
nt!_SEP_TOKEN_PRIVILEGES - Single Write EoP Protect

Kyriakos 'kyREcon' Economou

www.anti-reversing.com

TL;DR: Abusing enabled token privileges through a kernel exploit to gain EoP it won't be enough
anymore as from NT kernel version 10.0.15063 are 'checked' against the privileges present in the
token of the calling process. So you will need two writes.

And now the long form...

While developping a kernel exploit that affects the products of a couple of AV vendors, I had to
make changes in it after each major update of Windows 10.

The bug allows to control a kernel pointer dereference which leads to full EIP control. This is
enough by design to easily exploit this situation in Windows versions previous to Windows 8.0.
That is because from Windows 8.0 onwards, the kernel took advantage of the SMEP CPU feature
which basically will BSOD the host if you attempt to execute in kernel-mode an instruction that
resides in userland.

That being said, I had to turn the bug from direct EIP control into a Read-Write Primitive.

First choice and easy win was to set the nt!_OBJECT_HEADER.SecurityDescriptor pointer of an
elevated process to NULL and inject a remote thread in it. This will work fine up to Windows 10
v1511.

First big change came with the release of NT kernel version 10.0.14393 (v1607) where the
aforementioned attack was (finally) mitigated. You can read more in this post that I had written for
Nettitude Labs. There is also a local copy here in pdf format.

So, since turning an elevated process into a sitting duck didn't work anymore, I had to use another
way. Well, I guess when you manage to get a Read-Write primitive the entire host becomes a sitting
duck, but let's leave this discussion for the pub.

Next easy win was, of course, to instead of turning a giant into an ant, why not turn an ant into a
giant. In other words, by enabling specific privileges into our process we can then interact with
elevated processes at will.

To make this work we can instead abuse nt!_SEP_TOKEN_PRIVILEGES structure which can be
found as a member of the nt!_TOKEN structure.

dt nt!_SEP_TOKEN_PRIVILEGES
 +0x000 Present : Uint8B
 +0x008 Enabled : Uint8B
 +0x010 EnabledByDefault : Uint8B

In this case we can just enable privileges at will by writing to
_SEP_TOKEN_PRIVILEGES.Enabled member which will give us full access to an elevated

https://twitter.com/kyrecon
http://anti-reversing.com/Downloads/Sec_Research/NULL_SecurityDescriptor_Mitigation.pdf
https://labs.nettitude.com/blog/analysing-the-null-securitydescriptor-kernel-exploitation-mitigation-in-the-latest-windows-10-v1607-build-14393/

process. Again, injecting a remote thread will do the job. This will work fine up to Windows 10
v1607.

Recently, though, I noticed that my exploit stopped working in the latest NT kernel version
10.0.15063. Since this technique is a pretty much solid one, it made me dig a bit deeper. I was too
curious to see what changed, and too annoyed seeing my exploit fail once more.

It seems that a tiny update in nt!SepCreateAccessStateFromSubjectContext function was enough to
mess with my exploit. Indeed it seems that one added instruction makes a huge difference.

Let's first see the interesting part from version 10.0.14393:

At loc_14000EC2B we see that _SEP_TOKEN_PRIVILEGES.Enabled privileges value is being
read in EAX. This will be taken into account to check if our process has enough privileges to
interact with an elevated process, hence inject a remote thread.

Let's first see the interesting part from version 10.0.15063:

At loc_1400048A38 we see that _SEP_TOKEN_PRIVILEGES.Enabled privileges value is being
read in EAX. However, this time that value will be ANDed with
_SEP_TOKEN_PRIVILEGES.Present.

That member keeps the privileges that are present (not enabled) in the token of our process. This
value basically indicates what privileges are available for our process to be enabled or later disabled
of course.

Now, since our process is running as a limited user all of the interesting privileges are absent, so no
matter what value you have set in the _SEP_TOKEN_PRIVILEGES.Enabled member, anything
above the maximum available privileges for our process will be lost during this check since the
result of that AND operation will be taken now in consideration and not the
SEP_TOKEN_PRIVILEGES.Enabled value.

In order to make our exploit work again, we have to make sure that the privileges in
_SEP_TOKEN_PRIVILEGES.Present are at least at the same level as those that we write in
SEP_TOKEN_PRIVILEGES.Enabled, and then we win.

To sum up, I wouln't call this as a proper mitigation as basically it's not really blocking this
exploitation method, but I can definitely imagine some people being annoyed by it, while looking at
their kernel exploit suddenly fail.

And now you know!

