateRemoteThread 
 kernel32!CreateRemoteThread: 
 7c8104bc 6810040000      push    410h 
 7c8104c1 689806817c       push    7c810698 
 7c8104c6 e80b20ffff          call    kernel32!_SEH_prolog (7c8024d6) 
 



 The size of first 2 instructions is 0xa bytes followed by a CALL instruction. 
 
 Prolog #3: 
  
 0:002> u ntdll!ZwDelayExecution 
 ntdll!ZwDelayExecution: 
 7c90d1f0 b83b000000        mov     eax,3Bh 
 7c90d1f5 ba0003fe7f          mov     edx,7ffe0300 
 7c90d1fa ff12                      call    dword ptr [edx] 
 
 The size of first instruction is 0x5 bytes. 
  
 Prolog #4: 
 
 0:002> u kernel32!CloseProfileUserMapping 
 kernel32!CloseProfileUserMapping: 
 7c82c865 e80efdfeff         call    7c81c578 
 7c82c86a 833dd450887c00      cmp     dword ptr [7c8850d4],0 
 
 The size of first instruction is 0x5 bytes, which is a CALL instruction by default by the OS. 
 
 What do we conclude from the above Prologs? 
  
 We saw previously that Prolog #4 is uncommon and it is present only for few APIs, which are 

rarely used by the virus. 
 
 Regarding the other 3 API prologs, we can see that it is still convenient for a sandbox to place 

an inline hook. 
 
 Let us discuss each type of prolog one by one: 
 
 Prolog #1: Besides the standard prolog of 0x5 byte stub, the second most common prolog in 

Windows is this type of prolog. 
 
 Here, two parameters are passed to _SEH_prolog function. Since these parameters are 

constants for a specific API, we can easily copy them to our buffer and redirect the control flow 
to the third instruction in the prolog after our hook has completed the logging activity. 

 
 Taking the example of SleepEx() above, our hook would now look like: 
 
 jmp <into_module_address_space> 
 nop 
 nop 
 call kernel32!_SEH_Prolog <-- sandbox API hook will return here. 



 
 Note the addition of 2 NOP instructions since in this case we have a 0x7 byte prolog. 
 
 Prolog #2: This prolog is similar to the above, however here both the first 2 instructions have a 

size of 0x5 bytes. So, we need to copy 0xa bytes to our buffer. 
 
 Taking the example of CreateRemoteThread above, our hook would look like: 
 
 jmp <into_module_address_space> 
 nop 
 nop 
 nop 
 nop 
 nop 
 call kernel32!_SEH_Prolog << sandbox API hook will return here. 
 
 Prolog #3: This type of function prolog is specific to Native APIs imported from ntdll.dll. As we 

know, APIs from kernel32.dll will call the native APIs from ntdll.dll, a sandbox might place an 
inline hook at a native API as well. 

 
 All these Native APIs have a similar function prolog. They place the system service number in 

eax, move the pointer to SystemCallStub in edx and call it. 
 
 The size of first instruction in this prolog is 0x5 bytes, which makes it convenient to place an 

inline hook. Also, the first instruction in this prolog is a constant specific to the API, so we can 
copy it to our buffer without affecting the functionality of the API. 

 
 Taking the example of ZwDelayExecution above, our hook would look like: 
 
 jmp <into_module_address_space> 
 mov edx, 0x7ffe0300 <-- sandbox API hook would return here. 
 call dword ptr [edx] 
 
 As we can see from the above function prolog analysis, the method of detecting an inline hook 

remains consistent. Also, it is highly likely that a sandbox would place an inline hook at any one 
of these stages. 

 

 
 
 
 
 



Detect and Exit 
 

 In some cases, if a virus detects an API hook placed by a sandbox, it might exit or crash to 
prevent analysis in a sandbox. 

 
 However, these days, viruses would not want to exit, as there is a high likelihood that such API 

hooks are also present on a real world endpoint due to endpoint security protection 
mechanisms. This makes it necessary for the virus to bypass the hooks in addition to detecting 
them. 

 

Detect and Patch 
 

 There are some viruses in the wild which will detect the API hook and instead of skipping it, 
they will patch it. As an example, let us analyze the algorithm used by a virus found in the wild 
to patch the API hooks. 

 
The main hook checking algorithm works as follows: 
 
1. It opens the system DLLs like ntdll.dll, kernel32.dll and advapi32.dll from the path, 
%windir%\system32 using CreateFileA. 
 
2. It maps these DLLs to memory by parsing their PE Header. It loads each section (.text, 
.data, .rsrc and .reloc) manually into memory. It uses multiple calls to SetFilePointer and 
ReadFile to perform these functions. 
 
3. After loading the module in memory, it then locates and parses the Export Data 
Directory. Using the AddressOfOrdinals, AddressOfFunctions and AddressOfNames 
arrays in the Export Directory, it forms a structure for each of the exported API as shown 
below: 
 
struct API_HOOK 

{ 

    DWORD APIOrdinal; 

    char *api_name; 

    void *api_address; 

    BYTE *buffer; 

    int size; 

} *API_HOOK 

 
This structure stores the API ordinal, pointer to API name, the actual API address (as 
loaded in the memory) and pointer to a buffer which contains the first 0x8 bytes of the API 
prolog for the API. The size member of the above structure is always set to 0x8. 
 
4. It then calls the function for checking any differences in the API prolog of APIs imported 
from the corresponding module. 



 
Below screenshot shows the function used for this purpose. The first parameter of this 
function is a pointer to a pointer to an array of pointers to structures of type API_HOOK as 
mentioned above. 
 

 
For instance, we can see the array of pointers to structures of type, API_HOOK at address, 
0x00C3FAC8 
 
Each of these structures correspond to an API imported from ntdll.dll 
 
Let us check the structure at 0x00C6FFA8 
 

 
 



5. Now, it compares the first 0x8 bytes of the API prolog (as loaded in memory) with the 
original first 0x8 bytes. 
 
If it finds a difference, then it concludes that there was an API hook placed in the function 
prolog. It proceeds to mark the first 0x8 bytes of the function prolog as 
PAGE_EXECUTE_READWRITE using VirtualProtect, copies the original bytes from the 
buffer to api_address and restores the protection of the memory region to 
PAGE_EXECUTE_READ. 
 

 
In order to test this algorithm, let us set a breakpoint (INT3) at a native API like 
ZwDelayExecution. 
 
When the above hook checking algorithm detects a difference in the API prolog, it copies 
the original 0x8 bytes to ZwDelayExecution. 
 
Now, let us go to the API ZwDelayExecution in Olly Debugger. It still shows us the 
breakpoint. However, this breakpoint has already been corrupted since the byte 0xCC was 
overwritten by 0xB8 by our algorithm. 
 
We can confirm this by trying to set a breakpoint at ZwDelayExecution once again. Olly 
Debugger lets us know that the breakpoint was corrupted. 
 



 
 
How can we detect the Hook Patching activity? 
 
Since the virus needs to modify the protection of memory region corresponding to API 
prolog prior to patching the hook, the sandbox can hook VirtualProtect() and monitor 
calls to it. If a binary is attempting to call VirtualProtect() on an API imported from system 
DLL, it is a good indicator that this binary is malicious. 
 
This is also the reason a virus should prefer to skip the hooks rather than patch them. The 
hook checking algorithm mentioned above could be modified to call APIs through a stub 
which contains the first N instructions of the API prolog (if a hook is detected). It can use an 
x86 generic disassembler to calculate the length of instructions. 

 

Real World Examples 
 

 Now that we have discussed the various points at which a sandbox can apply inline hooks, let us 
look at a virus, which was found in the wild, and see how it attempts to detect the API hooks 
and bypass them. 

 
 Below is the algorithm used by the virus: 
 
 1. Gets the Function Pointer and passes it to a Generic x86 Disassembler which calculates the 

length of the first instruction. 
 
 2. If the length of the first instruction is 0x2 bytes, then it checks whether the first opcode is 

0xeb (corresponding to a short jmp). If it finds a short jmp, it follows the short jmp and once 
again calculates the length of first instruction. 

  
 If the length of the first instruction is 0x5 bytes, then it checks whether the first opcode is 0xe9 

(corresponding to a near jmp). If it finds a near jmp, it follows the near jmp and once again 
calculates the length of the first instruction. 

 



 It keeps repeating the above steps till it finds that the first opcode is not 0xeb or 0xe9 
depending upon the length of the first instruction. 

 
 3. After this, it copies the first X bytes of the API prolog to a buffer. Here X refers to the length 

of the first instruction. It then calculates the address of instruction after X bytes in the API 
prolog and writes that into the buffer prefixed by a near jmp opcode (0xE9) 

 
 The jmp_buffer looks like: 
 
 [first X bytes of the API prolog][E9][offset to instruction after API prolog]. 
 
 It repeats these steps for all the APIs it calls to perform malicious activities. 
 
 Below screenshot shows the Algorithm along with relevant comments. 
 

 
 
  
 
 
 
 
 

 
 
 



 
Below is an example of jmp_buffer stub for an API with 0x2 bytes as the length of the first 
instruction: 

 
 RtlComputeCrc32: 
 
 

 
 
  
  
 
 
 
 
 
 
 



Below is an example of jmp_buffer stub for an API with 0x5 bytes as the length of the first 
instruction: 
 
ZwUnmapViewOfSection: 

 
 

 
 
  
 Flaws in this algorithm: 
 
 At first the above algorithm looks convincing at bypassing the API hooks of a sandbox. However, 

if you look closely at the algorithm, there are several shortcomings, which would result in the 
virus not being able to bypass the API hooks. 

 
 1. It does not check for all the possible control transfer instruction opcodes (there is no check 

for 0xe8). 



 2. When it finds an opcode 0xeb or 0xe9 at the start of API prolog, it follows the hooked routine 
address. Even if it now skips the first instruction of hooked routine address, the execution will 
still be redirected to API hook of the sandbox. 

 
 Example: 
 
 Let's consider, ZwDelayExecution with an inline hook from the Sandbox: 
 
 jmp <hooked_routine> 
 mov edx, 0x7ffe0300 
 call dword ptr [edx] 
 
 hooked_routine: 
 
 push ebp 
 mov ebp, esp 
 
 a) It detects the inline hook and calculates the address of hooked_routine. 
 b) It follows the hooked_routine and now calculates the length of first instruction of 

hooked_routine which is 0x1 in this case. 
 c) Now the length of first instruction is neither 0x2 nor 0x5, so it proceeds to copy the first byte 

from hooked_routine to its jmp_buffer and calculate address of second instruction of 
hooked_routine. 

 
 The next time, virus calls ZwDelayExecution() through its jmp_buffer, the execution would still 

be redirected to the hooked_routine of the sandbox. 
 
 As a result of this, the API hook checking algorithm used above is ineffective in bypassing the 

Sandbox API hooks. 
 
 Surprisingly, this algorithm was used in a large number of viruses recently. This shows that the 

algorithms used for evading sandbox API hooks still need improvement. 
 

KiFastSystemCall Hook 
 

 This virus also used another API hook checking algorithm for KiFastSystemCall stub. 
Interestingly, this algorithm is correct and also used not so often in viruses. 

 
 Below is the algorithm: 
 
 1. Calculate address of KiFastSystemCall. 
 2. Check for a short jmp (opcode: 0xeb) at KiFastSystemCall. We will see later in more detail the 

reason why it checks only for 0xeb and not 0xe9 or 0xe8. 



 3. Once it finds a short jmp, it follows the short jmp and checks for a push instruction (opcode: 
0x68). 

 4. If it finds a push instruction, it marks memory region pointed to by the argument of push 
instruction as PAGE_EXECUTE_READWRITE. 

 5. Now, it copies the 0x5 bytes corresponding to KiFastSystemCall stub to the above memory 
region. 

 
 As a result of this, even though the KiFastSystemCall hook remains intact, the execution would 

still be redirected to code specific to KiFastSystemCall. 
 
 Below is the screenshot specific to the algorithm mentioned above with relevant comments: 
 

 
 

Betabot Hook 
  
 Now, let us discuss why the previous KiFastSystemCall hook checking algorithm was only 

checking for a short jmp at KiFastSystemCall. 
 
 To understand this better, let us first analyze the SystemCallStub. 
 
 On Windows XP SP3, the SystemCallStub looks like: 
 
 mov edx, esp 



 sysenter 
 retn 
 
 This has a size of 0x5 bytes. Now, you might ask why we cannot apply a simple inline hook? 
 
 The reason being, if we overwrite the above SystemCallStub with an inline hook, we would end 

up overwriting the KiFastSystemCallRet as well. 
 
 What is the consequence of overwriting KiFastSystemCallRet? 
 
 When the program enters kernel mode after execution of sysenter, it finds the address of 

KiFastCallEntry using the SYSENTER_EIP_MSR (0x176). 
 
 This part of user mode to kernel mode transition is not impacted even if we overwrite 

KiFastSystemCallRet instruction in user mode. 
 
 However, after completing the execution in kernel mode, when the control is returned to user 

mode, sysexit is triggered. 
 
 Kernel mode knows where to return in the user mode based on the value of SystemCallRet 

member of the _KUSER_SHARED_DATA structure. 
 
 The address of KiFastSystemCallRet is stored at offset 0x304 in the _KUSER_SHARED_DATA 

structure. Also, this structure is not writable in the user mode, so it is not possible to modify it. 
  
 0:007> dt nt!_KUSER_SHARED_DATA 0x7ffe0000 
 ntdll!_KUSER_SHARED_DATA 
 ..... 
 +0x300 SystemCall       : 0x7c90e4f0 
 +0x304 SystemCallReturn : 0x7c90e4f4 
 
 So, how can we hook the KiFastSystemCall stub? 
 
 To understand this better, let us look at the method used by Betabot to apply this hook. 
 

  
 



 As shown in the screenshot above, it places a short jmp at the first instruction of 
KiFastSystemCall which redirects the control to KiFastSystemCall + 0x5. 

 
 Here, it places a sequence of push and retn instruction to simulate a jmp instruction to redirect 

the control flow to its system call checking subroutine. 
  
 We were able to place a short jmp at the start of KiFastSystemCall conveniently because what 

follows a SystemCallStub is the old mechanism of user mode to kernel mode transition, which is 
not used in modern operating systems. 

 
 This is a good method of applying hooks at the System Call level. While in this case, this method 

was used by Betabot, it is also possible for a Sandbox to use similar technique for API hooking. 
 
 The KiFastSystemCall hook detection routine we discussed previously can easily bypass such 

System Call hooks. 
 

Conclusion 
 

 After reading this paper, the reader should be able to comprehend the various evasion 
techniques which are being used by viruses in the wild as well as methods which can be used to 
prevent such evasion techniques. 

 
 As can be seen from the various topics we discussed in this paper, the usage of evasion 

techniques in viruses are still improving and the importance of evading automated sandbox 
analysis is increasing. 

 

Appendix I 
  
 The code below can be used to detect the presence of virtualization software and also identify 

its type. I will be maintaining this code on github here: 
https://gist.github.com/c0d3inj3cT/c68a203c2c1224df55b3. 

 
Methods for detecting more virtualization softwares like Virtual PC and Virtual Box need to be 
added. 

 
#include <windows.h> 

#include <stdio.h> 

#include <TlHelp32.h> 

#include <Setupapi.h> 

#include <string.h> 

 

/* 

VM Buster 

Author: Sudeep Singh 

*/ 

https://gist.github.com/c0d3inj3cT/c68a203c2c1224df55b3


 

void vmx_check(); 

void process_name_check(); 

void class_name_check(); 

void cpuid_check(); 

void cpu_cores_check(); 

void registry_check(); 

void devices_check(); 

void drivers_check(); 

 

int main(int argc, char **argv) 

{ 

process_name_check(); 

class_name_check(); 

vmx_check(); 

cpuid_check(); 

cpu_cores_check(); 

registry_check(); 

devices_check(); 

drivers_check(); 

return 0; 

} 

 

void process_name_check() 

{ 

    HANDLE psnap; 

    PROCESSENTRY32 pe; 

    int i=0; 

    char *process_name[] = {"regshot.exe", "wireshark.exe", "vmtoolsd.exe", 

"vboxtray.exe", "vboxservice.exe", "filemon.exe", "procmon.exe", 

"vmacthlp.exe"}; 

    pe.dwSize = sizeof(PROCESSENTRY32); 

     

    psnap = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0); 

     

    if(!Process32First(psnap, &pe)) 

    { 

        printf("There was an error in retrieving the process information\n"); 

        return; 

    } 

     

    while(Process32Next(psnap, &pe)) 

    { 

        i=0; 

        while(i != 8) 

        { 

            if(lstrcmpi(process_name[i], pe.szExeFile) == 0) 

            { 

                printf("Found process: %s\n", pe.szExeFile); 

            } 

            i++; 

        } 

    } 

     

    return; 

} 

 



void cpu_cores_check() 

{ 

    int i=0; 

     

    __asm 

    { 

        pushad 

        mov eax, dword ptr fs:[0x18]; 

        mov eax, dword ptr ds:[eax+0x30] 

        mov eax, dword ptr ds:[eax+0x64]; 

        cmp eax, 0x1 

        jnz done 

        xor eax, eax 

        inc eax 

        mov i, eax 

        done: 

        popad 

    } 

     

    if(i==1) 

    { 

        printf("Only 1 CPU core assigned to the VM\n"); 

    } 

     

    return; 

} 

 

void cpuid_check() 

{ 

    int i=0; 

     

    __asm 

    { 

        pushad 

        mov eax, 0x1 

        cpuid 

        and ecx, 0x1 

        cmp ecx, 0x1 

        jnz done 

        xor eax, eax 

        inc eax 

        mov i, eax 

        done: 

        popad 

    } 

     

    if(i == 1) 

    { 

        printf("Hypervisor found\n"); 

    } 

     

    return; 

} 

 

void class_name_check() 

{ 



    char *window_names[] = {"VMDisplayChangeControlClass", 

"VMwareDragDetWndClass", "vmtoolsdControlWndClass", "VMwareTrayIcon"}; 

    int i=0; 

     

    while(i < 5) 

    { 

        if(FindWindow(window_names[i], NULL) != NULL) 

        { 

            printf("Found window name: %s\n", window_names[i]); 

        } 

        i++; 

    } 

     

    return; 

} 

 

void registry_check() 

{ 

    HKEY hkey; 

    char *buffer; 

    int i=0,j=0; 

    int size = 256; 

    char *vm_names[] = {"vmware", "qemu", "xen"}; 

    buffer = (char *) malloc(sizeof(char) * size); 

     

    RegOpenKeyEx(HKEY_LOCAL_MACHINE, 

"SYSTEM\\ControlSet001\\Services\\Disk\\Enum", 0, KEY_READ, &hkey); 

    RegQueryValueEx(hkey, "0", NULL, NULL, buffer, &size); 

     

    while(*(buffer+i)) 

    { 

        *(buffer+i) = (char) tolower(*(buffer+i)); 

        i++; 

    } 

     

    while(j < 3) 

    { 

        if(strstr(buffer, vm_names[j]) != NULL) 

        { 

            printf("Found string %s in Registry\n", vm_names[j]); 

        } 

        j++; 

    } 

     

    return; 

} 

 

void vmx_check() 

{ 

    int i=0; 

     

    __asm 

    { 

        pushad 

        mov eax, 0x564d5868 

        mov edx, 0x5658 

        mov ecx, 0xa 



        in eax, dx 

        cmp ebx, 0x564d5868 

        jnz done 

        xor eax, eax 

        inc eax 

        mov i, eax 

        done: 

        popad 

    } 

     

    if(i == 1) 

    { 

        printf("Found VMX backdoor\n"); 

    } 

 

    return; 

} 

 

void devices_check() 

{ 

    HDEVINFO devinfo; 

    DWORD size; 

    char *buffer; 

    char *vm_names[] = {"vmware", "qemu", "xen"}; 

    int i=0,j=0,k=0; 

    SP_DEVINFO_DATA DeviceInfoData; 

    DeviceInfoData.cbSize = sizeof(SP_DEVINFO_DATA); 

     

    devinfo = SetupDiGetClassDevs(0,0,0,6); 

    while(SetupDiEnumDeviceInfo(devinfo, i, &DeviceInfoData) != 0) 

    { 

        j=k=0; 

        SetupDiGetDeviceRegistryProperty(devinfo, &DeviceInfoData, 0, 0, 0, 

0, &size); 

        buffer = (char *) calloc(0x40, size); 

        SetupDiGetDeviceRegistryProperty(devinfo, &DeviceInfoData, 0, 0, 

buffer, size, 0); 

        while(*(buffer+j)) 

        { 

            *(buffer+j) = (char) tolower(*(buffer+j)); 

            j++; 

        } 

         

        while(k < 3) 

        { 

            if(strstr(buffer, vm_names[k]) != NULL) 

            { 

                printf("Found Device Name: %s\n", buffer); 

            } 

            k++; 

        } 

         

        i++; 

    } 

 

    return; 

} 



 

void drivers_check() 

{ 

    char buffer[256]; 

    char *basedir="c:\\windows\\system32\\drivers\\"; 

    char 

*driver_names[]={"vmci.sys","vmhgfs.sys","vmmouse.sys","vmscsi.sys","vmusbmou

se.sys","vmx_svga.sys","vmxnet.sys","VBoxMouse.sys"}; 

    int i=0; 

     

    while(i < 8) 

    { 

        memset(buffer,'\0',256); 

        strcpy(buffer,basedir); 

        strcat(buffer,driver_names[i]); 

         

        if(GetFileAttributes(buffer) != INVALID_FILE_ATTRIBUTES) 

        { 

            printf("Found driver: %s\n",driver_names[i]); 

        } 

         

        i++; 

    } 

     

    return; 

} 

 

Appendix II 
 

 The code below can be used to parse the export directory of a module, enumerate all the 
exported functions and find their addresses. For each function, we could perform some 
operations like check the function prolog and identify if it has a standard prolog. This code 
could also be modified to identify any API which has been hooked by checking for presence of 
opcodes 0xe8, 0xe9 or 0xeb at API prolog. 

 
#include <windows.h> 

#include <stdio.h> 

 

/* 

Export Directory Parser 

Author: Sudeep Singh 

*/ 

 

int main(int argc, char **argv) 

{ 

    HANDLE hModule; 

    DWORD address; 

    char prolog[] = {0x8b, 0xff, 0x55, 0x8b, 0xec}; 

    char *prolog_address = prolog; 

    BYTE *buffer; 

    int i=0, j=0, num=0, result=0; 

    char *api_name=""; 

     



    buffer = (BYTE *) malloc(sizeof(BYTE) * 5); 

     

    if(argc < 2) 

    { 

        printf("usage: export_parser.exe <module_name>\n"); 

        exit(0); 

    } 

     

    hModule = LoadLibraryA(argv[1]); 

     

    __asm 

    { 

        pushad 

        mov eax, hModule 

        mov ebx, dword ptr ds:[eax+0x3c] 

        add ebx, eax 

        add eax, dword ptr ds:[ebx+0x78] 

        mov edx, dword ptr ds:[eax+0x18] 

        mov num, edx 

        popad 

    } 

     

    printf("Total number of functions imported from %s are %x\n", argv[1], 

num); 

     

    while(i < num) 

    { 

    __asm 

    { 

        pushad 

        mov edx, i 

        mov eax, hModule 

        mov ecx, eax 

        mov ebx, dword ptr ds:[eax+0x3c] 

        add ebx, eax 

        add eax, dword ptr ds:[ebx+0x78] 

        mov ebx, dword ptr ds:[eax+0x20] 

        mov eax, ecx 

        add ebx, eax 

        add eax, dword ptr ds:[ebx+edx*4] 

        mov api_name, eax 

        popad 

    } 

     

    address = (DWORD) GetProcAddress(hModule, api_name); 

     

    memcpy(buffer, (BYTE *)address, 5); 

     

    result = 0; 

     

    __asm 

    { 

        pushad 

        mov eax, buffer 

        mov ebx, prolog_address 

        xor ecx, ecx 

        xor edx, edx 



        xor esi, esi 

        repeat:  

        mov cl, byte ptr ds:[eax+esi] 

        mov dl, byte ptr ds:[ebx+esi] 

        cmp cl, dl 

        jnz done 

        inc esi 

        cmp esi, 0x5 

        jnz repeat 

        xor esi, esi 

        inc esi 

        mov result, esi 

        done: 

        popad 

    } 

     

    if(result == 1) 

    { 

        j++; 

        printf("%s | %x\n", api_name, address); 

    } 

 

    i++; 

    } 

     

    printf("Number of functions with a standard prolog: %x\n", j); 

     

    return 0; 

} 

 

Appendix III 
 
 The code below can be used to unlink any module from Process Environment Block. This would 

result in the module not showing up in the list of loaded modules in a Debugger, as well as 
Window APIs such as Module32First()/Module32Next() and GetModuleHandle() will not be able 
to find the module. 

 
 Credit for this code goes to Pnluck from OpenRCE. 
 

#include <windows.h> 

 

#ifndef UNICODE_STRING 

typedef struct _UNICODE_STRING { 

  USHORT  Length; 

  USHORT  MaximumLength; 

  PWSTR   Buffer; 

} UNICODE_STRING, *PUNICODE_STRING; 

#endif 

 

#ifndef LDR_MODULE 

typedef struct _LDR_MODULE { 

LIST_ENTRY InLoadOrderModuleList; 

LIST_ENTRY InMemoryOrderModuleList; 



LIST_ENTRY InInitializationOrderModuleList; 

PVOID BaseAddress; 

PVOID EntryPoint; 

ULONG SizeOfImage; 

UNICODE_STRING FullDllName; 

UNICODE_STRING BaseDllName; 

ULONG Flags; 

SHORT LoadCount; 

SHORT TlsIndex; 

LIST_ENTRY HashTableEntry; 

ULONG TimeDateStamp; 

} LDR_MODULE, *PLDR_MODULE; 

#endif 

 

#ifndef PEB_LDR_DATA 

typedef struct _PEB_LDR_DATA 

{ 

         ULONG Length; 

         UCHAR Initialized; 

         PVOID SsHandle; 

         LIST_ENTRY InLoadOrderModuleList; 

         LIST_ENTRY InMemoryOrderModuleList; 

         LIST_ENTRY InInitializationOrderModuleList; 

         PVOID EntryInProgress; 

} PEB_LDR_DATA, *PPEB_LDR_DATA; 

#endif 

 

 

BOOL APIENTRY DllMain(HMODULE hModule, DWORD  ul_reason_for_call, LPVOID 

lpReserved) 

{ 

    if(ul_reason_for_call == DLL_PROCESS_ATTACH) 

    { 

        HideDll((ULONG_PTR)hModule); 

        MessageBoxA(NULL,"DLL Hidden", "Hide the DLL", MB_OK); 

    } 

    return 1; 

} 

 

BOOL HideDll(ULONG_PTR DllHandle) 

{ 

ULONG_PTR ldr_addr; 

PEB_LDR_DATA* ldr_data; 

LDR_MODULE  *modulo, *prec, *next; 

 

__try 

{ 

__asm 

{ 

    mov eax, fs:[0x30] 

    add eax, 0xc 

    mov eax,[eax] 

    mov ldr_addr, eax 

} 

 

ldr_data = (PEB_LDR_DATA*)ldr_addr; 

 



modulo = (LDR_MODULE*)ldr_data->InLoadOrderModuleList.Flink; 

 

while(modulo->BaseAddress != 0) 

{ 

    if( (ULONG_PTR)modulo->BaseAddress == DllHandle) 

    { 

        if(modulo->InInitializationOrderModuleList.Blink == NULL) 

        { 

            return 0; 

        } 

 

        prec = (LDR_MODULE*)(ULONG_PTR)((ULONG_PTR)modulo-

>InInitializationOrderModuleList.Blink - 16); 

        next = (LDR_MODULE*)(ULONG_PTR)((ULONG_PTR)modulo-

>InInitializationOrderModuleList.Flink - 16); 

 

        prec->InInitializationOrderModuleList.Flink = modulo-

>InInitializationOrderModuleList.Flink; 

        next->InInitializationOrderModuleList.Blink = modulo-

>InInitializationOrderModuleList.Blink; 

           

        prec = (LDR_MODULE*)modulo->InLoadOrderModuleList.Blink; 

        next = (LDR_MODULE*)modulo->InLoadOrderModuleList.Flink; 

 

        prec->InLoadOrderModuleList.Flink = modulo-

>InLoadOrderModuleList.Flink; 

        prec->InMemoryOrderModuleList.Flink = modulo-

>InMemoryOrderModuleList.Flink; 

 

        next->InLoadOrderModuleList.Blink = modulo-

>InLoadOrderModuleList.Blink; 

        next->InMemoryOrderModuleList.Blink = modulo-

>InMemoryOrderModuleList.Blink; 

                     

        return 1; 

    } 

    modulo = (LDR_MODULE*)modulo->InLoadOrderModuleList.Flink; 

} 

 

} 

 

__except(EXCEPTION_EXECUTE_HANDLER) 

{ 

    return 0; 

} 

} 


